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Abstract 

This paper provides a survey and review of the major econometric work on long 
memory processes, fractional integration, and their applications in economics and 
finance. Some of the definitions of long memory are reviewed, together with previous 
work in other disciplines. Section 3 describes the population characteristics of various 
long memory processes in the mean, including ARFIMA. Section 4 is concerned with 
estimation and examines semiparametric procedures in both *he frequency and time 
domain, and also the properties of various regression based and maximum likelihood 
techniques. Long memory volatility processes are discussed in Section 5, while Section 
6 discusses applications in economics and finance. The paper also has a concluding 
section. 
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1. Introduction 

This article provides a review of the growing literature of econometric work 
on long memory, fractionally integrated processes that are associated with 
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hyperbolically decaying autocorrelations and impulse response weights. The 
article attempts to be quite comprehensive in terms of coverage of results that 
appear of direct relevance for econometricians and also of the increasing 
number of applications in economics and finance. The review of the statistical 
literature in this field is deliberately selective given the econometric orientation 
of the survey. 

While long memory models have only really been used by econometricians 
since around 1980, they have played a role in the physical sciences since at least 
1950, with statisticians in fields as diverse as hydrology and climatology long 
recognizing the presence of long memory within data recorded over both time 
and space. The presence of long memory can be defined from an empirical, 
data-oriented approach in terms of the persistence of observed autocorrelations. 
The extent of the persistence is consistent with an essentially stationary process, 
but where the autocorrelations take far longer to decay than the exponential 
rate associated with the ARMA class. This phenomenon has been noted in 
different data sets by Hurst (1951, 1957), Mandelbrot and Wallis (1968), Mandel- 
brot (1972), and McLeod and Hipel (1978) among others. When viewed as the 
time series realization of a stochastic process, the autocorrelation function 
exhibits persistence that is neither consistent with an I(1) process nor an I(0) 
process. One of the most compelling motivations concerning the importance of 
long memory, fractionally integrated processes is related to the rate of decay 
associated with the impulse response coefficients of a process. The classical 
theory of stationary time series, and indeed many of the models used in 
econometrics, requires the existence of the Wold decomposition. The conditions 
for the Wold deconJposition are relatively weak and, apart from the possible 
presence of a purely deterministic component, little more than square summa- 
bility and martingale behavior is required for the innovation sequence asso- 
ciated with the stochastic component. A considerable amount of success in 
econometrics has been obtained from using the ARMA class of models which 
impose an exponential, or geometric, rate of decay on the Wold decomposition 
coefficients. This strategy has taken time series econometrics a long way theoret- 
ically and also in modeling empirical behavior. However, there is no conceptual 
reason for restricting attention to exponential rates of decay in the Wold 
decomposition, and there are indeed both theoretical and economic reasons for 
considering slower rates, such as hyperbolic decay. While a considerable 
amount of recent work has emphasized the role of persistence of shocks, most of 
it has been directed towards testing for the presence of unit roots in autoregres- 
sire representations of univariate and vector processes. However, the knife-edge 
distinction between I(0) and I(1) processes can be far too restrictive. The 
fractionally differenced process can be regarded as a halfway house between the 
I(0) and I(1) paradigms. One attraction of long memory models is that they 
imply different long run predictions and effects of shocks to conventional 
macroect ,omic approaches. 
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There is considerable evidence on the success of applying long memory 
models to time series data in the physical sciences, and rather less to macrocco- 
nomics where in many cases it seems hard to distinguish l(d) behavior from I(1) 
behavior. However, there is substantial evidence that long memory processes 
describe rather well financial data such as forward premiums, interest rate 
differentials, and inflation rates. Perhaps the most dramatic empirical success of 
long memory processes has been in recent work oh, modeling the volatility 
of asset prices and power transformations of returns. In this context the ap- 
proach has yielded hitherto unknown empirical regularities, which have 
spawned possible new insights into understanding market behavior and the 
pricing of risk. 

Apart from 38 background references, this paper cites 138 further articles 
concerned with long memory processes. Of these, 20 are in the field of probabil- 
ity theory and 82 are statistical/econometric papers concerning population 
characteristics and/or inference. There are 36 application papers: 10 in macro- 
economics, 18 in finance, and 8 in the geophysical sciences. 

2. Preliminary ideas and definitions 

2.1. Data considerations and the Hurst effect 

The origin of interest in long memory processes appears to have come from 
the examination of data in the physical sciences and preceded interest from 
economists. Perhaps the most well-known example has been in hydrology, and 
has included tidal flows and the inflows into reservoirs and was originally 
documented by Hurst (1951). The articles by Hurst (1951, 1956) analyze 900 
geophysical time series and were partly motivated through the desire to under- 
stand the persistence of streamflow data and the design of reservoirs. A survey of 
various stochastic models used in the analysis of river flows is in Lawrance and 
Kottegoda (1977); while Hipei and McLeod (1978a, b) and McLeod and Hipei 
(1978) consider various climatological applications. Long memory models may 
also be of interest for investigating the possibility of climatic change. Several 
authors have noted an apparent upward trend in world temperatures since the 
second half of the nineteenth century (e.g., Seater, 1993). An important policy 
issue concerns whether the higher temperatures are evidence of climatic change 
and global warming brought on by the man made emissions of green house 
gasses, or whether the recent observed temperatures are merely part of the 
regular cyclical variation that is known to occur in world temperature readings. 
Hurst (1951) and Mandelbrot and Wallis (1968) were also aware that temper- 
ature data and tree ring series exhibited long memory characteristics. 

Fig. 1 presents a graph of annual tree ring measurements from Mount 
Campito and extends from 3436 BC through 1969 AD, a total of 5405 
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observations. 1 This series is relatively typical of much of the geophysical data 
that first motivated Hurst (1951, 1956) in his formulation of the concept of long 
memory. The correlogram of this series in Fig. 2 shows that the autocorrelations 
exhibit a clear pattern of slow decay and persistence. All the first 150 years 
autocorrelations are positive and considerably greater than 0.027, their asymp- 
totic standard error. 

Fig. 3 graphs the well-known Beveridg¢ (1925) Wheat Price Index which gives 
annual price data from 1500 through 1869, averaged over many locations in 
western and central Europe. The autocorrelations are graphed in Fig. 4. One of 
the characteristics of long memory series is that the autocorrelations of the 
original series frequently have the appearance of being nonstationary, while the 
differenced series can appear over differenced. This property seems true of the 
Bcveridge wheat price series and also of the US monthly Consumer Price Index 
(CPI) inflation series. The autocorrclations of these series for both levels and 
differences are given in Table 1. 

Authors such as Whittle (1956) and Beran (1989, 1992a) discuss the occur- 
rence of long memory within a spatial context. For example, Whittle (1956) 
considers persistent autocorrelation discovered in plots of 'independently' 
treated land, while Beran (1992a) discusses measurements of the 1-kg standard 
weight by the US National Bureau of Standards in Washington, DC, where 
despite the close to ideal conditions correlations between measurements appear 
to decay according to a hyperbolic law. 

2.2. Definitions of long memory 

There are several possible definitions of the property of 'long memory'. Given 
a discrete time series process Yt with autocorrelation function PJ at lag j, then 
according to McLeod and Hipel (1978), the process possesses long memory if the 
quantity 

lim ~ IP~l (l) 

is nonfinite. Equivalently, the spectral density f(co) will be unbounded at low 
frequencies. A stationary and invertible ARMA process has autocorrelations 
which are geometrically bounded, i.e., IPkl ~< cm -k, for large k, where 0 < m < 1 
and is hence a short memory process. Fractionally integrated processes, to be 
discussed in Section 3 onwards are long memory processes given the definition 
in (1). In particular, the process Yt is said to be integrated of order d, or I(d), if 

(1 - L)dy, = u,, (2) 

I I am grateful to lan McLeod of the University of Western Ontario for providing this data.. 
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Table I 
Autocorrelations of the US Consumer Price Index and the Beveridge Wheat Price Index, Consumer 
Price Index data from January 1948 through July 1990, T = 523 

US Consumer Price Index 

! 0.467 2 0.423 3 0.399 4 0.360 5 0.316 
6 0.305 7 0.312 8 0.359 9 0.386 10 0.349 

II 0.320 12 0.278 13 0.234 14 0.180 15 0.211 
16 0.229 17 0 160 18 0.129 

Differenced US Consumer Price index 

I - 0.499 2 0.112 3 - 0.086 4 0.032 5 - 0.050 
6 - 0.013 7 - 0.024 8 0.028 9 0.042 10 - 0.029 

11 0.024 12 0.037 13 - 0.034 ! 4 - 0 . 0 8 9  ! 5 0.073 
16 0.008 17 0.084 18 - 0.036 

Beveridge Wheat Price Index 

I 0.9367 2 0.8624 3 0.8200 4 0.8095 5 0.8097 
6 0.7984 7 0.7850 8 0.7674 9 0.7587 I0 0.7598 

I I 0.7663 12 0.7646 13 0.7514 14 0.7454 ! 5 0.7368 
16 0.7190 17 0.6812 18 0.6447 19 0.6243 20 0.6204 
21 0.6264 22 0.6231 23 0.6144 24 0.6002 25 0.5925 
26 0.5906 27 0.5901 28 0.5838 29 0.5771 30 0.5719 
31 0.5568 32 0.5383 33 0.5294 34 0.5293 35 0.5299 
36 0.5309 37 0.5359 38 0.5375 39 0.5280 40 0.5100 
41 0.5018 42 0.4998 43 0.4984 44 0.4989 45 0.4854 
46 0.4744 47 0.4678 48 0.4673 49 0.4696 50 0.4672 

Differenced Beverid~le Wheat Price Index 

I 0.1073 2 - 0.3173 3 - 0.2850 4 - 0.0609 5 0.1212 
6 0.0203 7 0.0200 8 - 0.1001 9 - 0.1024 I0 - 0.0196 

II 0.0947 12 0.1036 13 -0.0988 14 -0.0181 15 0.0789 
16 0.1802 17 0.0301 18 - 0.I 185 19 - 0.1315 20 - 0.0799 
21 0.0766 22 0.0316 23 - 0.0130 24 - 0.0264 25 - 0.0258 
26 - 0.0070 27 0.0509 28 - 0.0059 29 - 0.0074 30 0.0764 
31 0.0223 32 - 0.0688 33 - 0.0617 34 - 0.0013 35 0.0039 
36 - 0.0399 37 0.0219 38 0.0699 39 0.0622 40 - 0.0732 
41 - 0.0739 42 0.0175 43 0.0019 44 0.1398 45 - 0.0223 
46 - 0.0459 47 -- 0.0666 48 - 0.0201 49 0.0334 50 0.0721 

w h e r e  L is t he  l ag  o p e r a t o r ,  - 0 . 5  < d < 0~5, a n d  ut is a s t a t i o n a r y  a n d  e r g o d i c  

p r o c e s s  w i th  a b o u n d e d  a n d  pos i t ive ly  v a l u e d  s p e c t r u m  a t  all f r equenc ies .  O n e  

i m p o r t a n t  c lass  o f  p r o c e s s  o c c u r s  w h e n  ut is I(O) a n d  is  c o v a r i a n c e  s t a t i o n a r y .  

F o r  0 < d < 0.5, t h e  p r o c e s s  is l o n g  m e m o r y  in t h e  s e n s e  o f  t h e  c o n d i t i o n  ( l ) ,  i ts  

a u t o c o r r e l a t i o n s  a r e  all  pos i t i ve  a n d  d e c a y  a t  a h y p e r b o l i c  rate .  F o r  

- 0 . 5  < d < 0, t h e  s u m  o f  a b s o l u t e  va lues  o f  t h e  p r o c e s s e s  a u t o c o r r e l a t i o n s  
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tends to a constant, so that it has short memory according to definition (1). In 
this situation the ARFI MA(0, d, 0) process is said to be 'antipersistent' or to have 
'intermediate memory' ,  and all its autocorrelations, excluding lag zero, are 
negative and decay hyperbolically to zero. 

Alternatively, the memory of a process Yt can be expressed in terms of the 
behavior of its partial sum 

T 

sT = X y,. (3) 
t = l  

Rosenblatt (1956) defines short range dependency in terms of a process that 
satisfies strong mixing, so that the maximal dependence between two points of 
a process becomes trivially small as the distance between these points increases. 
More concretely, a process Yt can be defined as having short memory if 

a 2 =  lim E(T-1S~)  (4) 
T ~ 0 v  

exists and is nonzero, and 

r!/,~r'/21.~. ~. =~ntr~ e,~r ~ll r e  [0,1], (5) 

where [rT] is the integer part of rT, B(r) is standard Brownian motion, and 
denotes convergence in distribution. This allows departures from covariance 

stationarity, but requires the existence of moments up to a certain order. 
A wider definition of long memory is to include any process which possesses 

an autocovariance function for large k, such that 

~k ~ ~(k) k2H- 2, (6) 

where .~. denotes approximate equality for large k and where S(k) is any slowly 
varying function at infinity 2 and is described in detail by Resnick (1987). Helson 
and Sarason (1967) show that any process with H > 0 and autocovariance 
function given by (6) violates the strong mixing condition, and hence is long 
memory or long range dependent. 

