
Notes on the Fractal Analysis of Various Market Segments in the
North American Electronics Industry

John Conover
c
�

1995 John Conover. All Rights Reserved.

July 20, 2000



Abstract

This manuscript presents some personal notes on a fractal analysis of various market segments in the North American
electronics industry. Although a very simple model is presented to analyze the dynamics of the industry’s markets, there
is, probably, reasonable evidence presented that the market segments do, indeed, have fractal characteristics. Although
the model presented does not offer significant advantages over other quantitative methodologies, the qualitative analysis,
without having access to any other data other than the time series of the market’s rate of revenue returns, would seem
to predict that:� Research, development and infrastructural investments seem reasonable at about 12 to 20 percent of the rate of

revenue returns for the market segments analyzed. This seems consistent with the industry.� Venture success rates at 60 months seems reasonable at about 1 in 12, which is commensurate with the industry.� Project success rates, of 8 month duration, are about 1 in 3, which is consistent with numbers from the Application
Specific Integrated Circuit business, which could be considered as “representative.”� The “80/20 rule” that 80% of an organization’s revenue comes from only a few, 3 was shown to be typical,
products is really, probably, 84.13%, or one standard deviation—which is consistent through the industry.� The “80/20 rule” that 80% of an organization’s products should be “industry standard,” and the remainder
“proprietary” is probably, one standard deviation, or 84.13%.� Although the prediction of product life cycle will be shown to be “pessimistic,” it is none, the less, depending
on the reader’s point of view, reasonable, and was fairly consistent with industry averages.� The inventory control dynamics presented seem to be consistent with the markets analyzed.� The failure rate of Fortune 500 Companies seems consistent with predicted failure rate of organizations in the
markets analyzed, although the rate of failure will be shown to be “optimistic,” when related to re-investment
strategy.� The calculated number of companies participating in the markets analyzed is reasonably close to the industry
numbers, and there is inferential evidence that they are operating optimally—at least in the entropic sense as
defined in Chapter 2—which seems consistent with the economic theory that the companies that operate the most
optimally or efficiently will, eventually, dominate the market. (The calculated number of companies participating
in the various markets varied between 6 and 28, with an average of 10, and with Shannon probabilities for
the individual company’s market time series varying between 0.54 and 0.6, with an average of 0.57, which,
interestingly, is close, within approximately 5%, to the Shannon probability for the various company’s stock
price time series.)� The variance in the aggregate market time series is smaller than the the variance of the time series for any
company participating in the market, which is consistent with the industries analyzed.� It would seem that there is some supporting evidence that optimizing a company’s fiscal strategy to achieve
maximum market growth and optimizing a company’s fiscal strategy to optimize capital growth may be mutually
exclusive, which has, traditionally, been the case in the industries analyzed. Additionally, it would seem that, at
least in the markets analyzed, the fiscal strategies deployed would tend to be optimizing market growth, which
seems consistent with author’s experience in these industries.



Additionally, it would seem to be shown that visibility into the future, regarding rate of revenue returns, was only
a few months, at best. This would seem to be in disagreement with the prevailing concept that “strategic planning”
should be “long term.” An interesting interpretation of this may be that these industries require a more dynamic
management methodology, perhaps using “rolling” budgets, etc. to approximate an immediate feedback mechanism.
But this would seem to be inconsistent with methodologies where objectives are monitored on an annual basis—it
would seem that profit and loss issues are very dynamic, and, probably, require detailed attention at no more than a
monthly rate, including inventory and project management issues.
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Preface

This manuscript is a compilation of my un-edited personal notes, written over two decades in which I was involved in
operational management in the electronics industry. One of the issues addressed in industrial operations is the dynamics
of the market place. This manuscript describes an attempt at “modeling,” at least in a qualitative sense, the dynamics
of the North American Electronics Industry. Being an engineer by academic tenure, I chose fractal methodologies,
since a large formal infrastructure exists, and it is a “method of choice,” where applicable. The latter part of my career
has been spent in the financial community, where such entropic methods have been used, controversially, in such areas
as “programmed trading” in the capital markets. The reader should be advised that such methods remain controversial,
and applications to industrial markets, will no doubt, add to the controversy. How applicable the methodology is found
to be will be left to the reader’s discretion.

Most of the presentation is in chronological order. The derivations in chapters 2 and 3 were done over the span
of the last decade and a half, and the sections are, roughly, in temporal order. The reader should be advised that
there were paradigm shifts and symbol ambiguities as time progressed, and that chapters 2 and 3 are in need of a total
rework—they are offered in that context, and the reader should be advised that there are, almost inevitably, errors in
the presentation. (Specifically, Section 2.4 in Chapter 2 regarding time sampled time series should be regarded with
scepticism and should be used with caution—it is unfortunate that a clear derivation of the effect of sampling on time
series has not been addressed adequately, since there are many issues left open at this time.)

The programs used in the analysis were written by the author, and should be considered as “fragile,” since there
has never been any intention to turn them into “commercial” products. They are offered in that context, and the
reader should be advised that there is little or no provision for handling numerical exceptions, and no attention given
to quality assurance. The “C” language sources to the programs are available, as is, by sending an electronic mail
to john-archive-request@johncon.johncon.com with a subject of “archive get fractal”. The source distribution also
contains the LATEX sources to this manuscript.

The other programs used in the composition of this manuscript are all freely available by anonymous ftp. For the
list of programs, and availability on the Internet, see the colophon.

—J. C. C.

Campbell, California
July, 2000
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Chapter 1

A Simple Industrial Market Model

This chapter presents a simple industrial market model, and assumptions, that should, in principle, be applicable
to analysis by fractal methodologies. It should be advised that the model and assumptions are very simple, and
probably not adequately sophisticated for accurate or precision analysis of industrial markets. The attempt is to present
a methodology that is applicable to analyzing market dynamics—which makes fractal methodologies the method of
choice. Because of the simplistic models, it would be inappropriate to appropriate to consider this presentation financial
advice.

1.1 Simplified Assumptions

The simple model is outlined as follows:� The paradigm is that unless an organization updates goods and services rendered to an industrial market place,
to contemporary standards, the organization’s rate of revenue returns will decrease.� However, deciding what must be done to update the goods and services rendered is a speculative process,
requiring speculation on what the market place will favor in the future. It is assumed that the desires of the
market place in the future is not predictable, and has, at least to some extent, a degree of “randomness.”� It is assumed that the updating of the goods and services rendered is a continuing, iterated process that will
constitute a significant portion of the organization’s resources.� The objective is presumed to be to maximize the rate of revenue returns.

Note that this “model,” albeit simple, is a “prescription” for a fractal process. For a brief tutorial on fractal processes
and analysis, see appendix A.

If it can be shown, and that remains to be seen, that industrial markets exhibit fractal characteristics, then there
is a large existing mathematical and economic infrastructure that can be exploited to, perhaps, optimize industrial
operations using entropic methodologies. The purpose of this manuscript is to offer a suggestion that this may, indeed,
be the case—although with the un-sophisticated models and methodologies that are presented, there may be no intrinsic
qualitative value.
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1.2. COMPARISON OF THE SIMPLIFIED MODEL WITH PREVIOUS WORKS

1.2 Comparison of the Simplified Model with Previous Works

[Rez94, pp. 450] citing J. L. Kelly, Jr1 suggests an interesting model which presents the problem of the rate of
transmission of information in a different way:

Consider the case of a gambler with a private wire who places bets on the outcomes of a game of
chance. We assume that the side information which he receives has a probability � of being true and
1 �� of being false. Let the capital of the gambler be � 0 and ��� his capital after the ����� betting. Since
the gambler is not certain that the side information is entirely reliable, he places only a fraction � of his
capital on each bet. Thus, subsequent to � bettings, assuming the independence of the successive tips����� The problem with which the gambler is faced is the determination of � leading to the maximum of
the average exponential rate of growth of his capital ����� Thus, under these rather natural hypotheses, the
maximum possible average exponential gain of the gambler coincides with the numerical value of the
channel capacity. If the channel were noiseless, the gambler would obviously risk all his capital at each
betting ����� Also, if he knew the value of � beforehand, he would be able to use this knowledge to his
advantage and bet all his capital (or none). But the reliability of the tip is not known to him.

According to Kelly, here we have an example of a real-life situation where considerations similar to
the concept of source, channel, rate of transinformation, and channel capacity are valid. In the above
reference, Kelly extends these results to more general cases of a gambler placing bets on outcomes of
several games of chance. The gambler receives independent tips on each game conditional on the result of
another game. The situation is analogous to a discrete independent source driving a discrete memoryless
noisy channel.

In conclusion, our acquired knowledge of information theory, which was based primarily on Shannon’s
communication model, can well be applied to other mathematical models arising from real-life problems.

By similar reasoning, the simple model outlined in Section 1.1 has the same mechanism suggested by Kelly,
however, the gambler’s capital is market size, measured in revenue returns, and the “tips” come from the market itself
with a probability, � which can be computed from the fluctuations in revenue returns over time.

1.2.1 Compatability with more Sophisticated Economic Models

The proposed model is shown to be consistent as a first order approximation to the logistic function used in modeling
industrial markets in the literature [Mod92] in Chapter 2, Section 2.8.

More recently, [Art, pp. 8] argues that these types of scenarios are created by multiple agents acting on inadequate
information in the marketplace. These agents form an inductive reasoning system that consists of a multitude of
“elements” in the form of belief-modes or hypotheses that adapt to the aggregate economic ecological system. This
concept is further developed in Chapter 2, Section 2.9. Thus, it qualifies as an adaptive complex system. These systems
can be characterized by economic increasing-returns [Art89] of a dynamic process with random events—an economy
based on positive feedback [Art89]. For general implications to the business environment, see [Art96]. A system that
consists of dynamic processes, with random events can be characterized as a random walk [Art95, pp. 6], [Art88, pp.
6, 10, 16], [BdL95, pp. 29, 42] fractal—identically as above. See Chapter 2, Section 2.8 for additional comments.

1.3 Examples of Simplified Assumptions

As a simplified example of the assumptions presented in Section 1.1, consider a shoe manufacturer. The shoe company
manufactures blue shoes, and red shoes. The operational agenda would require speculation on how many pairs of red
shoes, and how many pairs of blue shoes should be manufactured each month, for sales, marketing and distribution

1J. L. Kelly, Jr., “A New Interpretation of Information Rate,” Bell System Tech. J., vol. 35, pp. 917-926, 1956.
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1.4. GENERAL CONCEPTS IN THE INDUSTRIAL MARKET MODELING METHODOLOGY

next month. If the “forecast” for blue shoes is incorrect, say, perhaps, too large, then not only does the company loose
the money invested in the manufacture of the blue shoes, but also looses market share to the companies that forecasted
the demand for blue shoes correctly—and the company’s rate of revenue returns would be expected to decrease next
month. It is important to note that, at least as far as this simplified model is concerned, that the rate of revenue returns
is actually a cumulative sum of all past decisions and investments in infrastructure, made by the company, in catering
to the market place2

As a related example, a company attempts a development project for a new product, and if the development is
successful and well received in the market place, the company’s rate of revenue returns increase. If not, the company
looses the money on the development investment, and in addition, the company’s rate of revenue returns decrease.

It should be pointed out that these examples illustrate the usage of a very simple “model,” to describe the operations
of very complex industries, which is probably not be adequate for commercial purposes. Additionally, the model
may have the disadvantage of abstracting the operational environment in such a manner that causality may be difficult
to establish, and relating the model’s parameters to accounting metrics may be difficult. However, there is some
possibility that the methodology outlined in this manuscript can be used with Operations Research, as a forecasting
methodology.

1.4 General Concepts in the Industrial Market Modeling Methodology

As a simple conceptual model, the industrial markets will be modeled as a simple tossed unfair coin game, which
has characteristics of classical Brownian motion, as presented in appendix A. The analytical derivation is presented
in Chapter 2, and the analytical fractal methodology used will is presented in Chapter 3. A brief description of the
software programs used in the implementation of the analytical fractal methodology is presented in appendix B. The
analysis of the markets is presented in appendix C, and the concept of modeling the industrial market pro forma with
classical Brownian motion expanded to models using fractional Brownian motion.

The concept of using classical Brownian motion to model markets was chosen because it is the simplest of all
fractal systems that can be used to analyze speculative markets. Naturally, the quality of such an analysis must be
subject to appropriate scrutiny, and there are issues which can not be handled with such simple models. However,
possibly, the simple models can be used to approximate industrial market process with accuracies that are adequate,
hopefully, for months, and, possibly, but not likely, perhaps years.

The classical Brownian motion model assumes that fixed increments will approximate the, probably Gaussian
distributed increments, and simulations will be presented to offer a qualitative view of the accuracies, and inaccuracies,
of such a simple models. For more in depth methods of addressing optimizations of markets that exhibit Gaussian
distributed increments, the reader is referred to the bibliography.

Chapter 4 will offer several conclusions concerning the analysis presented in appendix markets, and is offered in
the context that there may be, perhaps, some value in using fractal analysis as a methodology, probably, at least, in
a qualitative sense, in analyzing industrial markets. There is no insinuation that the methodology could be used for
analyzing industrial markets in a qualitative sense at this time.

2The concept is subtile—that the derivative of the cumulative revenue returns, the rate of revenue returns, is actually a cumulative sum, or, in
some sense, an integral of past market pro forma of the company. Note that this is reasonable, in some abstract sense, because if many bad forecasts
were made in the past, we would expect the company’s rate of revenue returns to be much smaller than a company that made more fortunate
decisions. The attempt there is to establish an isomorphism between a company’s rate of revenue returns and a cumulative sum process of a random
variable—ie., a fractal. At least in principle, it is possible, using fractal analysis, to have some degree of confidence that a market’s characteristics
are fractal. See [Cro95, pp. 244].
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Chapter 2

General Derivation for Fractal Time Series

This chapter presents a general derivation of the optimization of betting strategies in speculative markets. It is offered in
academic perspective, and under no circumstances would it be appropriate to consider it financial advice. It can serve,
however, as an introduction to the contemporary economic theory of speculative markets. Rigorous and sophisticated
approaches that address the issues of investing in speculative markets are contained in the bibliography.

2.1 General Derivation

Consider that investing in a speculative market is an iterated process1, with the objective of maximizing the value of
the investment’s cumulative returns, � , and that the process operates according to the following principles for each
and every iteration:

1. For any iteration, “wagers” are made that are a fraction, � , of the investment’s cumulative returns, � . Of course,
0 ���� 1, and the amount wagered is ��� � .

2. The investment’s returns, for the current iteration, will occur in the next iteration, and will be determined by a
random process, ! , which will determine whether the investment’s return is a loss or a gain2, and the amount
wagered, ��� � , which will determine the amount of the loss or gain.

3. The investment’s returns, losses and gains, for each iteration are summed to the cumulative returns, � .

then, for the �#"%$ iteration:

��&(' 1 ) ��&�* ( ��&��+�,&�� !-& ) (2.1)) � & (( � & �(! & ) * 1) (2.2)

1It is an important concept that in many cases, the iterated speculative investment process is implicit. For example, in the stock market, an
investment can obviously have losses or gains, over time, without one actually making any additional physical investments, ie., “letting the investment
ride” constitutes a speculative investment in itself.

2If the iteration’s random process, . , is either / 1 or 0 1 for gains and losses, respectively, then the random process is termed “Brownian.”
However, if the random process, . , can assume other values, besides / 1 and 0 1, and, furthermore, these values have a Gaussian distribution, then
the random process is termed “fractional Brownian,” [Fed88, pp. 164, 172], [Cro95, pp. 232]. In either case, the random process may be unfairly
biased. For example, there can be more iterations that have gains than have losses, on average, in the iterative process. Such processes could,
potentially, offer a knowledgeable investor an exploitable advantage—that is why they are termed “unfairly biased.” Apparently, many speculative
markets exhibit such phenomena. For example, many capital markets are alleged to have unfair bias, [Pet91, pp. 81], [Sch91, pp. 127], [Cas94, pp.
255], [Rez94, pp. 450], [Pie80, pp. 270].
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2.1. GENERAL DERIVATION

and rearranging Equation 2.1: ��&(' 1 �1��&��& ) !2&�� �,& (2.3)

therefore, the rules for deriving the values of !2&��,�+& , for an iteration are:

1. Subtract the value of the last iteration’s cumulative returns from the value of the current iteration’s cumulative
returns to calculate the current iteration’s incremental difference in cumulative returns.

2. Divide the current iteration’s incremental difference in cumulative returns by the value of the last iteration’s
cumulative returns.

3. The result is the random process, !2& , multiplied by the wager fraction, �,& , for the last iteration.

Separating an iteration’s wager fraction, � & , from the iteration’s random process, ! & , is difficult for incremental
differences that are characterized by Gaussian distributions, ie., fractional Brownian random processes. However, for
Brownian random processes, the sign of the iteration’s incremental difference in cumulative returns, ie., whether the
iteration’s incremental difference was a loss or a gain, can be used to derive the value of the random process, !2& .
Taking the absolute value3 of the iteration’s incremental difference, in the specific case of Brownian random processes,
is the amount that was wagered, �,& , (provided, of course, that any unfair bias in the random process was sufficiently
small, which is usually the case.)

2.1.1 Fibonacci Sequence of a Time Series

Interestingly, the normalized increments, when constructed in this manner, is simply the Fibonacci sequence of � " ,
minus unity. The recursive representation of constructing the normalized increments is:� " ) � "43 1 (1 *5� " ! " ) (2.4)

and subtracting � "�3 1 from both sides: � " �5� "�3 1 ) � "43 1 (1 *5� " ! " ) �5� "�3 1 (2.5)

and dividing both sides by � "43 1: � " �6� "43 1� "43 1
) � "�3 1 (1 *7� " ! " ) �6� "43 1� "43 1

(2.6)

and combining: � " �8� "43 1� "43 1
) (1 *9� " ! " ) � 1 ) � " ! " (2.7)

but the left side of Equation 2.7 is: � " �8� "43 1� "43 1
) � "� "43 1

� 1 (2.8)

which is the Fibonacci sequence of � " , minus unity. The tsmath program can be used to add unity to the time series
of the normalized increments of a time series to construct the Fibonacci sequence of the equity’s value. Additionally,
the time series could be time sampled with the tssample program prior to constructing the normalized increments to
possibly investigate for any cyclic phenomena [Sch91, pp. 49].

3The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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2.2. CONSTRUCTION OF RANDOM PROCESS

2.2 Construction of Random Process

The strict definition of Brownian motion is the cumulative sum of a random variable with a Gaussian distribu-
tion, [Fed88, pp. 164], [PJS92, pp. 481], [Cro95, pp. 232]. However, [Sch91, pp. 145] mentions a Brownian
process with fixed increments, also called a Markov—Wiener process, and, further [Sch91, pp. 125], mentions that
Brown noise is generated by summing independent random numbers, with no mention of the distribution, other than
on [Sch91, pp. 128] where Brown noise is generated by independent increments, and states that the fluctuating capital
of the gambler is is also, Brown noise, deducing that the probability of winning a coin is � , and a probability of loosing
the coin is �� 1, which at first consideration does not seem to present the process of a cumulative sum of a random
variable with a Gaussian distribution.

To reconcile the issue, consider the pseudo code for a simple Brownian noise generator time series, of n many
samples, as proposed by [Fed88, pp. 164], [PJS92, pp. 481], and [Cro95, pp. 232]. From [PJS92, pp. 484], using 6, 6
sided dice, for n many samples in the time series:

cumulative sum = 0

for i = 1 to n

throw 6 die

cumulative sum = cumulative sum + total spots on all six die

print cumulative sum

where, citing the content of the Central Limit Theorem, a Gaussian distribution is approximated since the process
was a cumulative sum of independent and similar random events, ie., summing many independent and similar random
events—the spots on 6 dice in this case—will produce a list of numbers with a Gaussian distribution. Summing these
numbers will produce Brownian noise.

Now consider the following pseudo code, which is much the same, but instead of using 6 dice, only one die is used,
and the cumulative sum sampled every 6th roll of the die:

cumulative sum = 0

for i = 1 to 6n

throw the die

cumulative sum = cumulative sum + total spots on the die

if modulus i, 6 is zero

print cumulative sum

Note that the two algorithms give, approximately, identical results. Apparently, sampling a sum of independent
and similar random numbers, ie., white noise, is identical to a sum of random numbers with a Gaussian distribution.
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2.2. CONSTRUCTION OF RANDOM PROCESS

Now, consider the original works of Hurst cited in [Fed88, pp. 154], using a “Monte Carlo” simulation for a random
process of independent random variables obtained by tossing < many coins � many times and taking the random
variable to be the number of heads minus the number of tails for each toss of the < many coins. The probability
of obtaining = heads by throwing < coins is > 1

2 ?A@ > @ !� ! B @ 3 ��C ! ? . If the coin set is tossed � times, then = , and the the
incremental differences in the cumulative sum, are given by the binomial distribution, which approaches a Gaussian
distribution for large � and < . The pseudo code for such a process, again using a single 6 sided die instead of a coin
for compatability with the previous pseudo code, is:

cumulative sum = 0

for i = 1 to n

die sum = 0

for j = 1 to m

throw the die

if the number of spots on the die > 3

increment the die sum by one

else

decrement the die sum by one

cumulative sum = cumulative sum + die sum

print cumulative sum

which can further be simplified by sampling the cumulative sum every < th roll of the die:

cumulative sum = 0

for i = 1 to nm

throw the die

if the number of spots on the die > 3

increment the the cumulative sum by one

else

decrement the cumulative sum by one

if modulus i, m is zero
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2.3. A SIMPLE ANALYSIS

print cumulative sum

As mentioned in [Fed88, pp. 156], this process is asymptotic with a Brownian motion of random variables with a
Gaussian distribution, provided < and � are sufficiently large.

2.2.1 Conclusion

The three methods of generating a time series for Brownian motion with an incremental difference distribution that is
Gaussian are approximately identical, provided:� The sampling rate is sufficiently low to allow many iterations of the uniform distributed random process to be

added to the cumulative sum between samples.� The fractional Brownian time series is sufficiently close to classical, (ie., a random walk with a Gaussian
distribution step length,) Brownian motion, ie., the time series’ Hurst coefficient is sufficiently near 0.5.

2.3 A Simple Analysis

Consider the following fragment of a time series:

0.2
-0.2
0.2
-0.2
0.2

and if the fragment is replicated many times to produce a time series data file containing many records that
“oscillates,” on a period of 5, with a Shannon probability of 3 D 5 ) 0 � 6, since � ) 2 �E� 1, where � ) 0 � 6, and� ) 0 � 2.

The rationale is as follows:

-0.2

+0.2

1 2 3 4 5 . . . n-1 n n+1 . . .

Figure 2.1: Win or Loss Fraction of Cumulative Sum.

2.3.1 “Average” Exponential Returns

In Figure 2.1, there are 3 * 0 � 2’s for every 2 ��� 2’s, for an average of * 0 � 2 per 5 time units, for an average of* 0 � 2 D 5 ) * 0 � 04. The reason for the numbers, * 0 � 2 and � 0 � 2, is that it is the optimum for a Shannon probability of
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2.3. A SIMPLE ANALYSIS

0 � 6, since 0 � 2 ) 2 �F� 1, (which also equals �F�G> 1 �5� ? ,) where 2 � 0 � 6 � 1 ) 0 � 2, which is the optimal amount
of the cumulative returns to wager with an unfair coin that has a probability of 0 � 6 of a win, ie., 3 out of 5. If the�H� 1’th value in the time series is subtracted from the � ’th value, and the value of this subtraction divided by the�I� 1’th value, then the quotient should be * 0 � 2 or � 0 � 2 depending on the whether the wager was won or lost. It is
an important insight that the “average” returns is not useful, and creates substantial errors. See Section 2.3.2, below.

Under this scenario, � ) 0 � 6, and the returns are:

20 J 029049406 ) � 0 J 020135514 (2.9)

which can be verified with the program tsshannon, which is briefly described in appendix B, and is consistent
with [Sch91, pp. 128].

But, using the “average” value, of 0 � 04:

20 J 056583528 ) � 0 J 039220713 (2.10)

which is in substantial error.

2.3.2 Exponential Returns

Using tsunfairbrownian, which is also described in appendix B, with arguments of -f 0.2 will construct an exponential
data time series that is known to be optimum, ie., a Shannon probability of 0 � 6, with an optimal wager fraction of
0 � 2, with an “approximate” Brownian motion noise content-albeit not random. It is useful for evaluating analytical
methodologies. The derivation of the exponential is as follows:
assume an exponential function: � ( � ) ) � � " (2.11)

then: � ( � ) �5� ( �K� 1)� ( � ) )ML�) � � " �6� � ( "43 1)� � ( "43 1)
(2.12)

or:

LG) � � " �1� � "43 �� � "�3 � ) � � " �1� � " �N�O=� � " � 3 � ) 1 �6� 3 �� 3 � ) � � � 1 (2.13)

where: = ) ln ( L * 1) (2.14)

As a useful equation in data reduction involving Shannon probability, which requires an argument of logarithmic
returns in bits:

2 PRQ "TSVU " ) ( L * 1) " (2.15)

or:

( W�XY�[Z\� � ) ln (2) ) �]� ln ( L * 1) (2.16)

and dividing both sides of the equation by � and solving for the number of bits:W�XR�[Z ) ln ( L * 1)
ln (2)

(2.17)

Now, consider the iterated cycles in Figure 2.1, beginning with cumulative returns of 1:
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2.3. A SIMPLE ANALYSIS

� after the first, the cumulative returns are 1 � 2, since it it was a “win.”� after the second, the cumulative returns are 1 � 2 � 0 � 8 ) 0 � 96, since it was a “loss.”� after the third, the cumulative returns are 1 � 2 � 0 � 8 � 1 � 2 ) 1 � 152, since it was a “win.”� after the fourth, the cumulative returns are 1 � 2 � 0 � 8 � 1 � 2 � 0 � 8 ) 0 � 9216, since it was a “loss.”� after the fifth, the cumulative returns are 1 � 2 � 0 � 8 � 1 � 2 � 0 � 8 � 1 � 2 ) 1 � 10592, since it was a “win.”

Therefore: ��&(' 5 ) ��&�� (1 � 2 � 0 � 8 � 1 � 2 � 0 � 8 � 1 � 2) ) 1 � 10592 ��& (2.18)

and finding the average gains per one iteration period of the “game:”� & ' 1 ) �^�I� 1 � 10592
1
5 ) � & � 1 � 020339601 (2.19)

or the incremental revenue gain, from one time period to the next is:��&(' 1� & ) 1 � 020339601 (2.20)

or: ��&(' 1��& � 1 ) 1 � 020339601 � 10 � 020339601 )�L (2.21)

where L is from Equation 2.13. From Equation 2.14:= ) ln ( L * 1) ) ln (1 � 020339601) ) 0 � 020135514 (2.22)

Therefore, the formula for the exponential cumulative returns function is, from Equation 2.11:� ( � ) ) � � " ) � 0 J 020135514" (2.23)

which is Equation 2.9. The time series analyzed in this section is simulated in appendix C, Section C.20. It is an
important insight that the “average” returns derived in Section 2.3.1 is not useful, and creates substantial errors.

2.3.3 General Analysis of Exponential Returns

Consider a time series, similar to Figure 2.1, but with a true random distribution. As in Section 2.3.1, the Shannon
probability, � , is �_� 0 � 1. The fraction of the cumulative returns, � , that is wagered with each iteration of the
game is � , where 0 �`�H� 1, and ! is an independent random process:! ) a * 1 b with a probability of P� 1 b with a probability of 1 - P

(2.24)

Then in general, the returns after c many iterations would be:

��d ) � 0 � ((1 *6! 1 �+� 1) � (1 *6! 2 �+� 2) � (1 *6! 3 �+� 3) �e������gf 1 *6!2& 3 1 �,�+& 3 1 h � (1 *6!2&��,�+& ) �if 1 *6!2& ' 1 �,�+& ' 1 h �j������kf 1 *8! d 3 1 �(� d 3 1 h � (1 *6! d �+� d ) h (2.25)
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2.3. A SIMPLE ANALYSIS

where � 0 is the cumulative returns at time 0, �,& is the fraction of the cumulative returns wagered in the � ’th iteration
of the game, and !2& determines whether the � ’th wager was one or lost, ie., added or subtracted from the cumulative
returns.