Taqqu (1975) studies the weak convergence of a linear combination of a 'long 
memory '  type process, where the weights are functions of Hermite polynomials. 
Specifically, the results are for a stochastic process, ~t= L[m,l Hm(yt), where y~ is 
Gaussian with zero mean and an autocovariance function obeying (6), 
0~<p ~< 1, and Hm is the ruth Hermite polynomial. For the case 
H < [1 - (1/2m)] then an appropriately normalized version of~ ,  = LtNp] H,,(y~), 

2A function f(x) is defined as being regularly varying at infinity with index a if 
lira,, ~ [f(tx)/f(t)] = x', for all x > O, so that asymptotically f(x) is a power function. The function 
is slowly varying at infinity if,, = O, so that f(x) asymptotically becomes a constant, f(x) = log(x) is 
an example of a slowly varying function at infinity. 
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will converge to Brownian motion. However, when [1 - ( 1 / 2 m ) ]  < H < 1, the 
limit depends on m, is non-Gaussian for m >1 2, and when m = 2, the limit is 
the Rosenblatt process. Fox and Taqqu (1985) have provided further results for 
the quadratic form, 

~, ~ ai_,n.(y,)H.(y,), 
i = l  j = l  

where ai are finite constants, Hm(') again denotes the ruth Hermite polynomial, 
and Yt is the same long memory process as before. Similarly, Fox and Taqqu find 
the normalized sum of the quadratic form converges either to Brownian motion 
or to a Rosenblatt process. Fox and Taqqu (1987), Giraitis and Surgailis (1990), 
and Beran and Terrin (1994) show that a vector of quadratic forms with long 
memory converges to a vector of independent Gaussian random variables. The 
constants in the quadratic form have to decay at sufficient speed to offset the 
long range dependencies in Yr. 

2.3. Fractional Brownian motion 

Regular Brownian motion is a continuous time stochastic process, B(r), 
composed of independent Gaussian increments. Mandelbrot and Van Ness 
(1968) also note that in a sense fractional Brownian motion, Bn(r), can be 
regarded as the approximate (1/2 - H) fractional derivative of regular Brownian 
motion, 

F 

Bn(r) = [I/F(H + 1/2)] ~ (r - x) ~- t/2 dB(x) for r 6 (0, 1), (7) 
0 

where F(-) is the gamma function, B(x) is regular Brownian motion with unit 
variance, and H is the Hurst coefficient, originally due to Hurst (1951). When 
H = 1/2, Bn(r) reduces to regular Brownian motion, B(r). The autocovariance 
function of fractional Brownian motion is given by 

E I BH(t)  - -  BH(s)I  2 = It - -  sl 2H, 

and 

? ~ [ k [  2H-2, (8) 

so that for high lags hyperbolic decay occurs in the autocovariance function. 
Continuous time fractional noise is denoted by Bn(t)' and is the derivative of 
fractional Brownian motion. The (1/2 - H) fractional derivative of continuous 
time white noise reduces to white noise when H = 1/2. 

Avram and Taqqu (1987) and Davydov (1970) develop a functional central 
limit theorem for fractionally integrated processes. In particular, when (2) is 
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fractional white noise, 

(1 - L)ayt = e,, 

where d < 0.5 and et is independent and identically distributed with zero mean 
and finite variance; and on defining Sr as 

[ Tr] 

ST = ~ Yt, 
t=l  

it can be shown that 

(1~aT)SET, l =~ Ba(r). (9) 

The above fractional Brownian motion Bd(r) is defined, analogously to 
Eq. (7), as 

Bd(r) = {1/F(d + 1)} i (r -- x)a[dB(x)] ,  (10) 
- 0  

where the fractional differencing parameter, d, is related to the Hurst coefficient 
as d = H - 1/2. One additional property is that the partial sum ST in (3) of BH(r) 
variates is Op(TH), while for a short memory process, ST in (3) is O~,(T1/2). 
Furthermore, 

0 .2 = var(Sr) ~ t2u-~(T), 

where ~ ( T )  is again a slowly varying function, such as log T. 
A related literature on self-similar processes was developed by Kolmogorov 

(1940) in continuous time. The definition is considerably stronger than when 
defining particular processes with long range dependencies. Formally, a process 
y, is self-similar with respect to a parameter H, if for any m and time points 
t~ . . . . .  t,,, the joint distribution of {y .  . . . . .  Yta} is identical to a - "  times the 
joint distribution of { y.,i, . . . ,  Y~..}- Kolmogorov (1940) and Mandelbrot and 
Van Ness (1968) show that the autocovariance function of a self-similar process 
y,, which is observed at discrete, regular intervals of time, is given by 

~k = C(1/2)yo{lk + II 2n -- 2lkl 2" 4-Ik - ll2U}, (11) 

for C > 0 and 1/2 < H < 1. For  high lags k, 

~k "~ CH(2H - 1)lkl 2(u- I), (12) 

as k --* oo. Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1969a) 
refer to tl-.e process generating the above autocovariance function as fractional 
Gaussian noise, and Sinai (1976) provides a result for the spectral density of the 
process. In some studies the degree of persistence is considered to be related to 
the time interval of observation, in Mandelbrot's (1972, 1975) terminology, 
a 'fractar is defined as [3ytl = (At/O H, where At is the time interval and c is 
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a constant. A self-similar fractal has the same H, or Hurst coefficient, for all 
choices of time intervals. 

Another self-similar process, which is otherwise unrelated to long memory 
processes concerns random variables with densities exhibiting excess kurtosis. 
Fat-tailed densities are self-similar with respect to their tail behavior and 
extreme value theory (as discussed for example by Leadbetter, Lindgren, and 
Rootzen, 1983) is concerned with the limiting distribution of the order statistics. 
For example any convolution of a Student t density with degree of freedom 

will have the same tail index and is said to be self-similar with respect to tail 
behavior. Hols and de Vries (1991) and Koedijk, Schafgans, and de Vries (1990) 
find this property to be apparent in exchange rate re turns)  

3. Theoretical models 

3. !. Fract ional  whi te  noise 

While the discrete time analog of Brownian motion is the random walk, the 
discrete time version of fractional Brownian motion is fractionally differenced 
white noise. The process was independently developed by Granger (1980), 
Granger and Joyeux (1980), and Hosking (1981), although earlier work by 
Adenstedt (1974) and Taqqu (1975) shows an awareness of the representation. 
The process is defined as 

(1 - L)a(yt - p) = E,, (13) 

where E(e,) = 0, E(e 2) = 0 "2, and E(~t~) = 0 b r  s # t ,  and where the fractional 
parameter d is possibly noninteg,,~r. It will be seen that the process is weakly 
stationary for d < (1/2) and is invertible for d > - (1 /2) .  The infinite-order 
autoregressive representation of fractional white noise is given by 

Yt = ~ :~kYt-k + et, (14) 
k = O  

where the infinite-order autoregressive representation weights xk are obtained 
from the binomial expansion, 

(1 - L) d = {1 - d L  + d(d - 1)L2/2[ - d(d - l)(d - 2)L3/3! + --- }, 

3 One interesting related study by de Haan (I 990) uses limit laws for the distribution of a maximum 
from a sample, to study the distribution of high tides and the appropriate dyke levels in the 
Netherlands. Extremal values were associated with the devastating high tides of 1570 and that of 
1953, which caused over 2000 deaths in the Netherlands. de Haan first attempts to remove temporal 
dependencies from the data before using extremal analysis. 
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for any real d > - 1. The expansion can also be represented in terms of  the 
hypergeometric function, 

( I - L )  a =  ~, F(k  - d )L~/F(k  + I )F(  - d) = F( - d, I, I; L),  (15) 
k = O  

for d > 0, and where F(a, b; c; z) is the hypergeometric function defined as 

F(a, b; c; z) = F(c ) / [  F(a) F(b)] 

× ~, z ' r ( a  + i ) r (b  + i ) / [ r ( c  + i ) r ( i  + 1)]. (16) 
i = 1  

The typical autoregressive coefficient at lag k, given by rtk, is 

n~ = {d (d - l)(d - 2) . . .  (d - k + l)( - l ) k } / k !  (17) 

= {( - d ) ( l  - d)(2 - d ) . . .  (k - 1 - d ) } / k ! ,  

and since 

F(k  - d) = {(k - d - l)(k - d - 2) ... (2 - d)(l - d)( - d ) } r ( - d ) ,  

it follows that the infinite autoregressive representation coefficients can be 
expressed as 

~ = r ( k  - d ) / { r (  - d ) r ( k  + 1)}. (18) 
Similarly, the fractional white noise process can be expressed as an infinite- 

order moving average representation, or Wold decomposit ion,  

Yt = ~. d/k~z-k (19) 
k = O  

= (I - L)-de ,  

= {! + d L  + d ( d +  1)L2/2! + d ( d +  l ) ( d + 2 ) L 3 / 3 !  + ... }et. (20) 

Since 

r(d + k) = d(d + l)(d + 2) ... (d + k - 1) /F(d) ,  

it follows that 

~/h = r ( k  + d ) / { r ( d ) r ( k  + 1)}. (21) 

The cumulative impulse response is the total impact of  a unit innovation and 
is given by ~b(1) = Y4=o.~ $i ,  and the spectral density at the zero frequency is 
f (0)  = ~,(l)Z~r z for d < 0 and f (0)  =oo  for d > 0. 

Brockwell and Davis (1987) show that y~ is convergzent in mean square 
through its spectral representation. Also, since Y4=o. ® @j < oo, the fractional 
white noise process is mean square summable and stationary for d < 0.5. When 
d = 0.5, the ARFIMA(0,0.5 ,0)  process is a discrete time version of  ' l / f '  noise 
and is just nonstat ionary,  since gq ~ k -  1/2 and hence y. ~b~ just fails to converge. 
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Odaki (1993) discusses invertibility in the sense that the MSE of the one-step- 
ahead linear predictor from a finite-order AR(p) converges to the innovation 
variance. 'Invertibility' in this sense was originally discussed by Granger and 
Andersen (1978), and Odaki (1993) shows that d > - 1 is a sufficient condition 
for the ARFIMA process. 

The most important properties of the fractional white noise process are 
summarized in Table 2 and were all derived by Granger (1980), Granger and 
Joyeux (1980), and Hosking (1981). Of particular interest are the long-run 

T a b l e  2 

Propert ies  o f  fract ional  w h i t e  no i se  

Infinite M A representation coefficients 

0/~ = F ( k  + d ) / { F ( d ) F ( k  + I)} 

~, = ~,,_,{(k - I + d)/k} 

Infinite AR representation coeoO~cients 

nk = F{k - d ) / { F {  - d )F(k  + I)} 

~ = n~_ ~ {(k - I - d ) / k }  

Autocovariances 

Yo = o 'ZF(I  - 2d) / {F2( l  - d)} 

y~ = {o21"{k + d ) F ( I  - 2 d ) } / { F ( k  + I - d ) F ( l  - d ) F ( d ) }  

"/~ = { (a2 /2n)s in(nd)[F(k  + d ) F ( I  - 2 d ) ]  }/{ F(k + I - d)}  

7~ = { - I)~F( I - 2d) / [F( I  - k - d )F(k  + 1 - d ) ]  

Autocorrelations 

pR = d / ( !  - d ) ,  p z = d ( I  + d ) / { ( i  - d ) ( 2 - d ) }  . . . . .  

a~ = Ho<~ {(~ - I +d)/O -d)} 

p~ = {r(k + d)r{! - d)}/{r(k - d + t~r(d)} 

Partial autocorr¢lations 

~ P a = d / ( k - d )  for  k = l , 2  

Power ,specwum 

f(ta) = (o'2/2z)[I - e" ~'~1-2d and at low frequencies f ( ~ )  -~ eta- za 

f (aa) = (az /21012sin(oJ/2)]- zd 

Asymptotic approximation 

~t, "~ { F ( d ) }  - Ika -  I 

~ r t ~ { F i - d ) }  Ik-d i 

Pt, = {F{I - d ) / F ( d ) } k  2a- I 

f ( 0 ) < ~  if  d ~ O  
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properties of some of the characteristics of the process. On using Stirling's 
approximation for large k that F(k + a)/F(k + b) .~ k a-b, it can be established 
that ~ ~ c~ k a- ~, nk ~ c2k-d-  ~, and Pk ~ c3k 2a- ~, where the ci are constants. 
Hence the impulse response weights, infinite autoregressive coefficients, and 
autocorrelation coefficients all exhibit slow hyperbolic decay for large k. 

Also, the power spectrum f(to) of the process is closely approximated at low 
frequencies, as to --, 0, by 

f(to) ~ e)-2a, 

compared with f(to) ~ co- 2 for a I(1), unit root p:ocess. Hence fractional white 
noise is consistent with the 'typical spectral shape" of many economic time series 
originally noted by Granger (1966), and the ARFIMA model to be discussed in 
the next section can be useful in representing spectral density functions at low 
frequencies. This is in contrast to differenced series which have a power spec- 
trum that is close to being zero at low frequencies. Also, for any constant c and 
low frequency to, f((o) = Icl2'~f(cco), so that the process is self-similar at low 
frequencies with the properties of yt remaining invariant to the time interval. 