Out of c many iterations, there will be �l�gc many wins, and > 1 �`� ? �gc many losses. Therefore, if � is
constant, [SW49, pp. 38], [Rez94, pp. 114, pp. 450], [Pie80, pp. 270], [KF88, pp. 155], [Ash65, pp. 9],
Equation 2.25 reduces to: � d ) � 0 (1 *5� ) m d (1 �6� )(1 3 m ) d (2.26)

or: ��d� 0
) (1 *7� ) m d (1 �6� )(1 3 m ) d (2.27)

if N is sufficiently large, then the average increase in cumulative returns for one iteration of the game, nporq 1nso , is:t � & ' 1� &vu d ) ��d� 0
(2.28)) (1 *5� ) m d (1 �5� )(1 3 m ) d (2.29)) w (1 *5� ) m (1 �6� )(1 3 m ) x d (2.30)

and: ��&(' 1��& ) (1 *7� ) m (1 �6� )(1 3 m ) (2.31)

and from Equation 2.14: = ) ln y (1 *9� ) m (1 �6� )(1 3 m ) � 1 z (2.32)

where the equation for the cumulative returns, as a function of time, �{>Y� ? , from Equation 2.11, is:

� ( � ) ) � (ln((1 'K| ) } (1 3 | )(1 ~ } ) 3 1)) " (2.33)) w (1 *7� ) m (1 �6� )1 3 m x " (2.34)

Using, for example, � ) 0 � 6 and � ) 0 � 2, the cumulative returns, as a function of time, would be:

� ( � ) ) � (1 * 0 � 2)0 J 6 (1 � 0 � 2)(1 3 0 J 6) � " (2.35)) � 1 � 20 J 6 � 0 � 80 J 4 � " (2.36)) [1 � 115600622 � 0 � 914610104]" (2.37)) [1 � 020339601]" (2.38)

which is in agreement with Equation 2.19
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2.3. A SIMPLE ANALYSIS

Optimization of Returns

From Equation 2.27, the average increase in the cumulative returns for one iteration of the game would be:

��d ) � 0 (1 *5� ) m d (1 �6� )(1 3 m ) d (2.39)��d� 0
) (1 *5� ) m d (1 �8� )(1 3 m ) d (2.40)� 1� 0
) (1 *5� ) m (1 �6� )(1 3 m ) (2.41)

which can be maximized to maximize the growth in the cumulative returns, � , for each iteration of the game.
Considering � as a function of � , the fraction of the the cumulative returns wagered on each iteration of the game:� ( � ) ) � 1� 0

) (1 *5� ) m (1 �6� )(1 3 m ) (2.42)

and taking the derivative, and equating to 0 to find the maxima:� � ( � )� � ) � (1 *5� ) m 3 1 (1 �6� )1 3 mH� (1 �1� ) (1 �5� )1 3 m 3 1 (1 *5� ) m ) 0 (2.43)

and combining terms: � (1 *5� ) m 3 1 (1 �5� )1 3 mH� (1 �1� ) (1 �6� ) 3 m (1 *5� ) m ) 0 (2.44)

and splitting: � (1 *5� ) m 3 1 (1 �6� )1 3 m ) (1 �1� ) (1 �6� ) 3 m (1 *7� ) m (2.45)

and taking the natural logarithm of both sides of the equation:

ln ( � ) * ( �M� 1) ln (1 *5� ) * (1 �6� ) ln (1 �5� ) ) ln (1 �1� ) �1� ln (1 �6� ) *6� ln (1 *5� ) (2.46)

and combining terms:

> ( �G� 1) ln (1 *5� ) �6� ln (1 *5� ) * (1 �1� ) ln (1 �6� ) *6� ln (1 �8� ) ) ln (1 �6� ) � ln ( � ) (2.47)

ln (1 �5� ) �1�R� (1 *9� ) ) ln (1 �6� ) � ln ( � ) (2.48)

(2.49)

and performing the logarithmic operations:

ln

t
1 �6�
1 *5� u ) ln

t
1 �1�� u (2.50)

and exponentiating:

1 �5�
1 *7� ) 1 �1�� (2.51)� (1 �6� ) ) (1 �1� ) (1 *9� ) (2.52)�G�1�{� ) 1 �1�{���1�M*5� (2.53)

2 � ) 1 *5� (2.54)
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2.3. A SIMPLE ANALYSIS

and finally: � ) 2 �G� 1 (2.55)

which is identical to Equations A.1 and A.11, and agrees with [Sch91, pp. 128, 151]. A more elegant approach
to maximization of the cumulative returns, using information—theoretic techniques, is presented in [SW49, pp.
38], [Rez94, pp. 114, pp. 450], [Pie80, pp. 270], [KF88, pp. 155], [Ash65, pp. 9].

Note that, referring to Figure 2.1 and Equations 2.24 and 2.25, that the root mean square, �,<HZ , of Equation 2.24 is
simply � —assuming � is constant and c is sufficiently large, or:�+<�Z ) � (2.56)

and the average �g�N� will be �M�7> 1 �1� ? time this value, since there will be � many � ’s and �M� 1 many �^� ’s, or:�g�,� ) �,<HZ [ �M� (1 �6� )] ) �+<HZ (2 �M� 1) (2.57)

Note that if the game is not being run at the optimum, where 2 ��� 1 ) � , then � must be increased by a factor
which can be calculated from measuring �g�,� and �+<�Z . Letting � be the amount that � must be multiplied by so that
the � will be optimum, �+�R� " , from Equation 2.57: �g�N��+<�Z ) (2 �G� 1) (2.58)

which will be true whether � is optimum or not. But 2 �M� 1 ) � �R� " when optimum, therefore:�g�N��+<HZ ) �,�R� " (2.59)

but from Equation 2.56, �,<HZ ) � , and after dividing both sides by �+<�Z ) � :�g�,��+<HZ 2 ) � �R� "�+<HZ ) � (2.60)

2.3.4 Ancillary derivation of the Shannon Probability, �
As an interesting manipulation to Equation 2.31,� &(' 1� & ) (1 *5� ) m (1 �5� )(1 3 m ) (2.61)

or: � &(' 1��& ) (1 *7� ) m (1 �6� )

(1 �6� ) m (2.62)

and:

nporq 1npo
(1 �5� ) ) (1 *5� ) m

(1 �6� ) m (2.63)

) t
(1 *7� )
(1 �5� ) u m

(2.64)

and taking the natural logarithm of both sides:
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2.4. THE CASE OF THE TIME SAMPLED TIME SERIES

ln � n oVq 1nso
(1 �8� ) � ) � ln

t
(1 *5� )
(1 �6� ) u (2.65)

and solving for � :

� ) ln

t{� orq 1� o(1 3 | ) u
ln y (1 'K| )

(1 3 | ) z (2.66)

Equation 2.66 presents an important relationship, since metric methodologies can be used to quantize � , nsorq 1npo ,
and � .

2.4 The Case of the Time Sampled Time Series

In many cases, the time series data under consideration is time sampled. For example, the data may be by month,
which is the aggregate of many time series, in a fashion similar to the situation outlined in this chapter, Section 2.2.

Referring to Figure 2.1 and Equations 2.24 and 2.25, the root mean square, �,<HZ , of Equation 2.24 is simply� —assuming � is constant and c is sufficiently large. From Equation 2.57:�g�,� ) �,<HZ [ �M� (1 �1� )] ) �+<HZ (2 �M� 1) (2.67)

and letting �,<HZ = � : ���,� ) � (2 �M� 1) (2.68)

But from Equation A.11: ! ) 2 �G� 1 (2.69)

where � is ! with the signs removed, following reasoning similar to those in Equations 2.24 and 2.25, or:� ) 2 �G� 1 (2.70)

Inserting into Equation 2.68: �g�N� ) � 2 ) �,<HZ 2 (2.71)

It would be desirable to consider �g�,� , � , and �,<HZ as functions of the number of iterations in a time sample, c :�g�N� ( c ) ) � ( c )2 ) �+<HZ ( c )2 (2.72)

Since the root mean square value, �,<HZ will combine the iterations in a sample time interval in a root mean square
fashion, it would be expected that �+<�Z would be proportional to the square root of the number of iterations in a time
sample4, c , or �,<HZ as a function of c : �,<HZ ( c ) ) �+<�Z 0 � c (2.73)

4Technically, the results of the iterations are multiplied together, as described in Equation 2.25. However, it can be reasoned that these
multiplications can be broken down into additions in a fashion similar to multiplying 3 by 2. The operation can be performed by adding 2, three
times, 2 / 2 / 2 � 6. The reasoning is that root mean square operations can be used for multiplying variables with a normal distribution together,
in a manner of implementing Equation 2.25 with the methodologies outlined in this chapter, Section 2.2. The reasoning is that the random process,
summed over � many intervals will have the characteristics of a Central Limit process.
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2.4. THE CASE OF THE TIME SAMPLED TIME SERIES

where �+<�Z 0 is a constant of proportionality and is the value of �,<HZ when the number of intervals in a time sample
is one. From this, it can be concluded that the value of > 2 �M� 1 ? in Equation 2.68 must be proportional to the square
root of c , also. Solving for the function ��>Tc ? :

2 � ( c ) � 1 ) �,<HZ 0 � c (2.74)

and solving for ��>Yc ? : � ( c ) ) �,<HZ 0 � c�* 1
2

(2.75)

From Equation 2.72: �g�N� ( c ) ) y��,<HZ 0 � cHz 2 ) �,<HZ 2
0 c (2.76)

or �g�,� will vary linearly with c .
As a simulated example, the variables �+<�Z , <��(��� , which is �g�,� above, and � can be plotted. In the direc-

tory graphics/probability is a collection of files, generated by the script file “probability”, which uses � with an initial
value of 0 � 51 and constructs files that are sampled on intervals c = 1 through 100. The graphs of the functions are
superimposed with the computed theoretical values, in Figure 2.2.

As another simulated example, the output of the programs tsrms, tslsq, tsshannon, tslogreturns, and tsnormal
are plotted as a function of the sample interval in the directory /graphics/brownian as generated by the script file
“brownian,” which uses � with an initial value of 0 � 501 and constructs files that are sampled on intervals c = 1
through 100. The graphs of the functions are superimposed with the computed theoretical values, in Figure 2.3.

As interesting aside, the file “mean,” produced by the “probability.vs.N” script, should be linear as a function of c , at
least in principle. The general formula for these files, as a function of the sampling period, c , is <� �g� ) �,<HZ�> 2 ��� 1 ? .
If the input file is time sampled, then the formula is <� �g�#c ) �+<�Z�� >Tc ? > 2 ��� 1 ? � >Tc ? , and the “mean” file should
be linear, with a slope of the mean as a function of c . To exercise this, see the file “probability.vs.N” in the
directory ../markets/tscoin.tssample.

2.4.1 Simulation of Simultaneous Games

Consider playing c many coin tossing games, simultaneously. This can be simulated as a binomial distribution. Let� ) fraction of capital wagered in each unit of time (this is the normalized increment of the total capital, where the
total capital is the instantaneous value of the sum of the capital for all games.) Then, letting ���,� ) the average of� , �+<�Z ) the root mean square of � , and �2| ) the fundamental Shannon probability of each coin, in each game,
(assumed to be identical,) then: �g�,� ) f 2 �2|�* 1 h c�� (2.77)

and: �,<HZ ) � � c (2.78)

where � , �,<HZ , and �g�,� are measured, and represent the fraction of capital wagered, the root mean square, and the
average of the normalized increments of the time series of the total capital, ie., playing N many games, simultaneously:�,<HZ ) �� c (2.79)

and:
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�g�,� ) f 2 �2|�� 1 h � (2.80)

What this means is that the average, �g�,� , adds linearly, and the �+<HZ root mean square, where the wager on each
of the simultaneous games is �#D�c .

It makes no difference whether many coins are thrown at once, or one coin thrown many times.
In other words, playing many games simultaneously, each with coins of equal Shannon probability, will not effect

the growth of the total capital. The volatility of the total capital will go down by the square root of the number of
games played.

It is rather computationally inefficient, but this can be verified with the tsbinomial program, using the -r option.

2.5 Analysis of Brownian Motion with Fixed Increments

Consider a time series, similar to Figure 2.1, but with a true random distribution. As in Section 2.3.1, the Shannon
probability, � , is �_� 0 � 1. The fraction of the cumulative returns, � , that is wagered with each iteration of the
game is � , where 0 �`�H� 1, and ! is an independent random process, from Equation 2.24:
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! ) a * 1 b with a probability of P� 1 b with a probability of 1 - P
(2.81)

Then in general, the returns after c many iterations would be, from Equation 2.25:

��d ) � 0 � ((1 *6! 1 �+� 1) � (1 *6! 2 �+� 2) � (1 *6! 3 �+� 3) �e������gf 1 *6!2& 3 1 �,�+& 3 1 h � (1 *6!2&��,�+& ) �if 1 *6!2& ' 1 �,�+& ' 1 h �j������kf 1 *8! d 3 1 �(� d 3 1 h � (1 *6! d �+� d ) h (2.82)

which, after performing a process similar to the operations described in Chapter 3, Section 3.1, would result in
Equation 2.3:

� &(' 1 �1� &� & ) !2&�� �,& (2.83)

which is the increments of the cumulative returns.

Standard Deviation of Increments of the Cumulative Returns

The standard deviation, 
 , of the increments of the cumulative returns is:


 2 ) 1c d� Q � 1

( !-&��+&��1�g�,� )2 (2.84)

where �g�N� is the average of the increments of the cumulative returns, from Equation 2.57:�g�,� ) �,<HZ [ �M� (1 �1� )] ) �+<HZ (2 �M� 1) (2.85)

and from Equation 2.56: �+<�Z ) � (2.86)

or: �g�N� ) �,<HZ (2 �M� 1) ) � (2 �M� 1) (2.87)

and Equation 2.84 becomes, if �+& is constant:


 2 ) 1c d� Q¡� 1

( ! & ���5� (2 �G� 1))2 (2.88)

and factoring � :


 2 ) � 2c d� Q¡� 1

( !2&�� (2 �M� 1))2 (2.89)

and additionally, the summation series will contain ��c many cases where ! & ) 1, and > 1 �1� ? c many cases where! & ) � 1, or:
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 2 ) � 2c fT��c (1 � (2 �M� 1))2 * (1 �1� ) c ( � 1 � (2 �M� 1))2 h (2.90)

and factoring c :


 2 ) c�� 2c f%� (1 � (2 �M� 1))2 * (1 �1� ) ( � 1 � (2 �G� 1))2 h (2.91)) � 2 f%� (1 � (2 �M� 1))2 * (1 �1� ) ( � 1 � (2 �M� 1))2 h (2.92)) � 2 f%� (1 � 2 �M* 1)2 * (1 �6� ) ( � 1 � 2 �7* 1)2 h (2.93)) � 2 f � (2 � 2 � )2 * (1 �1� ) (2 � )2 h (2.94)) � 2 f%� (2 � 2 � )2 * (1 �1� ) (2 � )2 h (2.95)) 4 � 2 fY� (1 �1� )2 * (1 �1� ) ( � )2 h (2.96)) 4 �{� 2 f (1 �6� )2 * (1 �1� ) ( � ) h (2.97)) 4 �{� 2 f (1 �6� )2 *6� (1 �1� ) h (2.98)) 4 ��> 1 �1� ? � 2 ((1 �1� ) *8� ) (2.99)) 4 � (1 �1� ) � 2 (2.100)

or: 
 2 ) 4 � 2 � (1 �1� ) (2.101)

and solving Equation 2.101 for � : 
 2

4 � (1 �6� ) ) � 2 (2.102)

or: � ) 
� 4 � (1 �1� )
) 


2 � � (1 �1� )
(2.103)

and substituting into Equation 2.57 �g�N� ) �,<HZ (2 �M� 1) ) 
 (2 �M� 1)

2 � � (1 �1� )
(2.104)

which states the relationship between the average, or mean, the standard deviation, and the root mean square of the
increments of the returns for a time series representing Brownian motion with fixed increments. Furthermore, metrics
for these values can be determined using the methodology outlined in Chapter 3, Section 3.1.

2.6 Analysis of a Fractal Time Series with Many Contributing Agents

In many market and financial instrument historical time series, there are many contributing agents. For example,
an industrial market time series may be the aggregate of the production of many participating companies. From
Equation 2.60: �g�,��+<HZ 2 ) � �R� "�+<HZ ) � (2.105)
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where �g�,� is the average of the normalized increments of the time series and is related to the long term exponential
growth of the market, > 1 *����,� ? & , where n is the number of time units, and �,<HZ is the root mean square of the
normalized increments of the time series, and is related to the “volatility,” or variance of the market. If the following
“model” of a company participating in the market is assumed:

1. Each company acts independently, and will receive cash flow from the market.

2. Some of this cash flow will be diverted into new product manufacturing, development, etc., which in turn will
go back into the market, which in turn will create cash flow, and so on—but there is a random element in this
process.

3. Analysis of various markets, (see Appendix C,) yields that they are probably a fractal, (fractional Brownian
variety,) with a fairly accurate distribution of the normalized increments that appears to be Gaussian in nature, a
range that appears to increase with the square root of time, and an exponential curvature. These are indicative
of system that can be modeled by as a gambler’s capital in an unfair coin toss game, or Brownian fractal.

Under these assumptions, it would seem reasonable that:

1. If a market that is supplied by a single company. The time series for the market could be represented, at least
statistically, as an unfair coin tossing game, (see the tscoins program,) with each time unit of manufacturing
going into the marketplace, the marketplace returning cash to the company’s P & L, which is distributed to the
company’s operations to manufacture more product, and so on. But there is an element of randomness in this
process that represents the aggregate of customer desires and market forces—this is assumed be a central limit
phenomena, ie., it can be represented as a random variable with a normal, (Gaussian,) distribution. Note, that like
the gambler, the company’s operations managers are continually wagering on the future—and each wager may,
or may not prove to be a successful. It is further assumed that the company will commit capital to enhancing its
market position, (ie., increase manufacturing capacity, develop new products, etc.,) and, as above, the decision
to do so will contain an element of risk, and will sometimes work out, and sometimes not.

2. Now consider that another company decides to participate in the marketplace—under the same scenario of as
above. If everything else is equal, we would expect the market, eventually, to be divided equally between the
two companies, or each company would have half the market. When the second company was added to the
market, the first company’s contribution to the marketplace was cut in half—and its root mean square value of its
normalized increments contribution to the marketplace was also cut in half. The second company’s contribution
to the marketplace is the remaining one half, and its contribution to the root mean square value of its normalized
increments is the same as the first company’s. (The point is that the contributions to the marketplace add linearly,
but the contribution of to the normalized increments of the marketplace add root mean square—so we would
expect the root mean square value of the normalized increments to decrease when the number of participants in
the marketplace changes from one to two—since the value of the normalized increments for each company is
proportional to the contribution to its the market.) Conceptually, think of it as a Gaussian noise generator. If
we cut the root mean square value (amplitude,) of the noise generator in one half, and add an identical noise
generator, the resulting noise output of both generators will be the square root of two, divided by two.

3. Or in general, the root mean square value of the normalized increments of a marketplace time series will be
proportional to one over the square root of the number of companies in the market.

Figure 2.4 is a schematic representation of a company’s relation to the market of the above scenario. ��>Y� ? represents
the company’s random element in the system, and is a function of a random variable with a Gaussian distribution.��>Y� ? is the market, and �i>Y� ? is the companies contribution to the market in the � ’th time interval. Note that the various
companies in the system have P&L’s that are dependent on their own random element, and the market as a whole,
which, in addition, has randomness that is dependent on the random element and fiscal strategy of all of the companies.
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Figure 2.4: Schematic representation of a company
in a market.
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..{ Other Companies

Figure 2.5: Alternative schematic representation of a
company in a market.

It should be mentioned that “models” proposed in Figures 2.4 and 2.5 are not the only possible implementations. For
example, Appendix C, Section C.26, suggests another of many alternatives.

Or, generalizing, letting �,<HZ Q &+¢ and �g�,� Q &+¢ be the root mean square and average value of the normalized increments
of the market time series for the aggregate industry, and �+<HZ £ � @ � be the root mean square of the normalized increments
for each individual company, (which in this simple analysis are assumed to be equal for all companies participating in
the marketplace,) and if it is further assumed that all of the companies are operating optimally, then, from Equation 2.71:�g�N��£ � @ � ) �,<HZ 2£ � @ � (2.106)

and summing the variances for c many companies to obtain the average and variance of the aggregate:

�,<HZ 2Q &,¢ ) d @\¤ &+¥¦ §�¨ ©�+<�Z £ � @ �c 2 *M�����,* �,<HZ £ � @ �c 2
(2.107)

or: �,<HZ 2Q &+¢ ) �c 2
�,<HZ £ � @ � ) 1c �,<HZ £ � @ � (2.108)

or the number of companies participating in the market place, c , is:c ) �g�,� Q &+¢�+<HZ 2Q &,¢ (2.109)

under the above approximations and assumptions, and where �g�,� Q &+¢ ) ���,� £ � @ �O*7�����,*8���,� £ � @ � . It should be noted
that this derivation assumes a characteristic Brownian motion time series, which is only an approximation, and assumes
a Hurst exponent of 0.5. As pointed out in [Sch91, pp. 157], this assumption must be used with care, and can lead
to incorrect conclusions—but with the simplified assumptions used, it will probably suffice for “general” analysis. A
simulation program, tsmarket, which is briefly described in appendix B can be used to investigate the validity of the
assumptions.

Note that it would be anticipated, under the above assumptions, that an individual company’s variance would be
larger than the variance of the industry as a whole by an amount � c . This means that the Shannon probability, � for
an “average” company in the industry, from Equation 2.57, would be:

� ) ¤�ªA«�¬ o�® d\¯ @ S ¬ o� * 1

2
(2.110)

which would be smaller than the Shannon probability for the aggregate industry.
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2.6.1 Optimization to maximize the P&L

Figure 2.4 presents another optimization alternative. It is generally assumed that optimizing cash flow in a corporation’s
P&L to maximize market growth is the objective—and that this in turn will maximize the P&L. However, that may
not necessarily be the case. Consider the following, where, in a manner similar to that described schematically in
Figure 2.4, the P&L is the capital on hand at time � :� Let °±>Y� ? be the amount of capital at time � , ie., the value of the P&L.� Let ²l>Y� ? be the amount of the capital wagered at time � , ie., the amount of the the capital distributed through the

company for manufacturing operations, new product development, etc., or in other words, what is “wagered” on
the future.� Let ��>T� ? be the value of the industrial market at time � .

then, letting � be the fraction of the capital, or P&L wagered in a fashion similar to Section 2.5:² ( � ) ) �i° ( �p� 1) (2.111)

where � is presumed not to be a function of time. Then:° ( � ) ) ° ( �K� 1) *7² ( � ) � ( � ) �6� ( �p� 1)� ( �p� 1)
(2.112)

and substituting: ° ( � ) ) ° ( �s� 1) *5�i° ( �p� 1)
� ( � ) �6� ( �p� 1)� ( �p� 1)

(2.113)

or: ° ( � )° ( �K� 1) ) 1 *5� � ( � ) �6� ( �s� 1)� ( �s� 1)
(2.114)

If it is assumed that the stock’s price time series can be represented as a Brownian noise fractal, then the optimum
value of f would be, from Equation 2.55: � ) 2 �G� 1 (2.115)

where P is the Shannon probability of the market time series, found by:� ) ¤�ª³«¯ @ S * 1

2
(2.116)

where, as in Equation 2.58, avg is the average, and rms is the root mean square, of the normalized increments of
the market’s time series, which can be calculated by:� ( � ) �6� ( �]� 1)� ( �]� 1)

(2.117)

for each data point in the market’s time series.
Since the market’s time series already has a value rms as the root mean square of the normalized increments, for

the optimal wagering strategy, the fraction should be divided by rms to provide a multiplier:<´±�Y��Xµ�i�YXY� � ) �i�+��¶���XY·,�sD+�,<HZ (2.118)

so that:
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° ( � )° ( �s� 1) ) 1 *5<´±�Y��Xµ�i�YXY� � � ( � ) �6� ( �s� 1)� ( �K� 1)
(2.119)

This is similar to the “wagering” strategies used in entropic financial instrument trading. What this means is that if
you have capital, (ie, a portfolio,) °�>T� ? , the fraction of °±>Y� ? that should be wagered with each iteration of the “game”,
(ie., time unit,) would be twice the Shannon probability minus unity, where the capital, (or portfolio,) is the sum total
of cash on hand, ¸�>T� ? , and the current value investment in the industrial market, ie., the inventory. Or, to maximize
the P&L growth: � ) 2 �G� 1 (2.120)

where the Shannon probability, � is calculated from Equation 2.116.
This is interesting, at least according to the simplified model used in this section, because maximizing market

segment growth and maximizing the P&L will be mutually exclusive except when the market consists of exactly one
company.

Figure 2.5 is a schematic representation of a company’s relation to the market in this scenario.

2.7 Statistical Estimation of Required Data Set Size

Consider the following formula for determination of the Shannon Probability, � , of an equity market time series,
using the average and root mean square of the normalized increments, �g�,� , and, �,<HZ , respectively, by rearranging
Equation 2.58: � ) ¤�ª³«¯ @ S * 1

2
(2.121)

which is useful in the determination of the optimal fraction of capital, � , to invest in a stock, from Equation 2.55:� ) 2 �G� 1 (2.122)

The objective is to estimate how large the data set has to be for determining � to a given accuracy, possibly using
statistical estimates of how many data points are required for a given confidence level that the error is less than a
specific value.

Suppose we have a confidence level, 0 ¹�¶�¹ 1, that a value is within, plus or minus, an error level, � . What this
means, for example if ¶ ) 0 � 9, and � ) 0 � 1, is that for 90% of the cases, the value will be within the limits of º^� , or,
5% of the time, on the average, it will be less than �»� , and 5% of the time more than *�� .

The error level for �g�,� , � ¤�ª³« ,for a given confidence level, will be:� ¤�ª³« ) = �+<�Z� � (2.123)

where � is the number of records in the data set, and = is a function involving a normal distribution. The error level
for �,<HZ , for the same given confidence level, will be:�+¯ @ S ) = �+<HZ� 2 � (2.124)

where = is identical in both cases. Also, the number of records required for a given error level would be:

� ¤�ª³« ) t >T�,<HZ¼��= ?�,¯ @ S u 2

(2.125)

and
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�p¯ @ S ) 1
2

t >Y�,<HZ2�(= ?� ¯ @ S u 2

(2.126)

where = is the same as above.
For equity market indices, a typical value for �,<HZ would be 0 � 01, and 0 � 0003 for �g�,� . This is probably typical for

many stocks, however, high gain stocks, in a “bull” market can have an �,<HZ of 0 � 04, and an �g�,� of 0 � 005.
The value of = can be determined from standard statistical tables, as shown in table 2.1, where = ) sigma level,

for a confidence level, ¶ .
Table 2.1: Confidence Level vs. 
 Level.

Confidence Level, ½ ¾ level
(%)
50 0.67
68.27 1.00
80 1.28
90 1.64
95 1.96
95.45 2.00
99 2.58
99.73 3.00

Note that for a given confidence level:

�g�,��,<HZ ) �g�N��º6= ¯ @ S® &�+<�Z¿º6= ¯ @ S®
2 & (2.127)

) ¤�ªA«¯ @ S º6= 1® &
1 º5= 1

4
® & (2.128)

Now, consider the specific example of ���,� and �,<HZ for an exponential function. In this specific case, �g�,� ) �,<HZ ,
and ¤�ªA«¯ @ S ) 1. Since = is assumed to be a function of a normally distributed random variable, the error in the ratio¤�ª³«¯ @ S as a function of the data set size, n, can be found by superposition, and adding the contributing error values as a
function of � for both �+<�Z and �g�,� root mean square, or:À

12 * t
1
4 u 2 ) 1 � 030776406 (2.129)

or: �g�N��+<�ZÂÁ �g�,��,<HZ º 1 � 03
1� � = Á �g�N��+<HZ º 1� � = (2.130)

where = is determined from the table, above. In this specific case, where ���,� ) �,<HZ :���,��+<�Z Á �g�,��,<HZ t
1 º 1� � = u (2.131)

An interpretation of what this means is that, given a data set size, � , and a confidence level of, say 90%, then 90%
of the time, our measurements of ¤�ª³«¯ @ S , would fall within an error level of º 1 � 64 1® & , ie., 5% of the time it would be
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greater than the error value, and 5% of the time, it would be lower than the error value. In general, the concern is with
the lower error value since from the equation: � ) ¤�ª³«¯ @ S * 1

2
(2.132)

(at least in this specific case where �g�N� ) �,<HZ ,) that a 90% confidence level would imply that there is a 5% chance of
the real value ¤�ª³«¯ @ S being zero is where: =� � ) 1 (2.133)

or:

1 � 64� � ) 1 (2.134)

or � ) 2 � 6896 Á 3.
What this means is that, if we repeat the experiment of finding 3 records in a row that have �,<HZ ) �g�,� , with neither

equal to zero, many times, that we would loose money in 5% of the cases, making the measured Shannon probability,� , unity, and the estimated Shannon probability, 0 � 95, eg., we should consider the Shannon probability as 0 � 95 in this
specific case—ie., it would be ill advised to invest all of the capital in such a scenario, since, sooner or later, all of the
capital would be lost, (on average, by the 20’th game.)

This implies a simple methodology. Measure �g�,� and �+<�Z , and compute the Shannon probability. Decease
that probability by a factor—ie., one minus the confidence level, divided by two—that the wager could be a loosing
proposition, based on the estimates that �g�,� could be zero, (which is a function of the confidence level, and the number
of records in the data set.) This, conceivably, could provide a quantitative estimate on the number of records required
in a data set.

Note that if ¤�ª³«¯ @ S is measured at 0 � 9, then:

1 � 64� � ) 0 � 9 (2.135)

for the same confidence level of 0 � 9, or � ) 3 � 32 (2.136)

and:
for the same confidence level 0 � 9. What the table means is that if you have a stock price time series of 67 records,

then the minimum measured Shannon probability must be at least 0 � 6—and the wagering strategy should use the
Shannon probability of 0 � 57—and the minimum number of records used to measure �g�N� and �+<HZ is 67. Additionally,
a stock time series with a Shannon probability of 0 � 53 should be measured using not less than 1076 records, and no
wager should be made, unless the measurements involve substantially more than 1076 records. In general, the Shannon
probability of almost all stock time series fall, inclusively, in this range. 67 business days is, approximately, 13 � 4
weeks, or little more than a calendar quarter. 1076 business days is slightly longer than four calendar years.