A further property discussed by Sowell (1990) concerns the behavior of the 
contiguous sum ST in (3}, when y, is fractional white noise as in (13). Then Sowell 
(1990) shows that 

var(Sr) = (72F(I - 2d){(l + 2d)F(l + d)F(l - d)}-~c, (22) 

where 

and 

c = [F(I + d + T)/F(T - d) - F(I + d)/F( -d)] 

iim [var(Sr)]  T -(1 +2a) = ~2r (  1 _ 2d){(l + 2d ) r ( l  + d ) r ( l  - d)}-  l 
T ~ o o  

Hence, 

var(Sr) = O ( T  2a + I), (23) 

which implies that the variance of the partial sum of an I (0) process, with d = 0, 
grows linearly, i.e., at a rate of O(T).  For a process with intermediate memory 
with - 0 . 5  < d < 0, the variance of the partial sum grows at a slower rate than 
the linear rate, while for a long memory process with 0 < d < 0.5, the rate of 
growth is faster than a linear rate. Diebold (1989) considers a possible test for the 
presence of l(d) behavior based on the variance time function R(k), 

R(k) = ko~ l(72k , (24) 

for positive integer valued k, and where ~r~ = var(y, - Y,-D and Ok 2 ~ O(k 2d- l) 
for an I(d) process. If d < I/2, the variance time function becomes flat; for 
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1/2 < d < 1, then R(k)  grows at a decreasing rate, and for 1 < d < 3/2, then R(k)  
will grow at an increasing rate. Diebold (1989) tabulates the fractiles of R(k). 

3.2. The ARFIMA process 

An important and more flexible class of process in discrete time has been 
introduced by Granger and Joyeux (1980), Granger (1980, 1981), and Hosking 
(1981), and is the A R F I M A ( p , d , q )  model 

~b(L)(1 - L ) d ( y ,  - -  I~) = O(L)e,, (25) 

where d denotes the fractional differencing parameter, all the roots of ~b(L) and 
O(L) lie outside the unit circle, and ct is white noise. The y, process defined by Eq. 
(25) and for d :~ 0 is then said to be I(d). The Wold decomposition and 
autocorrelation coefficients will all exhibit a very slow rate of hyperbolic decay. 
For -0 .5  < d < 0.5, the process is covariance stationary, while d < 1 implies 
mean reversion. For an I(d) process, the spectral density is such that f(0) = 0 for 
d < 0 and f(0) --- ov for d > 0. For small frequencies, to, an approximation for 
d > 0 is given by f ( (o)~  to -za, while the process has infinite variance for 
d > 0.5. In particular, for the fractional process, Sowcll (1986, 1992a) shows that 

P q q 

7k = a 2 ~, ~j ~, ~. O,,O,,C(d,d,p + n - m - k ,2 j ) ,  (26) 
j = l  n = O m = O  

where 2j is the jth root of the AR polynomial lag operator, ~b(L), and 

~j = -- PiPi) H (pi -- Pk) • 
k= l,p;k ~ i 

C ( w , v , k , p )  = G(w,v , k ) [p2PF(v  + k, l; l - w + k;p)  

+ F(w - k, l; l - v - k; p) - 1], 

G(w, v, k) = jr(1 - w - v ) r ( v  + k ) ] / [ r o  - w + k ) r O  - O r ( v ) ] .  

Parametric expressions for the infinite autoregressive and infinite moving 
average representation weights for the general A R F I M A ( p , d , q )  process are 
relatively complicated functions of the hypergeometfic function. Chung (1994a) 
provides some alternative methods for the calculation of these autocorrelations. 
In particular, 

q P 

~, = E a~ ~ o .c(k-1~- j ;~ , . ) ,  
j =  - q  n =  I 

where 

m----O R---- | 
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~'  is the autocovariance at lag k of an ARFIMA(0, d, 0) process, 

[ ]' ak = Ok I-I (1 - Oi~bk) l-I (Ok - ~b,,,) , k --- 1,p, 
i = l , p  m#k,p 

4-1Jl 

i =0  

For high lags, hyperbolic decay is also evident in the autocorrelations of the 
ARFIMA process and 

p~ ~ ckZd - 1, (27) 

where c > 0. Also, the spectral density function is 

f(co) = (o'2/2~)I 0(e- i°')121 ~(e-'~')l - Z l I - e- i" I - 2J 

= (a2/2n)10(e-iO,)lZ 14)(e-iO,)l- z [211 - cos(~)l] - zd, (28) 

and for low frequencies as to ~ 0, 

f(co) .~ (a2/21t)[O(1)/~(1)]zco - zd. (29) 

It is often important to derive the impulse response weights from the 
ARFIMA(p, d, q) process in (25). Following Campbell and Mankiw (1987), the 
impulse response weights are defined by first differencing y, in (25), to obtain 

(1 - L)y, = A(L) t , ,  

where 

A(L)  = (1 - L)  t -a gp(L)- tOiL). (30) 

The lag polynomial A(L) can be expressed in terms of the hypergeometric 
function as 

A(L)  = F(d - l, 1, l; L)c~(L)- t O(L), 

and from Gradszteyn and Ryzhnik (1980, pp. 1039-1042), F(d - l, 1, 1;L) = 0 
for d < 1. Hence, for d < 1, 

A(1) = F(d - l, l, l; I)6(I)- t 0(I) = 0. (31) 

The impact of a unit innovation at time t on the process Y,+k is then given as 
I + Y4= z.k Aj. For a mean reverting process, A(1) = 0. For any process y, ,-. l(d) 
and for d < I, it follows from (3 I) that y, will be mean reverting. While y, will not 
be covariance stationary for 0.5 < d < I, it will nevertheless still be mean 
reverting. 

3.3. Aggregation and ARFIMA 

Apart from the inherent reasonableness of having impulse response weights 
exhibiting slow hyperbolic decay, an alternative explanation has been provided 
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by Robinson (1978) and Granger (1980). Suppose individual agents have stable 
AR(I) processes with coefficient ctj(2), where 2 indexes the population and ~(~.) is 
a random variable with distribution function G and is independent of all 
innovation processes. Granger (1980) uses the beta distribution in the context of 
contemporaneous aggregation of panel data and obtained the power law of 
behavior of the corresponding unconditional autocovariances with rate k 2d- 1. 
Mandelbrot (1971) suggests a similar idea in the context of Monte Carlo 
simulation of fractionally integrated time series. Granger (1980)considers 

N 

2t = ~_, Yit, 
i = 1  

which is the aggregate of N component and independent processes, Ya, such that 
f o r / =  1 . . . . .  N, 

Y~, = ~,Y,',- I + ~a- (32) 

For small N, zt is ARMA(N, N - 1). Granger (1980) then considers the autore- 
gressive coefficients ~i, to be drawn from a beta (0, 1) distribution, 

dF(a) = [2/B(p,q)]~2P-l(1 -- ~2)q-i, 0 <~ • <~ 1, p > O, q > O, 

and shows that in the limit for large N, 

z, ,,, I (1 - q/2), 

which implies fractional behavior for the aggregate process. If q > 1, then 
( 1  - q/2) > 1/2, and z~ will have an infinite variance. Lin (1991) provides some 
further results on aggregation in the context of long memory processes. 

3.4. Prediction from ARFIMA processes 

Granger and Joyeux (1980) and Geweke aiid Porter-Hudak (1983) consider 
prediction from an ARFIMA process in (25) by using the infinite autoregressive 
representation 

00 

y, = Y. njy,_~ + it, (33) 
j = l  

where 

1t(L) = (1 - L)ddp(L)O(L) - 1. 

They consider prediction based on a version of(33) truncated after k lags. Peiris 
(1987) and Peiris and Perera (1988) discuss some of the formulae for calculating 
predictions from the autoregressive representation. Since the ARFIMA process 
is not compatible with any finite-dimensional state space representation, there is 
no readily available solution to the truncation problem associated with using 
the autoregressive representation for prediction. A further currently unresolved 
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issue concerns the effect of parameter estimation in ARFIMA processes, and the 
extent to which this increases prediction uncertainty. These .'ffects may well be 
substantial in small samples, and are an area worthy of further investigation. 
Ray (1993a) considers a related issue concerning the asymptotic prediction MSE 
from approximating fractional white noise with a finite-order AR(p) model with 
estimated parameters. She finds the quality of the approximation to be very 
sensitive to both the order of the approximating autoregression and to the 
forecast horizon. 

3.5. Gegenbauer and generalized ARFIMA processes 

Gray, Zhang, and Woodward (1989) consider the theoretical properties of 
Gegenbauer and related processes. The simplest case is the pure Gegenbauer 
process given by 

(1 - 2~L + LZ)~yt = et. (34) 

The process is covariance stationary if (i) [~1 < 1 and 0 < it < 0.5 or (ii) Ill = 1 
and it < 0.25. The process is invertible if (i) I¢l < 1 and 2 > - 0.50 and (ii) 
I el = 1 and it > - 0.25. When ~ = 1, the process in (34) reduces to fractional 
white noise with d = 24. A stationary Gegenbauer process exhibits long memory 
in the form of long memory harmonic behavior in its autocorrelation function. 
In particular, the form of the autocorrelations is dependent on the region of the 
parameter space. The most interesting regio~ is for I~] < 1 and 0 < It < 0.5, then 

p~ ,~ C,[cos(ktoo)kZ;. - 1], (35) 

where tOo = cos -  1(2) is known as the G frequency and determines the harmonic 
frequency and C'  is a constant that is independent of/. and tOo. In this part of the 
parameter space the process has spectral density of 

f(to) = 0 .2 {41"cos(to) - 4] 2}-~. (36) 

When ~ = 1 and It = d/2, the Gegenbauer process in (34) reduces to the frac- 
tional white noise or ARFIMA(0,d,0) process. Hence for ~ =  1 and 
0 < i t  <0.25,  

p~ = I t (1  - 21)r(k + 22)] /[r (2 i t ) r (k  - 2 t  + 1)], 

while for k ~ ~ ,  

10 k ~, k4~- 1. 

For ~ = - 1 and 0 < 2 <0.25,  

p~ = ( - 1 ) k [ r ( 1  - 22)r(k + 22)] / [ r (21) r (k  - 2), + 1)], 
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and as k - ,  oo, 

Pk m. ( - l)kk *~- t 

Chung (1996) discusses other properties of Gegenbauer processes and considers 
approximate maximum likelihood estimation of these processes. The properties 
of the so-called Gegenbauer ARMA process, or GARMA process, are con- 
sidered by Gray, Zhang, and Woodward (1989) and Chung (1994); although the 
first mention of this type of process appears to have been by Hosking (1981). The 
process is defined as 

~b(L)(l - 2~L + L2)~(yt -/~) = O(L)e ,  (37) 

where the Gegenbauer process is appended with an ARMA component. The 
GARMA process is stationary if l£1 < 1, ~ < 0.25 (i.e., d < 0.50) and is invertible 
if J~] < l and 2 > -0 .25  (i.e., d > - 0.50). On defining v = cos- t(~), then the 
spectral density function is given by 

f ( to)  -- (o'2/27t) 10 (e -  i")121 ~ ( e -  ~')l - 2 [21cos (v )  - cos(oJ)  l]  - 2a. (38)  

As o--*v, then the spectral density function in (38) becomes 
f(to)-~ Ire 2 -  v2] -2a, so that the spectral density function is unbounded as 
o - - ,  v. The form of the autocovariance function and the impulse response 
weights are known for lag k --, 0o to be 

7~ ~ c°s(kv)  k2d- t (39) 

and 

~bk ~ COS [kv + d(v - 0.5~)] k d- t. (40) 

A further parametric long memory process has been suggested by Porter- 
Hudak (1990), who considers the seasonal fractionally differenced process 

(1 - L~)ay, = e,, (41) 

where s is the seasonal period, and analogously to Eq. (19), the process will have 
an infinite moving average representation given by 

y, = ~(L)~,, 

where $(L) = (1 - / ? ) - d  and 

¢ , ~ =  r ( s k  - d ) / E r ( s k  + 1 ) r ( - d ) ]  for k = 1,2,3 . . . . .  

~ = ~z  c o s ( k n / s ) r ( 1  - 2 d ) / [ F ( l  - d + s k ) r ( 1  - d - k / s )] ,  

and is zero for other lagged values. Asymptotically for large lags k, 

~ ~. ck ~- l (42) 
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The autocovariance function at lag k is given by 

~,, = a2 c o s ( k ~ / s ) r ( l  - 2 d ) / [ r ( 1  - d + k / s ) r ( l  - d - k/s)]. (43) 

The rates of decay of the autoregressive representation weights, the autocorre- 
lations and the infinite moving average representation coefficients exactly co- 
incide with those of the fractional white noise process in Table 2. A more general 
seasonal ARFIMA, or ARFISMA, model is given by 

4~(L)( l  - L~)"y ,  = O(L)~, .  (44) 

Closed form expressions for the autocorrelation function of the above process 
are currently unavailable. However, the spectrum of the ARFISMA model in 
(44) is given by 

f ( co)  = (a2 /2n) lO(e- i 'o )12 lc~(e - i " ) l -  z {211 - cos(sto)] }- zd. (45) 

The spectrum is unbounded at frequencies to i = ( 2 n j ) / s ,  for j = 0, 1, 2 . . . . .  (s/2), 
so that the model contains a persistent trend and (s/2) persistent cyclical 
components. Hence the ARFISMA process shows a behavior at seasonal 
frequencies similar to that of the ARFIMA process at the zero frequency. Ray 
(1993b) presents an example of using seasonal ARFIMA models to predict 
monthly revenue data. 