Note that [Pet91, pp. 83] referencing [Fed88, pp. 179], the claim is made that 2500 records is the minimum size
of the data set for using fractal analytical methodologies. Note that a data set of this size would have, with an ¤�ª³«¯ @ Sof 0 � 5—which is “typical” for a stock time series, a Shannon probability error level that is approximately 1%, since it
lies between 2 and 3 sigma, and ¶ would be approximately 0 � 99. This would seem to be consistent with the empirical
arguments of both Peters and Feder, although Peters implies that less could be used if the system being analyzed is
“chaotic” in nature, and one “cycle” of the system’s, apparently, “strange attractor” is less than 2500 time units. This
analysis would seem to be consistent with the observations of these authors, provided that it is a requirement that the
measured Shannon probability be used to calculate the optimum wager fraction.
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Table 2.2: Shannon Probability vs. Data Set Size.Ã[ÄrÅÆ�Ç2È É Ê Ç2Ë�Ã³ÈTÌ�Æ[Ë�Í Ê
1.0 2.7 1.00 0.95
0.9 3.3 0.95 0.90
0.8 4.2 0.90 0.86
0.7 5.5 0.85 0.81
0.6 7.5 0.80 0.76
0.5 10.8 0.75 0.71
0.4 16.8 0.70 0.67
0.3 29.9 0.65 0.62
0.2 67.2 0.60 0.57
0.1 268.9 0.55 0.52

0.05 1075.8 0.53 0.50

What this analysis would tend to suggest is that, although Feder’s and Peter’s arguments seem to be confirmed, that
there may, also, be other viable solutions for data sets, (or fragments thereof,) that are very much smaller, provided
that the measured Shannon probability of the data set, or segment, is sufficiently large—for example, a stock that has
a time series fragment that has 5 out of 6 upward movements may prove to be a viable investment opportunity at a
measured Shannon probability that is greater than 0 � 85, ( 5

6 ) a Shannon probability of 0 � 833 Á 0 � 85,) if played at a
Shannon probability as high as 0 � 8, but no higher.

For example, using a Shannon probability, � , of 0 � 51 for the tscoins and tsfraction programs, to provide an input
fractal time series for the tsstatest program, and iterating, indicates that for a standard deviation of 0 � 020000, with a
confidence level of 0 � 960784 that the error did not exceed 0 � 020000, 3 samples would be required.

Since the Shannon probability is calculated directly from the standard deviation, (ie., �+<HZ = root mean square of
the normalized increments,) the maximum error can be calculated:

0 � 5
0 � 51 ) 0 � 980392157 (2.137)

which means that a confidence level of 0 � 960784314 that the error level in the standard deviation is less than 0 � 02
because standard deviation ) �+<�Z ) 0 � 02 � 0 � 02 ) 0, which would correspond to a Shannon probability, � , of 0 � 5,
and since half the errors outside the range of 0 � 02 would be negative, (and the other half positive,) the confidence level
required would be 1 �7>³> 1 � 0 � 980392157 ? � 2 ? .

What this means is that >³> 1 � 0 � 960784314 ? D 2 ? � 100 percent of the time, the actual �+<�Z value will be sufficiently
small to make � equal to, or less than 0 � 5. This means that � must be decreased by 1 � 960784300 percent. The
reasoning is that after many iterations, the measured � would be too small by 1 � 90784300% of the time, on average,
making the measured � , over all of the iterations, 0 � 5.

This suggests a dynamic rule: do not wager unless the Shannon probability, � , is strictly greater than 0 � 51, as
measured on strictly more than 3 time units. Interestingly, the Hurst Coefficient, as measured by the tshurst program,
graph of a random walk, Brownian motion, or fractional Brownian motion fractals indicates that there is significant
near term correlations for 4 or less time units. This suggests a dynamic trading methodology for equities.

Similar reasoning would indicate that using a value of � ) 0 � 6 for the tscoins and tsfraction programs to provide
input to the tsstatest program with a confidence level of 0 � 8, and an error of 0 � 12, (ie., 10% of the time the value of� would be less than 0 � 9 � 0 � 6 ) 0 � 54, where 0 � 2 � 0 � 12 ) 0 � 08, and 0 � 54 ) 0 J 08 ' 1

2 ,) would require a minimum of 3
records. The fraction of capital wagered should be 2 � 0 � 54 � 1 ) 0 � 08.
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2.8 Non-linear extensions

As mentioned in Section 2.5, consider a time series, similar to Figure 2.1, but with a true random distribution. As in
Section 2.3.1, the Shannon probability, � , is �Î� 0 � 1. The fraction of the cumulative returns, � , that is wagered
with each iteration of the game is � , where 0 �M�H� 1, and ! is an independent random process, from Equation 2.24:! ) a * 1 b with a probability of P� 1 b with a probability of 1 - P

(2.138)

Then in general, the returns after c many iterations would be, from Equation 2.25:

� d ) � 0 � ((1 *6! 1 �+� 1) � (1 *6! 2 �+� 2) � (1 *6! 3 �+� 3) �e������gf 1 *6!2& 3 1 �,�+& 3 1 h � (1 *6!2&��,�+& ) �if 1 *6!2& ' 1 �,�+& ' 1 h �j������kf 1 *8!2d 3 1 �(�,d 3 1 h � (1 *6!2d5�+�,d ) h (2.139)

which, after performing a process similar to the operations described in Chapter 3, Section 3.1, would result in
Equation 2.3: ��&(' 1 �1��&��& ) ! & � � & (2.140)

which is the general formula for deriving the cumulative returns of the next iteration from the current iteration.
Rearranging: ��& ' 1 ) ��&�*6��&��(!2&��+�,& (2.141)

and adding a constant, � , which represents the magnitude of the second order part of the time series:� & ' 1 ) � & *5� & �(! & �(� & *6�I�Ï� 2& (2.142)

or: ��& ' 1 ) ��& (1 *6!2&��,�+&�*5���(��& ) (2.143)

which is the logistic equation, with Brownian noise, ie., Equations 2.83 and 2.141 are first order approximations to
logistic equation.

Letting 1 * ! & � � & be � where ! & and � & are the average of the independent random process and wager fraction,
respectively: ��&(' 1 ) ��& ( ��*6W¼�(��& ) (2.144)

where � ) W for compatability with the tsdlogistic program. Equation 2.144 is identical to the algorithm used in the
program tsdlogistic which implements the discreet time logistic function. The programs tscoin and tscoins also have
options to implement the logistic function. A brief description of the programs appears in Appendix B.

Note that the logistic function has been used to model market dynamics in the literature, [Mod92, pp. 55, 124,
188, 239-274]. Interestingly, the sign of the non-linear term is insignificant, provided the Shannon probability, � is
sufficiently close to 1 D 2, and � ) W is sufficiently small. The reason for this is that the independent random process,!2& , has values of º 1, and dominates the equation.

Continuing from Equation 2.144, by subtracting ��& from both sides:��&(' 1 �1��& ) ��& ( ��*6W¼�(��& ) ����& (2.145)
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and dividing both sides by ��& : ��& ' 1 �6��&��& ) ��*6W¼�(��&�� 1 (2.146)

which is the formula for the normalized increments of the discreet time logistic function. Note that the right side of the
formula is linear, ie., it is possible to derive the constants of the discreet time logistic function by using the program
tsfraction to make a time series of the normalized increments of a time series, and, possibly, using the program tslsq
with the -p option to provide the formula for the least squares linear fit. The least squares fit is of the form:�]>T� ? ) �M�5Ð�� (2.147)

where: � ) �`* 1 (2.148)

and: W ) Ð (2.149)

could be used as the arguments to the tsdlogistic program.
The presumption used in Equations 2.83 and 2.141 is that the non-linear term of the logistic equation is insignificant

when studying new growth industry markets—ie., it can be ignored when concern is the left side of the logistic equation.
This is inappropriate in the study of long term market phenomena, such as saturation, or limitation of resources.

Equity/asset market pricing may exhibit logistical non-linearities [Mod92, pp. 156].
More recently, [Art88] has proposed that industrial markets exhibit economic non-linear increasing returns phe-

nomena. Although specifically addressing market share of competing technologies, [Art88, pp. 6] offers the argument
that such scenarios will have a time series that is a random walk, ie., fixed increment Brownian motion fractal, in the
case of diminishing and constant returns. Further, it is shown, [Art88, pp. 16] that the case of increasing returns also
exhibits random walk characteristics—at least where the agent’s expectations are that that will be the case. See [Art]
for arguments concerning the nature of expectations in a multi-agent economic environment. These environments are
not ergodic, (ie., not mean reverting,) and exhibit unpredictability, and are not necessarily path efficient [Art88, pp.
7]. However, if it is assumed that an industrial market is a sum of the many random walk time series of the many
agent’s market share, and it is assumed that the sum of many random walk time series is a random walk, then the
market time series could, possibly, be analyzed by the methodology proposed in this chapter. However, in the case
of increasing returns, it is doubtful that the constants in the time series could be derived with adequate precision for
analysis of market share, but, perhaps, the market itself may be analyzed. As a case in point, in [Art95, pp. 6] argues
that individual agents operating in the equity markets exhibit behavior that is derived from inductive reasoning, but the
market itself exhibits random walk characteristics. Quoting from [Art95, Abstract]:

Actions taken by economic decision makers are typically predicated upon hypotheses or predictions about
future states of a world that is itself in part the consequence of these hypotheses or predictions. When
we attempt to model how such predictions might be generated we become stymied: the predictions some
economic agents might form depend on the predictions they believe others might form; and the predictions
these might form depend upon the predictions they believe the original group might form. Predictions or
expectations can then become self-referential and deductively indeterminate. This indeterminacy pervades
economics and game theory.

The three papers, [Art95], [Art], and [Art88] present compelling arguments for a new economic paradigm. In
practical multi-agent economic scenarios, some models of the economy will seem to be correct, for a while, only to be
discarded later. In [Art95] the argument is presented that some models will be stable, ie., if it is believed that a model
works, the economy will operate according to that model. In [Art88] it is shown that the random walk hypothesis is
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one such model—at least in the case of competing technologies. It is not clear whether all multi-agent systems exhibit
random walk characteristics, but it would seem reasonable to assume so, and [Art95, [pp. 9] presents simulation results
that tend to confirm the assumption. If that is the case, then the random walk analytical methodology presented in this
chapter could be applicable.

2.9 Generalization

To reiterate the general concepts presented so far, a fractal is a cumulative sum of a random process. In the literature, it
is sometimes called a Brownian motion, or “random walk,” process since, at any time, the next element in the process
time series is a random increment added to the current element in the time series. From [Fed88, pp. 164]:

We emphasize that in Brownian motion it is not the position of the particle at one time that is independent
of the position of the particle at another; it is the displacement of that particle in one time interval that is
independent of the displacement of the particle during another time interval.

This is a subtile concept. Note that the term “cumulative sum” really means that in any time interval, the position of
the particle is dependent only on the position of the particle in the previous time interval, and a random displacement.
But the position in the previous time interval was dependent only on the position in the time interval prior to that, and
another displacement, and so on, ie., to make a fractal process, we need only know where the particle is at the current
time, and add a displacement to it, for each interval in time. The subtilty is that we need only know where the particle
is, and not where it has been to calculate where it will be.

This section will use this concept, and expand the concept of the random process to include game-theoretic issues
by introducing iterated two player mixed strategy games, then a simple self-referencing game where no formal strategy
can exist, and finally multi-player games, where the random process is generated by the inconsistency of the self-
referential, inductive reasoning among the players. In all cases, the iterated time series of such games will be argued
to be fractal, in nature.

2.9.1 The Game of Mora

A simple coin tossing game was analyzed in Section 2.2. In this section, those concepts will be expanded to include
games of strategy. The game of Mora, following [Bro73, pp. 434], is very old, (being mentioned in Sanskrit,) and is
played between two players and, in its simplest version, goes as follows. The two players move simultaneously. Each
shows either one or two fingers, and at the same time guesses whether the other player is showing one or two fingers.
If both players guess right, or both guess wrong, no money changes hands. However, if only one player guesses right,
the player wins from the other as many coins as the two players together showed fingers. The possible outcomes of
any game are as follows if your call is right, and your opponent’s wrong:

1. Guessing your opponent will show 1 finger and showing 1 finger you will win 2 coins.

2. Guessing your opponent will show 2 fingers and showing 1 finger you will win 3 coins.

3. Guessing your opponent will show 1 finger and showing 2 fingers you will win 3 coins.

4. Guessing your opponent will show 2 fingers and showing 2 fingers you will win 4 coins.

The game is fair, but a player who knows the right strategy will, with average luck, win against one who does not.
The right strategy is to ignore courses 1) and 4), and to play courses 2) and 3) in the ratio of 7 to 5, ie., the right strategy
is, in any 12 iterations of the game, to play course 2) on the average 7 times, and course 3) on the average 5 times.
Obviously, your opponent must not know which course you are going to play, so the two courses must be intermixed
randomly.
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The game is zero-sum, meaning that what one player wins, the other looses. The mathematical method by which
the best strategy was found is called game theory. However, it is not hard to verify that the strategy is effective by
calculating what happens when your opponent counters by using course 1), 2), 3), or 4), above. Namely, if your
opponent chooses course:

1. Course 1), will, on the average, win 7 times out of 12, and will win only 2 coins for each win; whereas losses
will occur 5 times out of 12, and those losses will be 3 coins for each loss—making an average loss of 1 coin in
12 iterations of the game.

2. Course 2), will have no coins change hands, since either both players are right, or both are wrong.

3. Course 3), will have no coins change hands, since either both players are right, or both are wrong.

4. Course 4), will, on the average, win 5 times out of 12, and will win 4 coins for each win; whereas losses will be
occur 7 times out of 12, and those losses will be 3 coins for each loss—making an average loss of 1 coin in 12
iterations of the game.

As in Section 2.2, the objective of each player is to maximize the number of coins won over many iterations of the
game, ie., to maximize the cumulative returns of the game. Note that each player’s capital, will fluctuate, depending
on the outcome of a particular iteration-and that fluctuation will be random, and either 0, 2, 3, or 4 coins. We would
expect that the time series representing the fluctuations in a player’s capital to be a random walk, which could be
represented by a formula similar to Equation 2.1.

It is often convenient to represent the game as a table, which lists all the possibilities of the courses for both players,
and how much the each player would win or loose for each course, ie., a payoff matrix, where one player’s alternatives
are represented by the columns in Table refMORA:POM, and the other player’s alternatives are represented by the
rows. The payoff to a particular game solution is the intersection of the row and column of the course played by the
two players.

Table 2.3: The Game of Mora, Payoff Matrix.
Finger, Guess 1,1 1,2 2,1 2,2

1,1 0 2 -3 0
1,2 -2 0 0 3
2,1 3 0 0 -4
2,2 0 -3 4 0

The optimal strategy for a game as simple as Mora can be derived by game-theoretic methodology5 [LR57, pp.
56], [Hil90, pp. 441], [DSS58, pp. 419], [Saa59, pp. 209], [Sin68, pp. 127], [Str88, pp. 435], [NT93, pp. 258], [Kar91,
pp. 67], [Kap82, pp. 105], but in many games of interest, the rules are too complicated, and may even change over
time6. In these scenarios, the strategy can be derived empirically, over time, using adaptive control computational
methodologies. For example, if the strategy of Mora was not known, the optimal ratio of courses could be determined
by varying the ratio, and observing the effect on the cumulative reserves over many iterations of the game. Note that
such a methodology can be problematical since your opponent may be doing the same thing. An example of such a
scenario is presented in the next section.

5These methodologies are often called operations research. The algorithm of choice used to derive the optimal game play seems to be the
simplex algorithm—at least for games with a small payoff matrix. The simplex algorithm is one of a class of algorithms that are implemented using
linear algebra.

6In the game of Mora, the optimal strategy does not depend on the strategy of the opposing player. In more sophisticated games, this is not true.
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2.9.2 Prisoner’s Dilemma

A simple mixed strategy zero-sum game was analyzed in the previous section. In the game of Mora, the optimal
strategy does not depend on how your opponent plays the game over time. The prisoner’s dilemma game is qualitatively
different. It is also one of the most commonly studied scenarios in game theory7 [LR57, pp. 94], [Pou92], [Wal92, pp.
262], [Cas94, pp. 262], [Cas89a, pp. 295], [Cas89b, pp. 199] [Cas90, pp. 297], [Str88, pp. 439], and [Kap82, pp.
155] [Dav91, pp. 170].

The rules of the game are simple. There are two players, and each player has only two choices for each iteration of
the “game,” and those choices are to chose either “A” or “B.” If both players pick “A,” then each wins 3 coins. If one
picks “A,” and the other “B,” then the player picking “B” wins 6 coins, and the other player gets nothing. However, if
both players pick “B,” then both win 1 coin.

The payoff matrix for the prisoner’s dilemma game is shown in Table 2.4, where, as before, one player’s alternatives
are represented by the columns, the other player’s alternatives are represented by the rows. The payoff to a particular
game solution is the intersection of the row and column of the course played by the two players.

Table 2.4: The Prisoner’s Dilemma Game, Payoff Matrix.
Choice A B

A 3,3 6,0
B 6,0 1,1

The prisoner’s dilemma is not a zero-sum game—neither player can ever loose any money. So there is an incentive
to always play. The choice “A” is known as a “cooperation strategy,” and the choice “B” is known as the “defection
strategy” for each player. It is a very subtile and devious game. Here is why, and the logic you would go through. Just
before you played an iteration of the game, you would think:

1. If you choose “A,” there are two possible scenarios:

(a) If your opponent chooses “A,” you would get 3 coins, and your opponent would get 3 coins.

(b) If your opponent chooses “B,” you would get 1 coin, and your opponent would get 6 coins.

2. If you choose “B,” there are also two possible scenarios:

(a) If your opponent chooses “A,” you would get 6 coins, and your opponent would get nothing.

(b) If your opponent chooses “B,” you would get one coin, and your opponent would get one coin.

Note that by choosing “A,” the best you could do is to win 3 coins, and the worst is to win nothing. But, by choosing
“B,” the best you could make is 6 coins, and the worst is one coin. It would appear, at least initially, that “B,” is the
best choice, irregardless of what you opponent does.

But now the logic of the game gets subtile. Your opponent will determine the same strategy, and will never play
“A.” So you both make one coin with every iteration of the the game. But you could make 3 coins—if you cooperated,
by both playing “A.” But if you do that, there is an incentive for either player to play “B,” if he knows the other player
is going to play “A,” and thus make 6 coins. And we are right back where we started. Indeed, a very diabolical game.

It is an important concept that you will be basing your decision whether to cooperate, ie., choose “A,” or defect, ie.,
choose “B,” based on how you think your opponent is going to play. But your opponent’s decision will be based on

7The prisoner’s dilemma has generated much interest since it is a game that is simple to understand, and has all of the intrigue and strategy of
many human social dilemmas—for example, John Von Neumann, the inventor of game theory, once said that the reason we do not find intelligent
beings in the universe is that they probably existed, but did not solve the prisoner’s dilemma problem and destroyed their self. The prisoner’s
dilemma has been used to model such scenarios as the nuclear arms race, battle of the sexes, etc.
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consideration of how you are going to play. Which, in turn, will be based on how you think your opponent will play, ad
infinitum. It is circular logic, or more correctly, the game strategy is self-referential [Hof89, pp. 17, pp. 465] [Cas90,
pp. 361, pp. 379], [Cas89b, pp. 335], [Cas89a, pp. 356], [Hod83, pp. 84, pp. 103, pp. 215], [Pen89, pp. 101]8.

This presents a problem in defining an optimal strategy for playing the game of the iterated prisoner’s dilemma
since no “theory of operation” of a self-referential system can ever be proposed that will be both consistent and
complete, ie., whatever theory is proposed, it will not cover all circumstances, or provide inconsistent results in other
circumstances [Hof89, pp. 465, pp. 471], [Art95]. The best way to play the game is deductively indeterminate. This
indeterminacy pervades economics and game theory [Art95, Abstract].

However, just because such problems do not have axiomatized, provably robust solutions does not mean that good
strategies do not exist. For example, the tit-for-tat strategy [Pou92, pp. 239] has been shown to be a very effective.
The objective is to avoid letting the game degenerate into both players playing defection strategies. It is very simple,
and consists of cooperating, ie., playing “A,” on the first iteration of the game, and then do whatever the other player
did on the previous iteration9. Note that it is a “nice” strategy, (in the jargon of game theory, a “nice” strategy is one
that never defects first.) It is also a “provocable” strategy—it defects in response to a defection by the opponent. It
is also a “forgiving” strategy—the opponent can implicitly “learn” that there is an incentive for cooperating after a
defection10. An important concept of the tit-for-tat strategy is that, unlike the game of Mora, the strategy does not have
to be kept secret. When one is faced by an opponent that is playing tit-for-tat, one can do no better than to cooperate.
This makes tit-for-tat a stable strategy.

Unfortunately, tit-for-tat does not do so well when the opponent occasionally defects, and then returns to a generally
cooperative strategy. Neither does it do well when the other player is playing a random strategy. As in the case of the
game of Mora, the strategy can be derived empirically, over time, using adaptive control computational methodologies.
The subject of inductive reasoning as an adaptive control methodology is considered in Section 2.9.3.

As in Section 2.2, the objective of each player is to maximize the number of coins won over many iterations of the
game, ie., to maximize the cumulative returns of the game. Note that each player’s capital, will fluctuate, depending
on the outcome of a particular iteration-and that fluctuation will be random, and either 0, 1, 3, or 6 coins. We would
expect that the time series representing the fluctuations in a player’s capital to be a random walk, which could be
represented by a formula similar to Equation 2.111. Computer simulations of the co-evolving strategies of iterated
multi-player prisoner dilemma scenarios where the individual players “learn” how to cooperate further support the
hypothesis [Dav91, pp. 170].

2.9.3 Multi-Player Games

A simple coin tossing game was analyzed in Section 2.2. In Section 2.9.1, those concepts were expanded to include
zero-sum games of mixed strategy, using the game of Mora as an example. It was shown in these types of games, the
optimal strategy does not depend on how your opponent plays the game over time. In Section 2.9.2, a nonzero-sum
game, the prisoner’s dilemma, was analyzed and it was shown that the strategy for the game is deductively indeterminate
since the game’s logic is self-referential. The reason for this was that one player’s strategy depended on how the other

8The Penrose citation, referencing Russell’s paradox, is a very good example of logical contradiction in a self-referential system. Consider a
library of books. The librarian notes that some books in the library contain their titles, and some do not, and wants to add two index books to the
library, labeled “A” and “B,” respectively; the “A” book will contain the list of all of the titles of books in the library that contain their titles; and the
“B” book will contain the list of all of the titles of the books in the library that do not contain their titles. Now, clearly, all book titles will go into
either the “A” book, or the “B” book, respectively, depending on whether it contains its title, or not. Now, consider in which book, the “A” book or
the “B” book, the title of the “B” book is going to be placed—no matter in which book the title is placed, it will be contradictory with the rules.
And, if you leave it out, the two books will be incomplete.)

9The tit-for-tat strategy sounds like a human social strategy between two people—as well it should. It is known to work well with human
subjects [Pou92, pp. 239]. It is also strict military dogma, and has formed the strategy of arbitration of the complexity of power in many marriages.

10Tit-for-tat is kind of a “do unto others as you would have them do unto you—or else,” strategy. The tit-for-tat strategy in human relationships
is very old. Another ancient proverb illustrating tit-for-tat is “an eye for an eye, a tooth for a tooth.”

11Assuming that one player, or the other, will, at least occasionally, alter strategy in an attempt to gain an advantage—in this case, for example,
two players, each playing tit-for-tat will “lock” in to either a defection strategy, or cooperation strategy. This is considered a degenerate case of
Equation 2.1.
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player plays the game over time. In both cases, the cumulative sum of winnings of a player was shown to have
characteristics of a random walk, Brownian motion fractal. In this section, these concepts will be expanded to include
multi-player games, where the players use inductive reasoning to determine a set of perceptions, expectations, and
beliefs concerning the best way to play the game. These types of scenarios are typical of industrial manufacturing and
equity markets.

Inductive Reasoning

Paraphrasing12 [Art95], actions taken by economic decision makers are typically a predicated on hypotheses or
predictions about future states of the world that is itself, in part, the consequence of these hypotheses or predictions.
Predictions or expectations can then become self-referential and deductively indeterminate. In such situations, agents
predict not deductively, but inductively. They form subjective expectations or hypotheses about what determines
the world they face. These expectations are formulated, used, tested, modified in a world that forms from others’
subjective expectations. This results in individual expectations trying to prove themselves against others’ expectations.
The result is an ecology of co-evolving expectations that can often only be analyzed by computational means. This
co-evolution of expectations explains phenomena seen in real equity markets that appear as anomalies to standard
finance theory [Art95], [Art].

This concept views such “games” in psychological terms: as a collection of beliefs, anticipations, expectations,
cognitions, and interpretations; with decision-making and strategizing and action-taking predicated upon beliefs and
expectations. Of course this view and the standard economic views are related—activities follow from beliefs and
expectations, which are mediated by the physical economy [Art95].

This is a very useful concept because it essentially states that economic agents make their choices based upon
their current beliefs or hypothesis about future prices, interest rates, or a competitors’ future move in a market. These
choices, when aggregated, in turn shape the prices, interest rates, market strategies, etc., that the agents face. These
beliefs or hypotheses of the agents are largely individual, subjective, and private. They are constantly tested and
modified in a world that forms from their’s and others’ actions [Art95].

In the aggregate, the economy will consist of a vast collection of these beliefs or hypotheses, constantly being
formulated, acted upon, changed and discarded; all interacting and competing and evolving and co-evolving. Beyond
the simplest problems in economics, this ecological view of the economy becomes inevitable [Art95].

The “standard way” to handle predictive beliefs in economics is to assume identical agents who possess perfect
rationality and arrive at shared, logical conclusions about the economic environment. When these these expectations
are validated as predictions, then they are in equilibrium, and are called rational expectations. Rational expectations
often are not robust since many agents can arrive at different conclusions from the same data, causing some to deviate
in their expectations, causing others to predict something different and then deviate too [Art95].

[Art95] cites the “El Farol Bar” problem as an example. Assume one hundred people must decide independently
each week whether go to the bar. The rule is that if a person predicts that more than, say, 60 will attend, it will be
too crowded, and the person will stay home; if less than 60 is predicted, the person will go to the bar. As trivial as
this seems, it destroys the possibility of long-run shared, rational expectations. If all believe few will go, then all will
go, thus invalidating the expectations. And, if all believe many will go, then none will go, likewise invalidating those
expectations. Like the iterated prisoner’s dilemma, predictions of how many will attend depend on others’ predictions,
and others’ predictions of others’ predictions. Once again, there is no rational means to arrive at deduced a-priori
predictions. The important concept is that expectation formation is a self-referential process in systems involving many
agents with incomplete information about the future behavior of the other agents. The problem of logically forming
expectations then becomes ill-defined, and rational deduction, can not be consistent or complete. This indeterminacy
of expectation-formation is by no means an anomaly within the real economy. On the contrary, it pervades all of
economics and game theory [Art95].

It is an important concept that this view of industrial and financial markets address such notions as market
“psychology,” “moods,” and “jitters.” Markets do turn out to be reasonably efficient, as predicted by standard financial

12Actually, plagiarize would be a more appropriate choice of wording. This entire section is a condensed version of the text from [Art95] and [Art].
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theory, but the statistics show that trading volume and price volatility in real markets are a great deal higher than the
standard theories predict. Statistical tests also show that technical trading can produce consistent, if modest, long-run
profits. And the crash of 1987 showed dramatically that sudden price changes do not always reflect rational adjustments
to news in the market [Art95].

In this market model, inductive reasoning prevails as the “engine” of the market since no deductive hypothesis is
possible because of the Gödelian issues of self-referential arbitrage.

It should be pointed out that inductive reasoning in such scenarios is not an exact process, and usually relies, to some
extent, on correlation between events in the economy. In self-referential processes, single simplex statistical evaluations
are not possible, and this can lead to misinterpretation of the significance of the statistics of the events [Cas90, pp.
50]13.

A multi-player, self-referential model of an equities market

Suppose that throughout a trading day, agents line up to buy or sell a stock. When a particular agents’ turn comes, the
agent has the option to try to increase or decrease the price of the stock from the transaction price of the previous agent,
(by lowering the price to sell stock the agent owns, or raising the price to buy stock from another agent.) The agent will
have to make this decision based on beliefs concerning the beliefs of the agents in the rest of the market. This decision
process will vary as different agents post their transaction through the day, based on their personal set of beliefs,
cognitions, and hypothesis concerning the market. We would expect that the time series representing the fluctuations
in a stock’s price to be a random walk, which could be represented by a formula similar to Equation 2.1 [Art95, pp. 8].
Empirical analysis of many stocks tend to support the hypothesis that stock prices can be “modeled” as a random walk,
or fractional Brownian motion fractal. Additionally, computer models of stock market asset pricing under inductive
reasoning with many agents has been initiated and further support the hypothesis [Art95, pp. 8].

Stability Issues

In section 2.8 and 2.9.2 the issues of process stability were mentioned. Note that not all processes are stable. For
example, consider a stock market scenario that historically had cyclic or periodic increases and decreases in price.
The value at the bottom of the cycle would increase, (because the agents in the market could exploit a “buy low, sell
high” strategy that would be predictable,) and the price advantage would be arbitrated away, and the cyclic phenomena
would disappear. Cyclic phenomena would then be considered as an unstable process—similar to the El Farol Bar
problem mentioned above. However, note that if the agents in the market believed that their financial position could be
improved by altering their investment strategy, by buying or selling of stocks, then, as outlined in the previous section,
the stock price would fluctuate similar to a random walk, and this would be stable since it is a self reinforcing situation.