3.6. F r a c t i o n a l  co in tegra t ion  

From Granger (1981, 1983), two time series, y, ~ ! (d} and x, ~ I (d), are said to 
be fractionally cointegrated of order (d ,b)  if z~ = (yt - f lxt) -,. l(d - b), where 
d > (1/2)and d I> b > 0. In general, the order ofintegration of a linear combina- 
tion of component processes, will be the maximum of the component processes. 
Granger has also provided an error correction formulation for fractionally 
cointegrated processes. If y, ,,, l(d) is a k-dimensional vector and z, is a set of 
cointegrating vectors such that z, = a'),, ~ l(d - b), then Granger has shown the 
appropriate error correction representation to be 

H(L)(1 - L)ayr = - ~,[1 - (1 - L)t'](1 - L)d-bZt  + C ( L ) s , ,  (46) 

where H(0) - I and C(1) < oo. The possible fractional cointegration of I(1) asset 
prices may be a common phenomenon and will be discussed later. If economic 
fundamentals are only important in the long run, then mean reversion of returns 
will only occur over a very long horizon and the error correction term from (46) 
may be useful in reducing prediction MSE of the martingale model over long 
forecast horizons. Robinson (1992) also considers a form of cointegration in this 
context. 
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4. Estimation and testing 

4.1. The rescaled range statistic 

The original statistical measurement of long memory due to Hurst (1951) and 
used by Mandelbrot (1972, 1975) is the rescaled range or R/S statistic. The 
rescaled range statistic Rr/sr is defined as 

R r =  max (Yi--JY) - min (Y i - JY )  , (47) 
o r o<~j~<r [j= 1 

where R is the range, sr is the sample standard deviation, and ~ is the sample 
mean, 

sT = {(l/T) ~ (y, -- ~)2} 1/2. (48) 

Hurst (1951), Mandelbrot and Wallis (1968), Mandelbrot and Taqqu (1979), 
Taqqu (1975, 1977), and Lo (1991) showed that 

plim { T -  n(Rr/sr) } = constant. (49) 
T~Qo 

The idea of R/S analysis introduced by Hurst (1951) is to very informally write 
the above as 

log[E(Rr/sr)] .~ constant + H[Iog(T)] ,  

and the Hurst coefficient H is then estimated as Iog[Rr/sr]/[log(T)], or 
alternatively by taking the slope coefficient of a regression of log[Rr/sr] on 
log(t), for different values of t. Since a short memory process would have a value 
H equal to 1/2, an estimated value of H that exceeds 1/2 is interpreted as 
evidence of long memory. Various alternative methods for estimating H from 
the above relationship are discussed by Mandelbrot and Wallis (1968, 1969b) 
and Davies and Harte (1987). Lo (1991) shows that T-~12Rr/sr is asymp- 
totically distributed as the range of a standard Brownian Bridge on the unit 
interval and has an expectation of 0r/2) 1/2 = 1.253 and a standard deviation of 
[0 t /2 )0 t -  3)/3] t /2= 0.272. Many of the early researchers in this area were 
aware of the possible deficiencies of the R~/sr statistic in the presence of data 
generated by short memory I(0) processes combined with a long memory 
component. Anis and Lloyd (1976) determine the small sample bias of the R/S 
statistic; while Mandelbrot (1972, 1975), Mandelbrot and Wallis (1968), Davies 
and Harte (1987), Aydogan and Booth (1988), and Lo (1991) all discuss the lack 
of robustness of the R/S statistic in the presence of short term memory and 
heteroskedasticity. Lo (1991) suggests the modified rescaled range statistic, 

QT = gr/#r(q), (50) 
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where 
q 

o~(q) = Co + 2 ~, wj(q)c~, (51) 
j = l  

c~ is the jth-order sample autocovariance of y, and w~(q) are the Bartlett window 
weights of 

w ~ ( q ) = l - [ j / ( q + l ) ]  for q < T .  

In the context of unit root tests Phillips (1987) shows the consistency of o'~ if 
T ~ oo and q ~ O(T 1/4). Lo (1991) shows that in the presence of long memory 
T -  1/ZQr weakly converges to the range of a Brownian Bridge, the distribution 
function of which is given by Feller (1951). The distribution function of the 
range, F(x), given by Kennedy (1976) and Siddiqui (1976) is 

F(x) = ~ (1 - 4x2j2)exp[ - 2x2j2]. 
j =  -oo 

The distribution is positively skewed, and Lo (1991) tabulates fractiles of the 
distribution and shows the modified rescaled range test to be consistent against 
a fairly general class of long range dependent stationary Gaussian alternatives. 
However, a major practical difficulty concerns the choice of q and how to 
distinguish between short range dependencies and long range dependencies. 
Simulation evidence to be discussed at the end of Section 4 has generally been 
unfavorable to this approach. 

4.2. Unit root tests in the presence of l(d) 

Soweli (1990) considers the limiting distribution of the OLS coefficient esti- 
mate in an AR(I) model when the true data generating process is I(1 + d). When 
d = 0, the estimate of tb reduces to the well-known result derived by Phillips 
(1987), of 

T(~ - 11 =~(1/2){B(I) z - 1} B(t)Zdt . (52) 

However, on assuming that the disturbances u, are not necessarily normally 
distributed, but have zero mean and have a finite rth moment for some r such 
that r >i max[4, - Sd/(l + 2d)], Soweli (1990) shows that the asymptotic distri- 
bution of the OLS estimate of ~ only has a nonzero density over the whole real 
line for the special case of d --- 0, i.e., a unit root. For other values of d, the 
asymptotic distribution of q~ is a complicated function of two distributions 
which both depend on fractional Brownian motion. Furthermore, the standard 
t statistic for a unit root only converges to a wall-defined density when d = 0. 

It is well-known, however, that unit root tests are consistent against l(d) 
alternatives. A related study by Diebold and Rudebusch (1991b)evaluates the 
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power performance by simulation of the Dickey-Fuller unit root test when the 
true data generating process is fractionally integrated white noise and AR(1) 
processes and for sample sizes of T -- 50, 100, 250. Not surprisingly, the power of 
the Dickey-Fuller test grows more slowly with divergence of d from one than 
with the divergence of the AR parameter ~b from one. Hence the Dickey-Fuller 
test performs relatively poorly in distinguishing between the I(1) null hypothesis 
and the I(d) alternative. A related study by Hassler and Welters (1994) finds the 
Phillips and Perron unit root test to perform similarly to that of the Augmented 
Dickey-Fuller test; and with a nonstationary value of d = 0.75 generating the 
fractional white noise, the rejection frequencies of the unit root hypothesis are 
about 50% when T = 100 and about 70% with T = 250. 

Lee and Schmidt (1996) consider the performance of the KPSS test of 
Kwiatkowski, Phillips, Schmidt, and Shin (1992) which was originally designed 
to test an I(0) null hypothesis versus an I(1) alternative. The KPSS test involves 
taking the residuals et from a regression ofyt on an intercept and time trend and 
forming the partial sum Sf as in (3) of the residuals and to compute the same long 
run variance formula a~(q) in (51) as by Lo (1991). The KPSS test for stationary 
is then 

w/~= T - 2  2 2 s,/~r{q), (53) 

and the KPSS test ~/~ is also based on (53) except that the residuals are derived 
from a regression on an intercept only. Lee and Schmidt (1996) show that the 
two KPSS tests are both consistent against an I(d) alternative and that the 
KPSS tests can be used to distinguish short memory from long memory 
stationary processes. Lee and Schmidt 0996) show that under the l(d) alterna- 
tive hypothesis the KPSS test statistics converge to functions of fractional 
Brownian motions which are relatively natural extensions of the second level 
Brownian bridges previously defined by MacNeill (1978) and Schmidt and 
Phillips (1992). Lee and Schmidt (1996) also include some Monte Carlo evidence 
and conclude that the KPSS test has power properties similar to the adjusted 
rescaled range statistic of Lo (1991) in distinguishing frO) from I(d) behavior. 
Robinson (1991) derives the Lagrange Multiplier (LM) test for fractional white 
noise in the disturbances of a linear regression under the standard assumptions. 
In particular, Robinson (1991) shows that the LM test for He: d = 0 versus H~: 
Yz = fix, + u,, (1 - L)au, = e~ with 0 ~< d ~< 0.5, is given by the statistic 

]7 LMI = T j - l r j  (n2/6). 
L j = I  

(54) 

where r~ is the jth-order sample autocorrelation coefficient of the OLS residuals. 
Under the null, LMI will have an asymptotic chi-squared distribution with one 
degree of freedom. Interestingly, Robinson (1991) also shows that to a first-order 
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approximation the same test statistic results from the alternative hypothesis that 
the process is self-similar, with autocovariance function given by Eq. (11). 

Wu (1992) considers the related issue of testing the unit root hypothesis versus 
the one-sided alternatives of d < ! or d > 1. The tests are modified one-sided 
locally best invariant (LBI) alternatives based on the technique developed by 
King and Hillier (1985). Wu 11992) shows that the LBI test for Ho: d = 0 versus 
H1: d > 0 in the fractional white noise model (13) is given by 

T - I  

L M 2  = - 2 ~, j - l r j ,  
j=i 

A test of Ho: d = 0 versus Hz: d < 0 requires using - L M 2 .  Wu (1992)and 
Agiakloglou and Newbold (1994) also consider forms of the L M  statistic to test 
the same hypothesis and generalize the test statistics to deal with ARFIMA 
processes under the alternative hypotheses. Beran (1992b) has discussed alterna- 
tive tests for long range dependence. 

Although not specifically dealing with long memory, Blough (1992) and Faust 
(1994) discuss the near observational equivalence of difference stationary and 
trend stationary processes. These articles highlight the general difficulty of 
distinguishing between competing models for the low frequency components of 
series, and to this extent provide an additional motivation for the class of l(d) 
processes. 

4.3. Regression with l (d )  disturbances 

Taqqu (1975) and Yajima (1988) consider estimation of regression parameters 
in the presence of disturbances exhibiting long memory. A special case arises in 
the estimation of the population mean of a long memory process with 
autocovariance function, Yk ~ ck 2d- 1, as given by (6). (8), or (12). Taqqu (1975) 
derives the well-known result concerning the properties of the OLS estimate of 
the mean or intercept parameter # in the model y, = # + u,, where u, has an 
autocovariance function of 7k ~ ck 2d- 1. Taqqu (1975) shows that the sample 
mean converges at a rate of T ':2-a to an unspecified limiting distribution. 
Furthermore, the estimator of the uncorrected sample standard deviation, 

f t Sr = T- i ~,(y, _ ~)2 , (551 

and on appropriately normalizing, 

c T - 2 d { s r  -- E(sr)} =~ R, (56) 

so that weak convergence occurs to the Rosenblatt process denoted by R, which 
is expressed in terms of Wiener-lto-Dobrushin integrals. Taqqu (1975) also 
shows that the sample mean, : ,  and sr are not independent. The sample mean 
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has an asymptotic variance of 

T ' - 2d ear(37) = c2/[d(2d - 1)], (57) 

where c2 is another constant. Also, 

cT*-ea{y - E(35)} 2 ~ [ d ( 2 d -  I ) ] - 'X z, (58) 

where X~ denotes a chi-squared random variable with one degree of freedom. 
Adenstedt (1974) shows that the loss in asymptotic efficiency from use of the 
sample mean as opposed to estimating/t from Generalized Least Squares (GLS) 
is surprisingly small. There is only a loss of 2% in efficiency when estimating in 
intercept in the presence of a stationary and invertible disturbance. Similarly, 
Yajima (1988) considers the efficiency of the sample mean, i.e., the OLS and the 
GLS estimator with known covariance matrix. Some extensions of the above 
results are provided by Samarov and Taqqu (1988) and Yajima (1985, 1988), 
who have considered OLS and GLS in the context of the regression model 

3', = fl' xt + uz, 
where u, is a long memory process and x, contains polynomial functions of time. 
The above articles find expressions for the asymptotic efficiency loss from using 
OLS, rather than GLS. As in the case of the regression with just an intercept, the 
loss of efficiency associated with OLS is not necessarily severe. Robinson (1990) 
extends this investigation to the case where x, also contains stochastic re- 
gressors. The resulting parameter estimates appear to converge at different rates 
and Robinson (1990) notes that in certain cases, singular limiting distributions 
may result. It should also be noted that Carlin, Dempster, and Jonas (1985) and 
Carlin and Dempster (1989) have suggested a Bayesian estimator in the context 
of long memory models and the Hurst coefficient. 