Extensibility Speculations

Interestingly, the arguments presented in this section are possibly extensible into other areas. For example, the Stanford
economist Kenneth Arrow has shown that the ranking of priorities in a group is intransitive[LKS91, pp. 1] [LR57, pp.
327] [Hof93, pp. 213]. What this means is that there exists no way to use deductive rationality to rank priorities in a
society. If it is assumed that it is necessary to do so, then inductive reasoning would have to be used. If it is further
assumed that such a situation is self-referential, which seems reasonable by arguments similar to those presented in
this section, then the same issues outlined in this section could be applicable to social welfare issues, etc. This would
tend to imply that political issues were fractal in nature, and the political process justified—which is contrary to the
thinking of many. The arguments presented in [Art95], and [Art] may well be extensible into other fields of interest.
Other speculations could involve theoretical interests in the dynamics of democratic process, legal process14, and

13Additionally, there are issues concerning causality. Cause and effect may not be discernable from each other.
14Could the legal system be optimized? Or is that an oxymoron?
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organizational process15. There are probably other applications16.
As another interesting aside, the arguments presented in this section side-stepped the issue of utility theory.

Conclusion

In this section, it was shown that markets would be expected to exhibit self-referential processes, which can not be
analyzed by deductive rationality. However, when players rely on inductive reasoning to formulate strategies to execute
their market agenda, the result is that the market will exhibit fractal dynamics. Previously, in this chapter, it was shown
that the fractal dynamics can be exploited and optimized. Interestingly, in some sense, there appears to be a convergence
of game-theoretic, information-theoretic, non-linear dynamical systems theory, and fractal/chaos-theoretic concepts.
Further, there also appears to be a convergence of these concepts with the cognitive sciences.

2.10 Conclusion

In this chapter, a very simple, first order, model of an industrial market has been proposed. The reader should be
aware that a paradigm is involved. This chapter proposes that industrial markets can be adequately modeled as a
fixed increment Brownian, perhaps time sampled, fractal. In general, markets exhibit fractional Brownian fractal
characteristics. A method of optimization of market operations is proposed that uses fixed increment Brownian fractal
methodologies to analyze industrial markets. The analysis of various markets in Appendix C would tend to offer
supporting evidence that the paradigm is practical. However, the application of Equation 2.55, � ) 2 �l� 1 to
fractional Brownian fractal time series remains an open formal issue. The model is extended with non-linear terms,
and shown to be a logistic function, which is compatible with other literature.

The first order model is then extended into iterated game-theoretic scenarios, as a mixed strategy zero-sum game,
and then as a nonzero-sum game, that is self-referential. In both cases, the capital of a player in the game is argued to
show random walk, or Brownian motion fluctuations.

Finally, the model is extended into a multi-player market scenario, where the agents use inductive reasoning to
cope with the self-referential characteristics of the marketplace. An argument is presented that the time series of the
market will have fluctuations that are similar to a random walk, or Brownian motion fractal.

2.11 Summary

If we consider capital, � , invested in a savings account, and calculate the growth of the capital over time:� " ) � "�3 1 (1 *6� " ) (2.150)

where � " is the interest rate at time � , (usually a constant17.) In equities, � " is not constant, and varies—perhaps being

15For example, [Sen90, pp. 81] has a diagram of the sales department process in an organization. It has the same schema as Figures 2.4 and 2.5.
If it could be shown that organizational complexity is an NP problem [SvW88, pp. 313], [GJ79, pp. 13], then there there could be some reasonable
formalization of the observations presented in [Bro82] and [Ula91].

16Others feel a bit more epistemological about the issue—see [Ruc93, pp. 178], the chapter entitled “Life is a Fractal in Hilbert Space.”
17For example, if Ñ�� 0 ; 06, or 6%, then at the end of the first time interval the capital would have increased to 1 ; 06 times its initial value. At the

end of the second time interval it would be (1 ; 06)2, and so on. What Equation 2.150 states is that the way to get the value, Ò in the next time interval
is to multiply the current value by 1 ; 06. Equation 2.150 is nothing more than a “prescription,” or a process to make an exponential, or “compound
interest” mechanism. In general, exponentials can always be constructed by multiplying the current value of the exponential by a constant, to get
the next value, which in turn, would be multiplied by the same constant to get the next value, and so on. Equation 2.150 is nothing more than a
construction of Ò ( Ó ) �HÔrÕ[Ö where ×O� ln (1 /ØÑ ). The advantage of representing exponentials by the “prescription” defined in Equation 2.150 is
analytical expediency. For example, if you have data that is an exponential, the parameters, or constants, in Equation 2.150 can be determined by
simply reversing the “prescription,” ie., subtracting the previous value, (at time Ó�0 1,) from the current value, and dividing by the previous value
would give the exponentiating constant, (1 /�Ñ Ö ). This process of reversing the “prescription” is termed calculating the “normalized increments.”
(Increments are simply the difference between two values in the exponential, and normalized increments are this difference divided by the value of
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negative at certain times, (meaning that the value of the equity decreased.) This fluctuation in an equity’s value can be
represented by modifying � " in Equation 2.150: � " ) � " ! " (2.151)

where the product � " �(! " is the fluctuation in the equity’s value at time � .
An equity’s value, over time, is similar to a simple tossed coin game [Sch91, pp. 128], where � " is the fraction of a

gambler’s capital wagered on a toss of the coin, at time � , and ! " is a random variable18, signifying whether the game
was a win, or a loss, ie., whether the gambler’s capital increased or decreased, and by how much. The amount the
gambler’s capital increased or decreased is � " �(! " . In general, ! " is a function of a random variable, with an average,
over time, of �g�N��| , and a root mean square value, �,<HZ | , of unity. Note that for simple, time invariant, compound
interest, ! " has an average and root mean square, both being unity, and � " is simply the interest rate, which is assumed
to be constant. For a simple, single coin game, ! " is a fixed increment, (ie., either * 1 or � 1,) random generator.
From an analytical perspective, it would be advantageous to measure the the statistical characteristics of the generator.
Substituting Equation 2.151 into Equation 2.15019:� " ) � "�3 1 (1 *5� " ! " ) (2.152)

and subtracting � "�3 1 from both sides: � " �5� "�3 1 ) � "43 1 (1 *5� " ! " ) �5� "�3 1 (2.153)

and dividing both sides by � "43 1: � " �6� "43 1� "43 1
) � "�3 1 (1 *7� " ! " ) �6� "43 1� "43 1

(2.154)

and combining: � " �8� "43 1� "43 1
) (1 *9� " ! " ) � 1 ) � " ! " (2.155)

We now have a “prescription,” or process, for calculating the characteristics of the random process that determines
an equity’s value. That process is, for each unit of time, subtract the value of the of the equity at the previous time
from the value of the equity at the current time, and divide this by the value of the equity at the previous time. The

the exponential.) Naturally, since one usually has many data points over a time interval, the values can be averaged for better precision—there is a
large mathematical infrastructure dedicated to precision enhancement, for example, least squares approximation to the normalized increments, and
statistical estimation.

18“Random variable” means that the process, . Ö , is random in nature, ie., there is no possibility of determining what the next value will be.
However, . Ö can be analyzed using statistical methods [Fed88, pp. 163], [Sch91, pp. 128]. For example, . Ö typically has a Gaussian distribution
for equity values [Cro95, pp. 249], in which case the it is termed a “fractional Brownian motion,” or simply a “fractal” process. In the case of
a single tossed coin, it is termed “fixed increment fractal,” “Brownian,” or “random walk” process. In any case, determination of the statistical
characteristics of . Ö are the essence of analysis. Fortunately, there is a large mathematical infrastructure dedicated to the subject. For example, . Ö
could be verified as having a Gaussian distribution using Chi—Square techniques. Frequently, it is convenient, from an analytical standpoint, to
“model” . Ö using a mathematically simpler process [Sch91, pp. 128]. For example, multiple iterations of tossing a coin can be used to approximate
a Gaussian distribution, since the distribution of many tosses of a coin is binomial—which if the number of tosses is sufficient will represent a
Gaussian distribution to within any required precision [Sch91, pp. 144], [Fed88, pp. 154].

19Equation 2.152 is interesting in many other respects. For example, adding a single term, ÙFÚ Ò ÖRÛ 1 , to the equation results in Ò Ö �Ò ÖYÛ 1 f 1 /�Ü Ö . Ö /ÂÙ8Ú4Ò ÖYÛ 1 h which is the “logistic,” or ‘S’ curve equation, (formally termed the “discreet time quadratic equation,”) and has
been used successfully in many unrelated fields such as manufacturing operations, market and economic forecasting, and analyzing disease
epidemics [Mod92, pp. 131]. There is continuing research into the application of an additional “non-linear” term in Equation 2.152 to model
equity value non-linearities. Although there have been modest successes, to date, the successes have not proved to be exploitable in a systematic
fashion [Pet91, pp. 133]. The reason for the interest is that the logistic equation can exhibit a wide variety of behaviors, among them, “chaotic.”
Interestingly, chaotic behavior is mechanistic, but not “long term” predictable into the future. A good example of such a system is the weather. It is
an important concept that compound interest, the logistic function, and fractals are all closely related.
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root mean square20 of these values are the root mean square of the random process. The average of these values are
the average of the random process, �g�N��| . The root mean square of these values can be calculated by any convenient
means, and will be represented by �,<HZ . The average of these values can be found by any convenient means, and will
be represented by �g�N� 21. Therefore, if � " ) � , and does not vary over time:�+<�Z ) � (2.156)

which, if there are sufficiently many samples, is a metric of the equity value’s “volatility,” and:�g�,� ) ���(! " (2.157)

and if there are sufficiently many samples, the average of ! " is simply �g�,� | , or:�g�,� ) ���(�g�,�g| (2.158)

which is a metric on the equity value’s rate of “growth.” Note that this is the “effective” compound interest rate from
Equation 2.150.

Equations B.128 and B.130 are important equations, since they can be used in portfolio management. For example,
Equation B.128 states that the volatility of the capital invested in many equities, simultaneously, is calculated as the
root mean square of the individual volatility of the equities. Equation B.130 states that the growths in the same equity
values add together linearly22.

Dividing Equation 2.158 by Equation 2.156 results in the two � ’s canceling, or:���,��+<�Z ) �g�,� | (2.159)

20In this section, “root mean square” is used to mean the variance of the normalized increments. In Brownian motion fractals, this is computed byÝ ÖYÞ ÓßÑÏà 2 � Ý 2
1 / Ý 2

2 /IÚ[Ú4Ú However, in many fractals, the variances are not calculated by adding the squares, (ie., a power of 2,) of the values—the
power may be “fractional,” ie., 3 á 2 instead of 2, for example [Sch91, pp. 130], [Fed88, pp. 178]. However, as a first order approximation, the
variances of the normalized increments of equity values can successfully be added root mean square [Cro95, kpp. 250]. The so called “Hurst”
coefficient, which can be measured, determines the process to be used. The Hurst coefficient is range of the equity values over a time interval,
divided by the standard deviation of the values over the interval, and its determination is commonly called “ âKá�ã ” analysis. As pointed out in [Sch91,
pp. 157] the errors committed in such simplified assumptions can be significant—however, for analysis of equities, squaring the variances seems to
be a reasonable simplification.

21For example, many calculators have averaging and root mean square functionality, as do many spreadsheet programs—additionally, there are
computer source codes available for both. See the programs tsrms and tsavg. The method used is not consequential.

22There are significant implications do to the fact that equity volatilities are calculated root mean square. For example, if capital is invested in �
many equities, concurrently, then the volatility of the capital will be 1ä å Ú³æAÙ^ç of an individual equity’s volatility, æ³Ù�ç , provided all the equites

have similar statistical characteristics. But the growth in the capital will be unaffected, ie., it would be statistically similar to investing all the capital
in only one equity. What this means is that capital, or portfolio, volatility can be minimized without effecting portfolio growth—ie., volatility risk
can addressed. Further, it does not make any difference, as far as portfolio value growth is concerned, whether the individual equities are invested
in concurrently, or serially, ie., if one invested in 10 different equities for 100 days, concurrently, or one could invest in only one equity, for 10
days, and then the next equity for the next 10 days, and so on. The capital growth would have the same characteristics for both agendas. (Note
that the concurrent agenda is superior since the volatility of the capital will be the root mean square of the individual equity volatilities divided by
the square root of the number of equities. In the serial agenda, the volatility of the capital will be simply the root mean square of the individual
equity volatilities.) Almost all equity wagering strategies will consist of optimizing variations on combinations of serial and concurrent agendas.
There are further applications. For example, Equation B.127 could be modified by dividing both the normalized increments, and the square of the
normalized increments by the daily trading volume. The quotient of the normalized increments divided by the trading volume is the instantaneous
growth, ÑÏèVé�ê , of the equity, on a per-share basis. Likewise, the square root of the square of the normalized increments divided by the daily trading
volume is the instantaneous root mean square, æ³Ù�ç ê , of the equity on a per-share basis, ie., its instantaneous volatility of the equity. (Note that
these instantaneous values are the statistical characteristics of the equity on a per-share bases, similar to a coin toss, and not on time.) Additionally,
it can be shown that the range—the maximum minus the minimum—of an equity’s value over a time interval will increase with the square root of
of the size of the interval of time [Fed88, pp. 178]. Also, it can be shown that the number of expected stock value “high and low” transitions scales
with the square root of time, meaning that the probability of an equity value “high or low” exceeding a given time interval is proportional to the
square root of the time interval [Sch91, pp. 153].
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There may be analytical advantages to “model” ���,�g| as a simple tossed coin game, (either played with a single
coin, or multiple coins, ie., many coins played at one time, or a single coin played many times23.) The number of wins
minus the number of losses, in many iterations of a single coin tossing game would be:�M� (1 �1� ) ) 2 �M� 1 (2.160)

where P is the probability of a win for the tossed coin. (This probability is traditionally termed, the “Shannon
probability” of a win.) Note that from the definition of ! " above, that � ) �g�N� | . For a fair coin, (ie., one that comes
up with a win 50% of the time,) � ) 0 � 5, and there is no advantage, in the long run, to playing the game. However, if��ë 0 � 5, then the optimal fraction of capital wagered on each iteration of the single coin tossing game, � , would be
2 �`� 1. Note that if multiple coins were used for each iteration of the game, we would expect that the volatility of the
gambler’s capital to increase as the square root of the number of coins used, and the growth to increase linearly with
the number of coins used, irregardless of whether many coins were tossed at once, or one coin was tossed many times,
(ie., our random generator, ! " would assume a binomial distribution—and if the number of coins was very large, then! " would assume, essentially, a Gaussian distribution.) Many equities have a Gaussian distribution for the random
process, ! " . It may be advantageous to determine the Shannon probability to analyze equity investment strategies.
From Equation 2.159: ���,��+<�Z ) �g�,� | ) 2 ��� 1 (2.161)

or: �g�,��,<HZ * 1 ) 2 � (2.162)

and: � ) ¤�ª³«¯ @ S * 1

2
(2.163)

where only the average and root mean square of the normalized increments need to be measured,using the “prescription”
or process outlined above.