Cheung and Lai (1993) have considered testing for the fractional cointegra- 
tion of two time series, Yt and xt, which are both I(d) but arc fractionally 
cointegratcd, i.e., Cl(d,b). Hence tt =yt-flxt  and ~t is l ( d - b ) ,  where 
(4 - b) > 0. In the case of (d - b) > 1/2, Cheung and Lai (1993) show that the 
OLS estimator of fl converges in probability to zero for all t~ > 0, such that 

Tb-'~(/~- [l) = [ T Zd-b+~ ( ~ x,e.,) ] [ T- ed ~ x2]- ' 

and, when 1/2 > ( d -  b)t> 0, then T2d-b(Yxz~,) converges to a function of 
Brownian motion. This motivates a test for fractional cointegration to be based 
on the OLS residuals. Cheung and Lai (1993) apply the GPH estimator to the 
OLS residuals having simulated the power of the procedure on residuals. An 
interesting topic for future research is to efficiently estimate the general error 
correction model associated with fractionally integrated series. 
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4.4. Distribution o f  sample  autocorrelations f r o m  an l(d) process  

Brockwell and Davis (1987) consider the asymptotic distribution of sample 
autocorrelations from an intermediate lid) process with d 6 ( - 0 . 5 , 0 )  and 
innovations not necessarily Gaussian. On denoting the sample autocorrelation 
at lag k as rk, which is an estimator of Pk, the corresponding population 
autocorrelation0 then Brockwell and Davis (1987) show 

T l /2(r  k --  p~) ~ N(O, Vk), 

and Vk is derived from the asymptotic covariance matrix, using the usual 
formula of Bartlett. 

Hosking (1984) shows the above result to be valid for d ~ ( -  0.5,0.25). 
However, outside this range of values of d the asymptotic distribution of the 
estimators of the autocorrelations depends on the range of values of d, the 
fractional differencing parameter. In particular, 

{ T / l o g ( T ) }  '/Z(r k - Pk) "* N[-0, Vktd)] for d = 0.25 

and 

Tl /Z -a ( rk  - -Pk )  ~ D  for 0.25 < d  < 0.50, 

where D is a nonstandard distribution. Hence the rate of convergence is slower 
than the conventional rate in this range of values of d. Hosking also shows that 

T l/Z[(r k - pk)(l - Pk)-  ' -- (r~ -- p./)(l -- pj)- t] (59) 

does converge to a nondegenerate normal distribution and permits the pos- 
sibility of conventional estimation of the suitably weighted autocorrelations. 
Newboid and Agiakloglou (1993) derive some results on the bias of estimated 
autocorrelations from fractional processes. 

4.5. Semiparametr ic  estimation o l d  in the f r equency  domain 

Geweke and Porter-Hudak (1983), henceforth GPH, suggested a semi- 
parametric estimator of the fractional differencing estimator, d, that is based on 
a regression of the ordinates of the log spectral density on trigonometric 
function. The estimator exploits the theory of linear filters to write the process 
(1 - L)ay, = ut, where u, -,, I(0), as 

f(to)y = I1 -- e-i"l-2af(to), ,  (60) 

where f(to)~ and f(to)~ are the spectral densities of y, and u, respectively. Then 
(60) can be expressed as 

log { f(to)y } = {4 sin z(ca/2) } - d + log { f(t~)~}, 

log{fy(toj)} = log{f  u(0)} - dlog{4sin2(toj/2)} + log[f~(toi)/f~(0)]. (61) 
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GPH suggest estimating d from a regression based on (61) using spectral 
ordinates tot, to2 . . . . .  tom, from the periodogram of Yt, that is ly(toj). Hence, for 
j = 1,2 . . . . .  m, 

log { l~.(toj) } = a + b log.{4 sin 2 (~aJ2) } + v j, (62) 

where 

vj = log[futoJj)/f~(0)] (63) 

and vj is assumed to be i.i.d, with zero mean and variance ~2/6. When u, is white 
noise, e,, then the regression (62) should provide a good estimate of d. When u, is 
autocorrelated, GPH show that (62) holds approximately for frequencies in the 
neighborhood of zero. If this neighborhood shrinks at an appropriate rate with 
sample size, then the GPH procedure should realize a consistent estimator old. 
If the number of ordinates m is chosen such that m = g(T) ,  where g ( T )  is such 
that limr-., ,  g(T) = oo, l i m r ~ g { g ( T ) / T }  = 0, limr~g { ( log{T)Z) /g(TI}  = O, 
then the OLS estimator of d in (62) will have the limiting distribution 

(3cpu - d)/{var(c?~pu)} ,/2 ~ N{0, 1). 

The var(a~pu) is obtained from the usual OLS regression formula, either using 
the regression residual variance or alternatively setting it as g2/6. It is clear from 
this result that the GPH estimator is not T ./z consistent and will converge at 
a slower rate. Geweke and Porter-Hudak (1983) are able to prove consistency 
and asymptotic normality only for d < 0, while Robinson (1990) provides 
a proof of c•nsistency for 0 < d < 0.50; also see Kunsch (1986). 

A major issue m ',he application of the G H P  estimator has been the choice of 
m when u, is autocorrdated. Diebold and Rudebusch (1989) typically choose 
m = T t/z, while Sowell (1992h) has argued that m should be based on the 
shortest cycle associated with long-run behavior. For example, with 40 years of 
data and the a priori view that 2 years is the shortest cycle, then m would Ix 
chosen as 40/2 = 20 ordinates. This decision rule is deliberately independent of 
the sampling frequency of the date since, for example, with quarterly data, 
m would also be selected as 160/8 = 20. Another possibili,ty is to choose m such 
that the regression residual variance is approximately equal to ~2/6. 

While the G PH estimator is simple to apply and is potentially robust to 
nonnormality, the behavior of 3~pn in the presence of substantial autocorrela- 
tion of u, reduces its potential attractiveness. In particular, Agiakloglou, New- 
bold, and Wohar (1992) show it possesses 'serious bias" and is very inefficient 
when uz is AR(I) or MAil)  and the AR or MA parameter is quite large. Also, if 
an investigator wishes to obtain estimates of short run ARMA parameters as 
well as d, then filtering the original series by the operator, (1 - L) d where d is 
replaced with a~pu, and estimating the ARMA parameters from the filtered 
series will provide two-step estimates with a currently unknown sampling 
distribution. Most applications of this procedure, such as Diebold and 
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Rudebusch (1989, 1991b), typically assume normality of the filtered series and 
use approximate MLE to obtain estimates of the ARMA parameters. Even if 
a quasi-MLE is used in this situation, appropriate inference is likely to remain 
a difficulty. Hassler (1994) has carried out a simulation study of a variant of the 
G PH procedure applied to the seasonal ARFISMA process of Porter-Hudak 
(1990) in (44). The results generally indicate deficiencies with the semiparametric 
regression. Hurvich and Ray (1995) have considered the bias of the G P H  
estimator in the case when the true data generating process is a nonstationary 
ARFIMA process with a value of d > 0.5. 

In a series of papers Robinson considers various frequency domain ap- 
proaches to estimating the long-range dependency parameter. These papers are 
concerned with finding consistent estimates of the Hurst coefficient, or equiva- 
lently fractional d, in the absence of any parameterization of the autocovariance 
function. Robinson (1992) considers the properties of a discretely averaged 
periodogram, 

F(co) = ~ f(2) d2, 

where the averaging is over the neighborhood to e (0, 2). Robinson (1992) shows 
that F(co) converges in probability to one for a sequence 2 which tends to zero 
more slowly than 1/T, as T --, ~ .  For any slowly varying function .~(. ), then 

F(qco)/ F(co) ~ qZ(n- l~ {~(i/qco)/2(I/to) }" (64) 

,~ qZcH- 1~ (65) 

Then as to --, 0 + and Robinson (1992) establishes consistency of the estimator, 

k ~  --  1 - {2 log(q )}  - '  log{F(qo~m)/FIco.)}, (661 

so that ~/q --, H as T --, ~ ,  and where q is a chosen scalar such that 0 < q < l 
and cot,co2 . . . . .  co,, are the frequencies of the periodogram used in estimation. 
Lobato and Robinson (1996) are able to establish the limiting distribution 
of Hq after assuming normality of the Yr process. For 0 < d < 1/4, i.e., 
1/2 < H < 3/4, the estimator is m ~/2 consistent, where m is the number of 
ordinates of the periodogram used in estimation. Then m t/2(~/q _ H) converges 
to a limiting normal distribution, and for any H and a bandwidth number m, 
then an optimal value q exists to minimize estimation MSE. However, as 
previously mentioned in the context of the asymptotic distribution of sample 
autocorrelations, there is a discontinuity at H = 3/4, or d = 1/4, in the asymp- 
totic distribution theory. For 3/4 < H < 1, Hq converges at rate m 1- zd, i.e., 
mZCl - m to a nonnormal distribution. Lobato and Robinson are able to establish 
the properties of the t/~ estimator under qui,:e weak assumptions regarding the 
slowly varying function ,---(. ). 

Despite the amount of theoretical work in attempting to devise robust 
semiparametric estimators of the long memory parameter, there is substantial 
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evidence documenting their poor performance in terms of bias and mean 
squared error. See Agiakloglou, Newbold, and Wohar (1992), Janacek (1982), 
and Hurvich and Beltrano (1994) for the GPH estimator, Lee and Schmidt 
(1996), Chen, Abraham, and Peiris (1994), Cheung (1993b), Choi and Wohar 
(1992), Hassler (1993, 1994), Hauser (1994), and Reisen (1994), who examine 
a variety of R/S statistics, trimmed periodogram versions of GPH, and related 
estimators. Hurvich and Ray (1995) consider the bias in the GPH estimator 
when d > 0.5. Overall the consensus of evidence is somewhat negative about 
semiparametric estimation, with adjustments to the periodogram at low 
frequencies appearing unlikely to radically improve their small sample 
performance. 

4.6. Semiparametric estimation o ld  in the time domain 

An alternative to pcriodogram based estimation is to directly use the sample 
autocorrelations. Robinson (1990) considers such an estimate based upon high 
lags of 7k, but notes that such a procedure has the disadvantage of being based 
on the requirements that the )'k are always eventually positive. An alternative 
GMM estimator, or Minimum Distance Estimator (MDE) based on sample 
autocovarianccs, has been studied by Tieslau, Schmidt, and Baillic (1995), 
henceforth TSB. Their estimator uses blocks of n sample autocovariances, 
~k,~k+l . . . . .  ~k+n. From using the results of Hosking (1984), who derives the 
asymptotic distribution of sample autocovariances from fractional white noise, 
TSB evaluate the asymptotic efficiency for their MDE. As noted by Hosking 
(1984) and formally proved by Dahlhaus (1988, 1989), the unusual behavior of 
the score vector makes the rate of convergence to the limiting distribution 
dependent on the value of d. For - 0.5 < d < 0.25, the MDE studied by TSB 
converges to a limiting normal distribution at the conventional T 1/2 rate, while 
for d = 0.25, the MDE still converges to a normal distribution, but at a rate 
of {T/log(T)} t/2. For 0.25 < d < 0.50, the MDE converges at rate of T 1/2-d 
to a nonstandard distribution. TSB then evaluate the theoretical asymptotic 
efficiency of the MDE for various parameter values d in the range 
- 0.50 < d < 0.25 and for different choices of k and n. The efficiency loss for 

increasing k is found to be quite large and the estimator is not generally very 
promising. 

The results of Hosking {1984) in (59) suggest that it may be possible 
to obtain a semiparametric estimate of d in the time domain that converges 
at the standard rate, for the case where 0.25 ~ d < 0.50. However, some simu- 
lation evidence indicates that the functional form of (59) may not be very help- 
ful and that an estimator based upon differenced autocorrelations will be quite 
inefficient. 

The potentially interesting application of semiparametric estimation is to 
ARFIMA models with substantial short memory dynamics, if 7k are the 
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autocovariances of an ARFIMA(0, d, 0) process and 7~' are the autocovariances 
of an ARFIMA(p,d, q) process, then in the limit 

7~ ~ [0(1)/q~(1)]r~, (67) 

so that the rate of decay depends only on the differencing parameter d, and not 
on the short-run dynamics. This suggests that an estimate of d based upon ratios 
of autocorrelations would be a useful estimator. 

4. 7. Maximum likelihood estimation 

Several authors have considered joint estimation of the parameters in 
the ARFIMA(p,d,q) model (25) under the assumption of normality. The 
(p + q + 3)-dimensional vector of parameters is 2' = (pfl'), where 

fl' = (d q~l ..- Cp 01 ... 0q tr~). 

Li and McLeod (1986) consider the asymptotic properties of the MLE in the 
case of the intercept p being either known or zero. They assert that 

and that with known intercept/~, the vector of remaining parameter estimates, fl, 
will be T t/z consistent and will converge to a limiting normal distribution. The 
form of the information matrix is given by 

l(fl)=[;P,'q ~2/6 ] ,  (69) 

where Ip.~ is the usual information matrix of the ARMA parameters and 

. . . .  ~'p-I ... 7~- l], 

where 

?~a= ~ ( j + i + l ) - I c l ,  
i=O 

~,~a = ~ (j  + i + 1)- I bi" 
i = o  

gp(L)- 1 = ~ c~L i, 
i=O 

O(L)- 1 = ~ biLi. 
i = 0  

For the fractional white noise process, (1 - L)dyt = ct, ~ ~ N(0, a2), then (68) 
reduces to the well-known result that 

T 1/2(t7 - d) ~ N(0,6/~t21. (70) 
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The above is an example of the general and rather surprising property of 
ARFIMA models that the asymptotic variance of their parameter estimates are 
independent of the value ofd. This is in contrast to ARMA models, where each 
parameter generally occurs in at least one element of the information matrix. 
The form of l(/I) in (69) also implies that the MLE of d will generally 
by asymptotically correlated with the ARMA parameter estimates. While 
Galbraith and Galbraith (1974) and Newbold (1974) provide parametric results 
for the inverse oH(A) for the class of stationary and invertible ARMA models, no 
corresponding results are yet available for the ARFIMA process. 

On using Whittle's (1951) approach of approximating the exact likelihood in 
the frequency domain, the (j, k)th element of I(4)-t is given by 

l~k(1) = (1/4~) i [(2~/~z){61°gf(calt)/~';'~}] 
- - R  

x E(2z/¢ z){~ log f(r,] )-)/~),k } ]' doJ. (71) 

For the case of/z unknown, the formal proof of asymptotic normality and the 
appropriate rates of convergence ofthe MLE for the ARFIMA(p,d, q) process is 
due to Dahlhaus (1988, 1989) for the 0 < d < 0.5 case and to Moehring (1990) 
for the case of - 0.5 < d < 0. Joint estimation of the parameter vector ,~ by 
MLE will give a limiting distribution of 

DT(t - A) =~ N {0, [O~ ~ l(,;.)Di i] -1 }, (72) 

where 

diag{Dz} = IT t/2-d, T I/2 ..... T I12]. (73) 

Hence the MLE of/~ will converge at the slow rate of T i/z-a while all the other 
parameter estimates converge at the standard T i/2 rate. 

Sowell (1986, 1992a) derives the exact MLE of the ARFIMA process with 
unconditional Normally distributed disturbances e,. The log-likelihood is then 

-- - (T/2)Iog(2~) - (I/2)loglf~l - 012)Y'f~-' Y, (74) 

where {Q}i~ = ~l~-il and Y represents a T-dimensional vector of the observa- 
tions on the process Yr. While Sowelrs (1992a)full MLE is theoretically appeal- 
ing, it is computationally demanding since it requires the inversion of a T x T 
matrix of nonlinear functions of the hypergeometric function at each iteration of 
the maximization of the likelihood. The method requires all the roots of the 
autoregressive polynomial to be distinct and for the theoretical mean parameter 

to be either zero or known. 
There are several alternative approximate MLE of the ARFIMA(p,d,q) 

model in (25) under normality. Whittle (1951) notes that the autocovarianc¢ 
matrix ~ can be diagonalized by transforming the vector Y into the frequency 
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domain and can approximate the log-likelihood by 
T - I  T - I  

= ~ log[(2~)f(wj)] + ~ [IT(coj)/f((o~)]. (75) 
] = I  j = J  

The above approximate MLE has been used by Boes, Davis, and Gupta (1989), 
who concentrate out #2 to obtain 

T - I  

(~(,;.) = (2#/T) ~. [IT(tOj)/f(toj)]. 
j=l 

Eq. (71) is sometimes known as the 'Whittle Likelihood', and Tschernig 0992) 
has studied the small sample properties of this version of the MLE by simula- 
tion. An alternative frequency domain approximate MLE is due to Fox and 
Taqqu (1986), which numerically minimize the quantity 

~. { l (toi) } / f  (toj; 0), (76) 

where l(toj) is the periodogram evaluated at frequency toj and the summation is 
over m frequencies. 

Chung and Baillie {1993) consider a Conditional Sum of Squares (CSS) 
estimator in the time domain, which is obtained by minimizing the quantity 

T 

S = (l/2)log(a 2) + (1/2a 2) ~ {~(L)O(L)-~(I - L)a(y, - / 0 }  2. (77) 
t = l  

Some results concerning the small sample performance of the CSS estimator 
are reported in Chung and Baillie (1993). They conclude that for the 
ARFIMA(0,d,0) model, with T = 100 and with the mean unknown, CSS is 
extremely similar to Soweirs full MLE. For the ARFIMA(p,d,q) model with 
unknown mean and complicated ARMA dynamics, i.e., p,q > 2, the CSS es- 
timator can produce substantial biases in samples of 300. The estimation of the 
intercept It can substantially affect the properties of the other parameter esti- 
mates. However, the CSS estimator performs quite well for ARFIMA models 
with known mean parameter and T = 500. Some further simulation evidence is 
provided by Cheung and Diebold (1994). Interestingly enough they find that the 
Fox-Taqqu estimator is preferable to Sowelrs full MLE when the mean of the 
process, t~, is unknown. In their application of the Fox-Taqqu estimator, 
Cheung and Diebold (1994) essentially use a two.step estimator which replaces 
the unknown mean parameter/~ with the sample mean of 3,, before estimating 
the other parameters with the Fox-Taqqu estimator. Cheung and Diebold 
{1994) find evidence that their estimator is more satisfactory than the full MLE 
of Sowell in the sense of bias and MSE. These differences are again brought 
about by the key fact that any estimator ofl, converges at a slower rate than the 
other parameter estimates which are all T l/z consistent. In some applications 
(e.g., Sowell, 1992a), the data series are differenced and the process is estimated 
with d < - 0.50. This strategy has the advantage of removing the troublesome 
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intercept parameter, and some simulation evidence on the efficacy of the proce- 
dure is presented by Smith, Sowell, and Zin (1993). A further time domain 
approximate MLE is described by Haslett and Raftery (1989), who only con- 
sider d in the range of 0 ~< d ~< 0.5. While the full MLE is obviously desirable 
when appropriate, more complicated models can only currently be estimated by 
approximate MLE, which can be conveniently done by minimizing the CSS 
function in (77). For example, Baillie, Chung, and Tieslau (1995) estimate an 
ARFIMA process with a conditional variance process following a GARCH(I, 1) 
formulation. They estimate monthly inflation series with an ARFIMA(0,d, 1)- 
GARCH(I, 1) process. 

Chung (1996) provides some results on the estimation of the Gegenbauer 
process in (34) by approximate MLE, using the CSS method. An important 
finding is that the MLE of ¢ converges at a rate of Or(T) to a function of 
Brownian motions. The other parameter estimates converge at the usual T ~12 
rate. 

5. Long memory volatility processes 

The topic of long memory and persistence has recently attracted considerable 
attention in terms of the second moment of a process. Many of the obvious 
examples of long memory processes have emerged in studies of financial market 
data and will be described further in Section 6 of this article. The desire to 
develop theoretical tests and models for long memory volatility has been the 
result of encountering data which strongly exhibit this phenomenon. As with 
virtually all volatility processes, the choice of model has generally not been 
dictated by economic or finance theory, but rather mathematical tractability 
and/or data compatibility. The first contribution in this regard was Taylor 
(1986), who noticed an apparent stylized fact that the absolute values of stock 
returns tended to have very slowly decaying autocorrelations. Ding, Granger, 
and Engle (1993) note the same fact for the powers of daily returns and 
Dacorogna, Muller, Nagler, Olsen, and Pictet (1993) find similar phenomena for 
squared exchange rate returns, recorded every twenty minutes over a four-year 
period. 

A long memory conditional variance process can be set up from the same 
foundations as the ARCH model of Engle (1982}. it is natural to define a discrete 
time, real valued stochastic process ~,, 

= ¢ ,~ , ,  (78)  

where ~r is i.i.d, with E(~) = 0 and var(~,) = !. The variable ot z is a time-varying, 
positive, and measurable function of the information set at time t - 1, denoted 
by D,_ ,, and o, 2 is known as an ARCH process. The GARCH(p, q) specification 
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of Bollerslev (1986) is defined as 

#~ = to + ~(L)~ 2 + fl(L)a 2, (79) 

with ~t(L) and fl(L) being polynomials of order q and p in the lag operator. For  
stability all the roots of ~t(L) and {1 - g(L) - fl(L)} are constrained to lie 
outside the unit circle. The GARCH(p,q) process can also expressed as an 
ARMA(m,p) process in ~ ,  where m = max(p, q), 

{l -- cqL) - fl(L)}e~ = m + {l - fl(L)}v,, (80) 

where v t = ~ - a~ are the 'innovations' in the conditional variance process. 
When the polynomial { 1 -  ~(L) - f l (L)}  in (79) contains a unit root, then 
the GARCH(p,q) process is a member of the integrated GARCH, or 
IGARCH(p, q), class of models defined by 

~(L)(1  - L ) ~  = ~o + {1 - F (L)}v , ,  

where ~ ( L )  = {1 - c~(L) - fl(L)}(l - L) -1 is of order m - 1. 
Baillie, Bollerslev, and Mikkelson (1996) have considered a long memory 

process in the conditional variance, known as Fractionally Integrated General- 
ized AutoRegressive Conditional Heteroskedasticity, i.c., FIGARCH. This pro- 
cess implies a slow hyperbolic rate of decay for lagged squared innovations and 
persistent impulse response weights. Also, the cumulative weights tend to zero, 
a property in common with weakly stationary or stable GARCH processes. 
However, the impulse response weights of the FIGARCH process decay at 
a very slow hyperbolic rate. The FIGARCH (p, d, q) process is defined as 

~,(L)(1 - L ) " ~  --  ~o + {! - / ~ ( L ) } , , , ,  (81) 

whcre all the roots of ~(L) and { ! -/~(L)} lie outside the unit circle. Analog- 
ously to (81) the FIGARCH process can also be represented as 

{l - fl(L)}a~ = to + {l - fl(L) - ~b(L)(l - L)d}e 2 (82) 

and as 

a, z = co{l - f l ( l )}-I  + 2 ( L ) ~ ,  (83) 

where 

).(L) = { 1 -- [ l  - f l(L)]-  ~b(L)(l - L)d}. (84) 

A necessary and sufficient condition for the FIGARCH(I,  d,0) process to have 
nonnegative impulse response coefficients, 2j t> 0 for positive integer j is for 
0 < d < ft. Following Baillie, Bollerslev, and Mikkelsen (1996), the polynomial 
in the lag operator of the impulse response coefficients is denoted by ?(L), where 

7(L) = i 7~ Lk" 
k = O  
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which is directly analogous to corresponding calculations for the mean given by 
Eq. (30). Then, 

and 

( l - L ) e ~ = t a + ~ ( L ) v ,  (85) 

~(L) = (1 - L ) '  - a~(L)  - '  { 1 - f l(L) }. (86) 

The impact of past shocks on the volatility process is given by the limit of the 
cumulative impulse response weights, 

~(1) = lim 2~ ~" ~'i. 
k--.~ / = 0  

l fd  - 0, then at z is a stable GARCH(p,q) process and 7(1) = 0, so that there is 
a direct analogy with trend stationary or I(0) processes in the mean. If d = I, 
then ~(1) will converge to a nonzero finite constant, so that the process is 
analogous to an I(1) process in the mean. For  the stable GARCH(1, 1) process, 
{1 - (~ + f l ) L } ~  = co + (1 - i l L ) v ,  the impulse response weights are 

~ ( L )  = (1 - L ) { I  - (~  + p ) L } - ' ( 1  - ~ L ) ,  

and hence ~o = 0, 7t = (~t - 1), and yj = ~t(~t + f l  - -  1)(~ + f l ) j - z ,  for j > 2. Then 
).k = ~(~ + fl)k- 1, SO that ~,(1) = 0 and the cumulative response weights are zero 
in the limit. For the IGARCH(1, 1) process, 2, = (1 - fl) for all lags k > 1 and 
the cumulative impulse response weights tend to a nonzero constant 
7(1) = 1 - ft. For the FIGARCH process and for a value o fd  > 1, then 7(1) will 
be infinite, while for the FIGARCH (l,d,0) process, 

;,~ = [ r ( k  + d - 1 ) / { r ( k ) r ( d ) } ] [ O  - p )  - (1 - d ) / k ] .  (87) 

The cumulative effect of a shock will be zero on the volatility process since 
7(1) = 0; and from Stirling's approximation, 

2k ~ [(! - -f l ) /F(d)]k d-  ~, (88) 

so that hyperbolic decay occurs in the response of the conditional variance to 
past shocks. Since 20)  = l, it follows that E(e~) is undefined, and hence the 
second moment of the unconditional density of e, is infinite. The FIGARCH 
process is clearly not weakly stationary, a feature it shares with the IGARCH 
process. Approximate maximum likelihood estimates of the parameters of the 
F I G A R C H ( p , d , q )  process in (81) can be obtained by maximizing the Quasi 
Maximum Likelihood, which realizes T ~:2 consistent estimates of the 
FIGARCH parameters. Then, 

T 1/2(0r -- 0o) =~ N {0, A(Oo) - '  B(Oo)A (0o)- l}, (89) 
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where A(. ) and B(. ) represent the Hessian and outer product gradient, respec- 
tively, and 0o denotes the true parameter values. Simulation evidence indicates 
that the limiting distribution theory works well in sample sizes of 1500 and 3000. 
Baillie, Bollerslev, and Mikkelson (1996) also report the effects of estimating 
stable GARCH processes where the true data generating process is FIGARCH. 
The sum of the estimated GARCH(1,1) parameters is always close to one, which 
implies integrated (3ARCH, or IGARCH, behavior and suggests that the 
apparent widespread IGARCH property so frequently found in high frequency 
asset pricing data (see Bollerslev, Chou, and Kroner, 1992) may well be spurious, 
that the IGARCH process is a poor diagnostic at distinguishing between 
integrated, as opposed to long memory, formulations of the conditional variance 
process. 

Bollerslev and Mikkelson (1996) extend the FI(JARCH process to 
FIEGARCH, to correspond with Nelson's (1991) Exponential ARCH model to 
allow for nonsymmetries. The FIEGARCH(p,  d, q) model is then 

log(0-t a) = co + O(L)-t(1 - L)-a[ l  - 2(L)]g(~,_ t), (90) 

where 

e(¢,) = 0¢, + yEl~,l - Ell ,I]  (91) 

and all the roots of $(L) and ~.(L) lie outside the unit circle. When d = 0, the 
F I E G A R C H ( p , d , q )  process reduces to Nelson's EGARCH process, and when 
d = 1, the process becomes integrated EGARCH. Bollerslev and Mikkelsen 
(1996) present evidence on the efficacy of QMLE applied to estimate the 
parameters of the FIEGARCH process and illustrate its application to the 
pricing of options. 

Another route for the modeling of persistence in variance is through the 
stochastic volatilit} process developed by Breidt, Crate, and de Lima (1993) and 
Harvey (1993). The model is then 

Yl = ~,o-,, 

and 

o', 2 = a 2 exp(h,), (92) 

where ~t is NID(0, 1). In previous work on stochastic volatility models it is 
commonly assumed that ht is an AR(1) process, which implies an ARMA(I, 1) 
representation for log(y2). If it is assumed that ht is the fractional white noise 
process, 

(1 - L)ah, = ~t, (93) 

where ~ ~ NID(0,a~), then (92) and (93) generate a long memory stochastic 
volatility process. Estimation of regular stochastic volatility models has gener- 
ally been through the state space representation and used QML estimation via 
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the Kalman filter. Since a state space representation does not exist for long 
memory processes, estimation of the long memory stochastic volatility process is 
correspondingly difficult. Breidt, Crato, and de Lima (1993) use frequency 
domain approximate MLE to estimate an ARFIMA(0,d, 1) model for log(y~), 
while Harvey (1993) uses the GPH estimator to obtain an estimate of d in 
a fractional white noise model for log(ytZ). The comparison of long memory 
ARCH and stochastic volatility models remains an interesting area for future 
research. 

6. Applications 

6.1. Applications in geophysical sciences 

The initial work on long memory processes by Hurst (1951) was concerned 
with river flow data; and in subsequent work, reported in Hurst 0956), a further 
900 geophysical data series of length varying between 40 and 200 years were 
analyzed by means of the rescaled range statistic. The R/S analysis found the 
mean value of H to be 0.73 with a standard deviation of 0.08 across the 900 
series. Hurst took this as important evidence for the preponderance of the long 
memory characteristic in such data. A typical series analyzed by Hurst (1951, 
1956) and Mandelbrot (1972) is the tree ring data from Mount Campito, which 
was previously described in Section 2.3 and plotted in Fig. 1. The very slowly 
decaying autocorrelations in Fig. 2 strongly suggest long memory, and the 
simplest possible model is the ARFIMA(0, d, 0), or fractional white noise model. 
Table 3a presents the details of this model estimated by approximate MLE by 
the CSS method. Extraordinarily, this very simple, one-parameter model ac- 
counts for all of the obvious dynamics in the conditional mean of the process. 
The estimated value ofd is 0.449, with a standard error of only 0.010, and implies 
a Hurst coefficient of 0.949. Apart from having very slowly decaying auto- 
correlation functions, most tree ring series and climatological data exhibit 
distinct periods of volatility and tranquility, as evidenced by the LM test for 
ARCH effects on the squared residuals. On estimating a simple ARFIMA 
(0,d,0)-GARCH(1, 1) process the estimates for • -- 0.033 (0.002) and ]~ -- 0.950 
(0.005) are highly significant with the score test revealing little evidence of 
further ARCH effects. Baillie and Bollerslev (1992) derive the prediction density 
of forecasting from an ARMA model with GARCH(I, 1) innovations and show 
how long horizon predictions are affected by current volatility. The issue is 
likely to be very similar for the ARFIMA-GARCH model, and suggests that 
climatic changes or trends that occur during particularly volatile weather 
patterns should be interpreted differently than changes during more stable 
weather regimes. 
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Analysis of additional tree ring series, mud varvs on river floors, high tides, 
and other geophysical series are provided by Hipel and McLeod (1978) and 
Noakes et al. (1988). Their statistical analysis is based on the rescaled R/S, and 
therefore does not provide very precise estimates of the Hurst coefficient. 
However, their work does provide more evidence of long memory in a variety of 
these series. While regular Brownian motion can be derived as a stochastic 
process from physical laws corresponding to the random behavior of a particle 
suspended in a liquid, there does not appear to be a readily available explana- 
tion to justify the occurrence of fractional Brownian motion. However, Figs. 
I and 2 and Table 3a show that the simple fractional white noise model provides 
a remarkably good representation of the tree ring series. 

6.2. Applications in macroeconomics 

The principal economic application of long memory models has been to 
contribute to the long standing debate as to whether real GNP is difference 
stationary or trend stationary. Adelman (1965) first suggested the use of long 
memory models in the context of modeling long run cycles in the macroeco- 
nomy. Diebold and Rudebusch (1989) use quarterly post World War II US real 
GNP data, and on applying the GPH approach to differenced data find an 
estimated value and asymptotic standard error of d = - 0.50 (0.27). Sowell 
(1992b) argues this result is due to the misspecification of short-run dynamics, 
since Diebold and Rudebusch (1989) use m = 11 ordinates in the GPH periodo- 
gram regression (62). Sowell (1992b) estimates an AR FI MA(3, d, 2) model of first 
differenced US real GNP from 1947. I through 1989. IV and obtained a value of 
d = - 0.59 (0.35). Estimation of the same data set in levels found essentially 
equivalent results to Sowelrs analysis, with the approximate MLE based 
CSS estimator, when applied to levels, realized an estimated d = 0.41 (0.40) 
for an ARFIMA(3,d,2) model. While stringent confidence intervals include 
both d = 0 and d = 1 and suggest the likelihood is relatively flat, it is also true 
that a vast amount of the probability mass is well in the interior of the unit 
interval. 

Price series, particularly over long periods of history, also frequently appear 
to possess persistence and long memory. Fig. 3 plotted the well-known Wheat 
Price Index of Beveridge (1925), and Table I presents the autocorrelations of the 
series in levels and differences. This data provides an excellent example of the 
type of long memory features which has the appearance of being non-stationary 
in levels and yet also appears overdifferenced. For the Beveridge Wheat Price 
Index this aspect is also apparent in the estimated models, where there is 
uncertainty as to whether the series should be analyzed in differences or levels. 
The favored ARFIMA models in both levels and differences are presented in 
Table 3b. The estimated value of d indicates a relatively flat likelihood in the 
approximate range of d ~ (0.40,0.60). 



Table  3 
Es t ima ted  long  m e m o r y  mode ls  

(a) Mount Campito tree rings, d a t a  f rom 3436BC th rough  1969AD, T = 5405 

Model :  (! - L)J(y, - / ~ )  = e,, ~, ,-, N(0,oJ) 

P a r a m e t e r  Es t ima te  S t a n d a r d  e r ro r  

F 0.48199 
d 0.44931 
o 0.00639 

Max imized  log- l ike l ihood  = 5984.386050 
Sample  skewness  of  res iduals  = - 0.58695 
Sample  kur tos i s  of res iduals  = 4.82550 
L j u n g - B o x  stat ist ics:  Q(10) = 11.46059, Q(25) = 26.06064 

0.03186 
0.01045 
0.00012 

(b) Beveridoe Wheat  Price Index 

Model:  (1 - O : L  - ~2L2)(1 - L)d(! -- L){y, - p) = ,, 

P a r a m e t e r  Es t ima te  S t anda rd  e r ro r  

p 0.05367 
d - 0.56749 
~ :  0.54786 
~2 - 0.31400 
o .2 3.95994 

Maximized  log- l ike l ihood  = - 777.502274 
L j u n g - B o x  statist ics:  Q(10) = 8.27492, Q(25) = 42.23435 

0.00618 
0.07308 
0.07978 
0.05038 
0.29152 

Model :  (1 - S t L  - ~ b 2 L 2 ) ( l  - L)d(yt -- p) = r, 

P a r a m e t e r  E s t i m a t e  S t a n d a r d  e r ro r  

p 2.51400 ! .77200 
d 0.67122 0.04966 
~ t  0.37651 0.06507 
q~2 - 0.31511 0.05060 
~2 4. ! 5775 0.30568 

Maximized  va lue  of  the  log- l ike l ihood  = - 788.627327 
L j u n g - B o x  s ta t is t ics  o f  residuals:  Q(IO) = 16.62535, Q(25) = 48.89652 

(c) US Consumer Price Index: 

Model :  (I - L)a[logA(CPlt) - p l  = {I - OL)e.t, 

P a r a m e t e r  Es t ima te  

r., I ~ , -  t ~ t{0, #2,  v), {I - •L)6 "2 = o + ~tt:t 2_ t 

S t anda rd  e r ro r  

d 0.472 0.065 
p 0.306 0.176 
0 -- 0.223 0.083 
oJ 0.0034 0.0017 

0.094 0.032 
/~ 0.870 0.04o 
v 7.817 2.304 

Max imized  value  of  the log- l ike l ihood  = - 467.54 
L j u n g - B o x  s ta t is t ics  o f  residuals:  Q(IO) = 15.6 
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The autocorrelations of US Consumer Price Index (CPI) inflation on 
a monthly basis from 1948 are also given in Table 1. Baillie, Chung, and Tieslau 
(1995) find similar autocorrelation functions for nine other industrialized coun- 
tries, and find that the application of unit root tests reveals rejection of the I(l) 
null from the Augmented Dickey-Fuller regressions and also rejection of 
the l(0) null form the KPSS tests. As shown in Table 3c, an estimated 
ARFIMA(0,d, 1) model provides a good explanation of the mean behavior of 
US CP! inflation. Baillie, Chung, and Tieslau (1995) also estimate by approxim- 
ate MLE various ARFIMA(0,d, 12)-GARCH(1, 1) models for nine other coun- 
tries' inflation series. They find that all the countries apart from Japan exhibit 
evidence of l(d) behavior, and they report feedback between the mean and 
variance of inflation. The long run properties of these models and their response 
to shocks are quite different from a high-order AR model. Tieslau (1992) 
provides further details of estimating long memory models to price and monet- 
ary series. A related study by Hassler and Wolters (1995) also considers long 
memory in inflation, but estimates the d parameter by means of the GPH 
method. 

Crato and Rothman (1994a) use Sowell's (1992a) full MLE approach to 
estimate ARFIMA models for the macroeconomic time series first analyzed by 
Nelson and Plosser (1982). Apart from some labor market series, they generally 
conclude in favor of the series being best characterized by difference stationary 
processes. Diebold and Rudebusch (1991a) and Haubrich (1992) consider the 
relationship between consumption and income and the so-called Deaton para- 
dox, where consumption appears too smooth for the permanent income hypo- 
thesis to hold. Haubrich (1992) finds that if income follows an ARFIMA process, 
then the observed variance of both consumption and income is consistent with 
the permanent income hypothesis. Haubrich and Lo (1993) consider the implica- 
tions of long memory for the business cycle. 

6.3. Applications in asset pricing models 

Conventional wisdom has typically assumed one unit root in the nominal 
price of an asset. Then, if Pr is the price of the asset, the continuously com- 
pounded rate of return A log p, can be expected to be stationary and is usually 
assumed to be uncorrelated so that it is well approximated as a martingale. 
Various studies, to be discussed below, have tested for long memory in A logp,. 
From the conventional asset pricing formula, if p, is the price of the asset and 
x, are the 'fundamentals' in period t, assuming the transversality condition and 
the absence of bubbles, then 

j~O°~ 
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where 0 < ¢ < 1 and is the discount factor. As shown by Campbell and Shiller 
(1987) and Baillie (1989), rearrangement of (93) reveals 

Ap, = (p, -- ex , ) .  (95) 

The interesting point is that if Pt and x, are both !(1) processes, then Eq. (95) 
implies a cointegrating relationship between the asset price and the funda- 
mentals. The failure to find the regular form of CI(1, 1) eointegration between 
prices and fundamentals is then not necessarily interpretable as a rejection of the 
asset pricing model, or for that matter, the presence of a bubble. An alternative 
possibility is that a form of CI(I, 1 - d) cointegration may be apparent, where 
the residuals from the cointegrating vector are l(d), rather than I(0). Hence 
a slower response to shocks and a longer time to adjust back to equilibrium are 
implied by CI(I, 1 - d) type cointegration. Two examples of this are in the area 
of international macroeconomics and are discussed in Section 6.5. 

Perhaps the most exciting current application of long memory processes has 
been concerned with the volatility of asset prices. The work of Ding, Granger, 
and Engle { 1993) and others promises an additional stylized fact in asset pricing, 
and future research will have to be directed at providing a theoretical explana- 
tion. They suggest an Asymmetric Pewer ARCH, or A-PARCH, model to 
describe the long memory properties encountered in returns data. The model 
imposes a power transformation on the conditional standard deviation and the 
asymmetric absolute innovations; but still implies an exponential decay of the 
volatility process. It is worth noting that all of the long memory volatility papers 
discussed in Section 5 find substantial evidence of long memory behavior in 
either the conditional variance or squared returns. In particular, Baillie, Boller- 
slev, and Mikkelsen (1996) apply the FIGARCH process to exchange rates, 
Bollerslev and Mikkelsen (1996) apply the FIEGARCH process to stock prices, 
and Breidt, Crato, and de Lima (1993), Crato and de Lima (1994), and Harvey 
(1993) find evidence of long memory stochastic volatility in stock returns and 
exchange rates respectively. 

6. 4. Applications to s tock  returns 

Greene and Fielitz (1977) and Aydogan and Booth (1988) used the original 
R / S  analysis of Hurst (1951) to test for long memory in common stock returns; 
while Lo (1991) uses the modified rescaled range statistic (50) on returns from 
value and equal weighted CRSP indices from July 1962 through December 
1987. Lo (1991) finds significant results from using the regular rescaled range 
statistic and insignificant results from the application of his modified rescaled 
range statistic. Lo attributes the difference in the test statistics to the short-term 
persistence within the returns series. Lo also reports the finding of a lack of long- 
range persistence on annual returns from 1872 through 1986. 
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As mentioned earlier, the notion of at least stationary (if not uncorrelated) 
returns seems inherently reasonable, and a unit root is therefore to be expected 
in the price level series. The conventional CI(1,1) form of cointegration 
derived from (94) and (95) in the context of stock prices and dividends have 
been tested by Campbell and Shiller (1987) and Diba and Grossman (1988). 
Also see Kaen and Roseman (1986) for a discussion of long memory in asset 
markets. 

6.5. Applications to exchange rates 

There is widespread evidence that the logarithm of nominal bilateral ex- 
change rates contain a unit root and, furthermore, that the approximate rate of 
return is uncorrelated, indicating the appropriateness of the martingale model 
(e.g., Meese and Singleton, 1981; Baillie and Boilerslev, 1989). An early study by 
Booth, Kaen, and Koveos (1982) applies the basic rescaled range statistic 
defined in (47) and (48) to exchange rates. Cheung (1993a), taking monthly data 
from January 1974 through December 1989, found some evidence for long 
memory in the French i'ranc/US dollar nominal exchange rates and some 
marginal evidence for the UK pound/US dollar rate, but no apparent departure 
from martingale behavior for the German mark, Swiss franc, or Japanese yen. 
Cheung's work is really the only recorded possible departure from martingale 
behavior of the nominal exchange rate. 

A major issue concerned the speed of adjustment to shocks from disequilib- 
rium. Baillie and Bollerslev (1989) find that, while seven nominal spot exchange 
rates contained unit roots in their univariate time series representations, they 
also appeared to be tied together through one cointegrating vector. Subsequent 
studies by Hakkio and Rush (1991) and Sephton and Larsen (1991) find mixed 
evidence for the existence of a cointegrating relationship between this set of 
exchange rates. Diebold, Gardeazabal, and Yilmaz (1994), using the same daily 
exchange rates over a five-year period as Baillie and Bollerslev (1989), note that 
the application of the Johansen procedure to test for the number of eointegrat- 
ing vectors was sensitive to whether or not an intercept was included in the 
vector autoregression. Diebold, Gardeazabal, and Yilmaz (1994) conclude 
against the finding of cointegration between the spot exchange rates. Sub- 
sequently Baillie and Bollerslev (1994a) find evidence that a linear combination 
of the same spot exchange rates contains long-range dependence. They estimate 
d as 0.89 in a fractional white noise model, with an asymptotic standard error of 
0.02, and note apparent evidence for the Gegenbauer model in (34) to describe 
the linear combination of exchange rates. 

Many previous studies have been concerned with the properties of real 
exchange rates and the possible validity of Purchasing Power Parity (PPP) as 
a long-run phenomenon. In general there has been little support for long-run 
PPP using data from the present float since 1973. Kim (1990), using the 
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Johansen test, finds some evidence for cointegration between nominal exchange 
rates and relative prices with data back to 1910. Diebold, Husted, and Rush 
(1991) use the approximate MLE method of Fox and Taqqu (1986) to estimate 
ARFIMA models for annual real exchange rate data from the mid-nineteenth 
century until the present time. Their results are very supportive of the long-run 
PPP doctrine, with shocks taking a long but finite time to return to equilibrium. 
Some supporting evidence is provided by Cheung and Lai (1993), who test for 
fractional cointegration between the nominal exchange rate and relative prices 
for annual data from 1914 through 1972. The limitation of data from the recent 
float clearly presents a difficulty in distinguishing between unit root and frac- 
tional behavior. This point has been emphasized in the context of unit root tests 
by Shiller and Perron (1985) and by Hakkio and Rush (1991) in the context 
of standard CI(1,1) tests. However, Crate and Rothman (1994b), estimating 
ARFIMA models by full MLE, find evidence of mean reversion in UK real 
exchange rates. In general, the PPP literature is one of the best examples of how 
many researchers have been misled by the low power of unit root testing 
procedures and have tended to abandon PPP without sufficient attention to the 
econometric procedures. Supporting evidence of PPP in a unit root framework 
has recently been found by Steigerwald (1994). 

The monetary model of exchange rate determination implies that if the spot 
rate and the fundamentals are both l(I), then from (94) and (95) the exchange 
rate should be eointegrated with the fundamentals. Baillie and Peechenino 
(1991) fail to find cointegration between the UK pound/US dollar exchange rate 
and the fundamentals in terms of relative money supplies and real incomes. 
However, Baillie and Pecchenino only test for cointegration of the CI(I, 1) form 
through use of the Johansen test and, when using the GPH estimator, note that 
it is hard to distinguish whether the real exchange rate has a unit root or is 
fractionally integrated. A potentially interesting topic for future research is 
whether the nominal exchange rate is fractionally cointegrated with its funda- 
mentals, in which case disequilibrium shocks would generate very slow decay 
when returning to equilibrium. 

There is widespread statistical evidence that spot and forward exchange rates 
contain one unit root and are approximately uncorrelated. This is consistent 
with economic reasoning that returns should be I(0); and it is natural to consider 
spot and forward rates to be cointegrated, although there is no compelling 
reason to require them to be CI(1, 1). While many authors have concluded 
that the forward premium (st-f~) is stationary, others such as Evans and 
Lewis (1993) have been concerned about possible nonstationarity of the 
forward premium. Baiilie and Bollerslev (1994b) found the forward premium 
(ft - st) for monthly data from January 1974 through December 1991 to be well 
described by an ARFIMA(2,d,0) model. A corollary of this finding is that 
the forward market forecast error (s,+~-f,)  is also lid). One interesting 
implication of this is that the commonly employed 'speculative efficiency" 
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test of Fama (1984), 

( s , ÷ ,  - s , )  = ~ + l~ ( f ,  - s , )  + ~ , ÷ , ,  (96) 

may be inappropriate for testing ~t = 0, fl = 1, and el+ i uncorrelated, since it 
suffers from the spurious regression type critique. If such a regression is to be 
run, then it is also necessary to include the error correction term for fractional 
cointegration discussed by Granger (1981, 1983). The apparent persistence of the 
forward premium may also be related to the long memory of the volatility 
process through an intertemporal asset pricing model as described by Engel 
(1991). Then, in a risk-neutral environment, 

f t  - st = 0 . 5 v a r t ( s t +  l) - covt(st+ tP ,+  i), (97) 

where p, is the logarithm of domestic prices, so that the variance of the future 
exchange rate will dominate the risk premium, as any covariation between the 
spot rate and the price level will be very small due to the smoothness of prices. 
For risk-averse investors, application of an intertemporal asset pricing models, 
where investors maximize expected utility subject to successive budget con- 
straints, gives 

f z  - st = 0.5vart(sz+ !) + covds~ + t q,+ t), (98) 

so the forward premium and also the risk premium is related to the conditional 
variance of the future spot exchange rate and the conditional covariance of the 
spot rate with the intertemporal marginal rate of substitution, q, + , .  If the spot 
rate is generated by martingale-FIGARCH process, then a form of long mem- 
ory would be generated into the forward premium. The implication for models 
of pricing risk remains ,m interesting area for future research. 

6 .6 .  , 4 p p l i c a t i o n s  t o  i n t e r e s t  r a t e s  

Shea (1991) applies the t iPH procedure to estimate fractional processes on 
a set of interest rates and discusses the implication of long memory on the 
variance bounds tests resulting from the term structure. Some of the initial work 
using the GPH estimator appeared to find long memory in the spreads and 
some interest rates in levels. Backus and Zin (1993) assume various time series 
processes, including AR(I), unit root, and fractional white noise, for the short 
rate returns. They find evidence of long memory and discuss the implication of 
the presence of fractional integration in the context of the term structure. On 
comparing the implied forward rates and cc, rresponding yields on maturities of 
n-period bonds, they conclude that the long memory assumption compares 
favorably with the alternatives. The estimation of various ARFIMA models to 
bond series is relatively inconclusive. However, Crato and Rothman (1994a) use 
full MLE to estimate an ARFIMA(0,d, 1) model for annual bond yields from 
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1900 through 1988 and conclude that d is 0.81 and significantly different from 
one. 

7. Conclusion 

The long memory feature of data in some physical sciences has been a well- 
documented fact for some time. Since the publication in the early 1980s of the 
work of Granger and Hosking on fractionally integrated processes in discrete 
time, there has been a steadily increasing interest from economists in this feld. 
For many years the estimation of these models was a problem. However, 
developments in the last few years have facilitated approximate and in some 
cases full MLE of relatively complicated models, and there has been a corres- 
ponding interest in applications in economics and finance. At the same time, 
many theoretical issues are still outstanding. The design of appropriate test 
statistics to distinguish between I(0), l(d), and I(1) behavior is still at an early 
stage, and it is likely that this will be an intensively worked area in the next few 
years. The desire to have a semiparametric estimate of the order of fractional 
integration has produced a number of estimators in both the time and frequency 
domains. Clearly such estimators are conceptually attractive since they focus on 
the key parameter of interest and would ideally allow short memory effects to be 
neglected. However, theoretical and simulation work has generally been disap- 
pointing on the performance of these estimators; even in cases when the low- 
order or high-frequency dynamics are white noise. 

While MLE has become straightforward computationaily, the identifiability 
of high-order ARFIMA models often appears problematic judging from the 
available empirical studies and simulation evidence. In some cases the estimated 
value of d appears sensitive to the parametrization of the high-frequency 
components of the series, and in other cases the confidence interval on the 
estimated d parameter may include the unit root. The implication of this may be 
to force us to acknowledge our level ofignoranee on the long-run, low-frequency 
properties of the data. 

One great attraction of fractionally integrated processes is to allow substan- 
tially more flexibility than the extreme assumption of a unit root and its 
corresponding implication of the complete persistence of a shock. The slow 
decay of shocks implied by l(d) processes and the very slow but eventual 
adjustment to equilibrium is an attractive feature of the process. For example, if 
we are suitably skeptical about the multitude of evidence on the possible 
existence of a unit root in the real exchange rate, then the fractional analysis of 
Diebold, Husted, and Rush (1991) re-establishes Purchasing Power Parity as 
a meaningful long-run concept. 

While many of the inferential issues in dealing with the basic ARFI M A model 
are now quite well understood, there are many other processes that generate 
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long-run behavior  and  may  be more  flexible and useful than the A R F I M A  class. 
The  identif icat ion and es t imat ion of  more  general  long memory  models,  such as 
the Gegenbaue r  process or  the G A R M A  process, are  current  areas  of research 
and  may  become more  useful representat ions.  While  most  a t ten t ion  has current-  
ly been restricted to univar ia te  processes, the real advan tage  of  fract ional  models  
may  well be in terms of  represent ing relat ionships between variables and  the 
testing of  forms of  fract ional  cointegrat ion.  The  degree of  impor tance  of  this 
topic  will p robab ly  be de termined by whether  such behavior  is found in real 
data.  Some asset pr icing appl ica t ions  certainly suggest this possibil i ty,  but  little 
formal empir ical  work  has been done  to r igorously  test this proposi t ion .  

More  recently a number  of au thors  have noted the apparen t  long memory  
proper ty  of powers  of absolute  returns and also of the volat i l i ty process of high 
frequency asset re turns  data .  This has led to the formula t ion  of long memory  
time dependent  condi t iona l  heteroskedast ic  processes such as F I G A R C H  and  
also of co r respond ing  long memory  stochast ic  volat i l i ty processes. The  early 
appl ied  work  with this app roach  has been extremely promis ing  with the long 
memory  volat i l i ty  process appear ing  dist inctly super ior  to o ther  parameter i -  
zation~. The  feature of  long memory  in the condi t iona l  var iance appears  related 
to the presem:e of iong memory  in the mean of interest rate  differentials and  
forward premia  and may  offer potent ia l ly  impor t an t  insights into the pricing of 
risk. 
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