Interestingly, what Equation 2.161 states is that the “best” equity investment is not, necessarily, the equity that
has the largest average growth, �g�,� | . The best equity investment is the equity that has the largest growth, while
simultaneously having the smallest volatility. In point of fact, the optimal decision criteria is to choose the equity that
has the largest ratio of growth to volatility, where the volatility is measured by computing the root mean square of the
normalized increments, and the growth is computed by averaging the normalized increments.

We now have a “first order prescription” that enables us to analyze fluctuations in equity values, although we have
not explained why equity values fluctuate. For a formal presentation on the subject, see the bibliography in [Art95]
which, also, offers non-mathematical insight into the explanation.

23Here the “model” is to consider two black boxes, one with a stock “ticker” in it, and the other with a casino game of a tossed coin in it. One
could then either invest in the equity, or, alternatively, invest in the tossed coin game by buying many casino chips, which constitutes the starting
capital for the tossed coin game. Later, either the equity is sold, or the chips “cashed in.” If the statistics of the equity value over time is similar
to the statistics of the coin game’s capital, over time, then there is no way to determine which box has the equity, or the tossed coin game. The
advantage of this model is that gambling games, such as the tossed coin, have a large analytical infrastructure, which, if the two black boxes are
statistically the same, can be used in the analysis of equities. The concept is that if the value of the equity, over time, is statistically similar to the
coin game’s capital, over time, then the analysis of the coin game can be used on equity values. Note that in the case of the equity, the terms inÜ Ö Ú�. Ö can not be separated. In this case, Ü���æAÙ^ç is the fraction of the equity’s value, at any time, that is “at risk,” of being lost, ie., this is the
portion of a equity’s value that is to be “risk managed.” This is usually addressed through probabilistic methods, as outlined below in the discussion
of Shannon probabilities, where an optimal wagering strategy is determined. In the case of the tossed coin game, the optimal wagering strategy is to
bet a fraction of the capital that is equal to ÜO�æ³Ù�çk� 2 ì{0 1 [Sch91, pp. 128, 151], where ì is the Shannon probability. In the case of the equity,
since Ü���æAÙ�ç is not subject to manipulation, the strategy is to select equities that closely approximate this optimization, and the equity’s value,
over time, on the average, would increase in a similar fashion to the coin game. The growth of either investment would be equal to ÑÏèVé»�HæAÙ^ç 2,
on average, for each iteration of the coin game, or time unit of equity investment. This is an interesting concept from risk management since it
maximizes the gain in the capital, while, simultaneously, minimizing risk exposure to the capital.
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Consider a very simple equity market, with only two people holding equities. Equity value “arbitration” (ie., how
equity values are determined,) is handled by one person posting (to a bulletin board,) a willingness to sell a given
number of stocks at a given price, to the other person. There is no other communication between the two people. If the
other person buys the stock, then that is the value of the stock at that time. Obviously, the other person will not buy the
stock if the price posted is too high—even if ownership of the stock is desired. For example, the other person could
simply decide to wait in hopes that a favorable price will be offered in the future. So the stock seller must not post a
price that the other person would consider too high, and the other person would not buy at the price if it is reasoned
that the seller’s pricing strategy will be to lower the offering price in the future, which would be a reasonable deduction
if the posted price is considered too high. What this means is that the seller must consider not only the behavior of the
other person, but what the other person thinks the seller’s behavior will be, ie., the seller must base the pricing strategy
on the seller’s pricing strategy. Such convoluted logical processes are termed “self referential,” and the implication
is that the market can never operate in a consistent fashion that can be the subject of deductive analysis [Pen89, pp.
101]24. As pointed out by [Art95, Abstract], these types of indeterminacies pervade economics.

What the two players do, in absence of a deductively consistent and complete theory of the market, is to rely
on inductive reasoning. They form subjective expectations or hypotheses about how the market operates. These
expectations and hypothesis are constantly formulated and changed, in a world that forms from others’ subjective
expectations. What this means is that equity values will fluctuate as the expectations and hypothesis concerning the
future of equity values change25. The fluctuations created by these indeterminacies in the equity market are represented
by the term � " ! " in Equation 2.152, and since there are many such indeterminacies, we would anticipate ! " to have a
Gaussian distribution.

This is a rather interesting conclusion, since analyzing the actions of aggregately many “agents,” each operating on
subjective hypothesis in a market that is deductively indeterminate, can result in a system that can not only be analyzed,
but optimized.

The only remaining derivation is to show that the optimal wagering strategy is, as cited above:� ) �,<HZ ) 2 �M� 1 (2.164)

where � is the fraction of a gambler’s capital wagered on each toss of a coin that has a Shannon probability, � , of
winning.

Following [Rez94, pp. 450], consider that the gambler has a private wire into the future who places wagers on the
outcomes of a game of chance. We assume that the side information which he receives has a probability, � , of being
true, and of 1 �8� , of being false. Let the original capital of gambler be ��> 0 ? , and ��>T� ? his capital after the � ’th
wager. Since the gambler is not certain that the side information is entirely reliable, he places only a fraction, � , of
his capital on each wager. Thus, subsequent to � many wagers, assuming the independence of successive tips from the
future, his capital is: � ( � ) ) (1 *9� ) í (1 �8� ) î,� (0) (2.165)

where ï is the number of times he won, and � ) �I�6ï , the number of times he lost. These numbers are, in general,
values taken by two random variables, denoted by ² and ð . According to the law of large numbers:

24Penrose, referencing Russell’s paradox, presents a very good example of logical contradiction in a self-referential system. Consider a library
of books. The librarian notes that some books in the library contain their titles, and some do not, and wants to add two index books to the library,
labeled “A” and “B,” respectively; the “A” book will contain the list of all of the titles of books in the library that contain their titles; and the “B”
book will contain the list of all of the titles of the books in the library that do not contain their titles. Now, clearly, all book titles will go into either
the “A” book, or the “B” book, respectively, depending on whether it contains its title, or not. Now, consider in which book, the “A” book or the “B”
book, the title of the “B” book is going to be placed—no matter which book the title is placed, it will be contradictory with the rules. And, if you
leave it out, the two books will be incomplete.)

25Interestingly, the system described is a stable system, ie., if the players have a hypothesis that changing equity positions may be of benefit, then
the equity values will fluctuate—a self fulfilling prophecy. Not all such systems are stable, however. Suppose that one or both players suddenly
discover that equity values can be “timed,” ie., there are certain times when equities can be purchased, and chances are that the equity values will
increase in the very near future. This means that at certain times, the equites would have more value, which would soon be arbitrated away. Such a
scenario would not be stable.
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lim&,ñ�ò 1� ² ) � (2.166)

and:

lim&,ñ�ò 1� ð )Mó�) 1 �1� (2.167)

The problem with which the gambler is faced is the determination of � leading to the maximum of the average
exponential rate of growth of his capital. That is, he wishes to maximize the value of:� ) lim&,ñ�ò 1� ln

� ( � )� (0)
(2.168)

with respect to � , assuming a fixed original capital and specified � :� ) lim&,ñ�ò ² � ln (1 *5� ) * ð � ln (1 �6� ) (2.169)

or: � ) � ln (1 *7� ) * ó ln (1 �8� ) (2.170)

which, by taking the derivative with respect to � , and equating to zero, can be shown to have a maxima when:� �� � ) � (1 *5� ) m 3 1 (1 �5� )1 3 m � (1 �1� ) (1 �6� )1 3 m 3 1 (1 *5� ) m ) 0 (2.171)

combining terms: � (1 *7� ) m 3 1 (1 �6� )1 3 m�� (1 �6� ) (1 �6� ) m (1 *7� ) m ) 0 (2.172)

and splitting: � (1 *5� ) m 3 1 (1 �5� )1 3 m ) (1 �6� ) (1 �6� ) m (1 *7� ) m (2.173)

then taking the logarithm of both sides:

ln ( � ) * ( �G� 1) ln (1 *5� ) * (1 �1� ) ln (1 �6� ) ) ln (1 �1� ) �6� ln (1 �6� ) *6� ln (1 *7� ) (2.174)

and combining terms:

( �G� 1) ln (1 *5� ) �1� ln (1 *5� ) * (1 �6� ) ln (1 �8� ) *5� ln (1 �6� ) ) ln (1 �6� ) � ln ( � ) (2.175)

or:

ln (1 �5� ) � ln (1 *7� ) ) ln (1 �1� ) � ln ( � ) (2.176)

and performing the logarithmic operations:

ln

t
1 �6�
1 *5� u ) ln

t
1 �1�� u (2.177)

and exponentiating:

Id: chap2.tex,v 0.0 1995/11/20 04:38:13 john Exp 40



2.11. SUMMARY

1 �6�
1 *5� ) 1 �6�� (2.178)

which reduces to: � (1 �5� ) ) (1 �6� ) (1 *5� ) (2.179)

and expanding: �M�6�{� ) 1 �1�{���1�M*5� (2.180)

or: � ) 1 �1�M*5� (2.181)

and, finally: � ) 2 �G� 1 (2.182)
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Chapter 3

A Metric Methodology

This chapter outlines the methodology used in the construction of the data presented in appendix C. The reader is
assumed to have remedial knowledge of computing concepts, statistics, and manipulation of time series data sets.

3.1 General Concepts

Consider a time series, of interest because it appears to have exponentially increasing rate of revenue returns,presumably
as a result of a process similar to that discussed in Section 2.3.1 in Chapter 2, and, further, appears to have characteristics
of a random process as discussed in Chapter 2 in Section A.4. Then, from Equation 2.3:

��&(' 1 �1��&� & ) !2&�� �,& (3.1)

where n orq 1 3 n onpo can be calculated from the time series by the following algorithm:

sequentially, for each value in the time series:

subtract the last value in the time series from the this, the current, value in the time series

divide this difference by the last value in the time series

print the quotient

This will make a new time series, similar to the series shown schematically in Figure 2.1, and defined by
Equations 2.24 and 2.25. This new time series is the time series of the increments. It is important to note that this
process “decomposes” the fractal time series into the time series of the underlying mechanisms that created the time
series. The program tsfraction, described briefly in appendix B, can perform this function. It is important to note
that the new time series contains the fraction of the rate of revenue returns, won or lost in each iteration of the game,nsorq 1 3 npon o . � &(' 1 �{� & is the amount won or lost, depending on whether � & ' 1 is larger, or smaller than � & , respectively,
and dividing this value by � & calculates the fraction of the rate of revenue returns won or lost in the iteration. An initial
assumption of this section is that the “wins” and “losses” are the result of a random process. Averaging all values, ofnsorq 1 3 nponso will give the average fraction of the rate of revenue returns won for all iterations in the time series. This can
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be calculated by finding the mean, perhaps using the program tsnormal, or by a least squares fit of the new time series,
perhaps using the program tslsq, both of which are described in appendix B. Additionally, since, from Equation 2.27:� d� 0

) (1 *5� ) m d (1 �6� )(1 3 m ) d (3.2)

for c many records in the time series, and, on the average, from Equation 2.34,� ( � ) )ôw (1 *7� ) m (1 �6� )1 3 m x " (3.3)

where �Ø>T� ? can be used to find the constants in the general form of Equation 2.11:� ( � ) ) � � " (3.4)

which was an initial assumption in this section. The program tslogreturns, or perhaps tslsq using the exponential
fit argument, -p, can be also be used to find the average exponential fit to the cumulative returns represented by the
original time series.

Additionally, it is important to note that since the new time series, derived above in this section, contains the
fraction of rate of revenue returns won or lost in each iteration of the game, that the absolute value of this time series
is the time series of the fraction of the rate of revenue returns wagered in each iteration of the game1, assuming the
original time series has characteristics of fractional Brownian motion, or could be “modeled” by Brownian motion
with fixed increments. The absolute value, for each increment could be calculated by simply removing the all negative
signs, and then averaging with, perhaps, the programs tsnormal or tslsq. Alternately, the root mean square value of the
time series may be calculated, perhaps using the program tsrms, which is described in appendix B. The average value
or root mean square value is the parameter � in Equations 3.1 and 3.3, assuming that � is constant.

Note, also, that if the total number of records, c is sufficiently large, then the probability of a “win” in any iteration,� , can be determined by counting the number of positive values in the new time series of the increments, and dividing
this number by the total number of records, c , in the time series.

All of these values, nporq 1 3 nsonpo , � , and � , are related by Equation 2.66:

� ) ln

t � orq 1� o(1 3 | ) u
ln y (1 'K| )

(1 3 | ) z (3.5)

which can be used as a subjective evaluation of how accurate the “model” is. Additionally, the program tsnormal can
be used to plot a histogram of the increments for evaluation of the distribution of the increments, consistent with the
presentation in Chapter 2, Section 2.2.

As an additional metric for the Shannon probability, � , from Equation 2.57:�g�,� ) �,<HZ [ �M� (1 �6� )] ) �+<HZ (2 �M� 1) (3.6)

where �g�N� and �,<HZ can be measured, or: �g�,��,<HZ ) 2 �M� 1 (3.7)

or: � ) ¤�ª³«¯ @ S * 1

2
(3.8)

1The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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3.2 Procedure

The following procedure is executed in the ..x/markets directory from a “Makefile” using the Unix utility make(1).
The programs tsfraction, tslsq, tsnormal, tsrms, tshurst, tshcalc, tsunfairbrownian, tsshannonmax, tsshannon, and
tslogreturns are described briefly in appendix B, and in addition have online manual pages which can be viewed by the
Unix utility man(1). In depth descriptions of the programs is available in the program sources.

Note that many of the parametric values in the analysis of the fractal time series data set are derived by different
methodologies. This is for comparative consistency verification. See Section 3.4.

1. Run the program tsfraction on the fractal time series data set to produce a time series of the increments.

2. Run the program tslsq, with the -p option, on the time series of the increments to produce the least squares fit
formula for the average of the increments in the time series of the increments.

3. Run the program tsnormal, with the -p option, on the time series of the increments to produce the mean and
standard deviation for the average of the increments in the time series of the increments.

4. Run the program tsrms on the time series of the increments to produce a time series of the root mean square of
the time series of the increments.

5. Run the program tsrms, with the -p option, on the time series of the increments to produce the root mean square
of the time series of the increments.

6. Using the Unix utility sed(1), remove any negative signs from the time series of the increments to produce a time
series of the absolute value of the time series of the increments.

7. Run the program tslsq, with the -p option, on the time series of the absolute value of the increments to produce
the least squares fit formula for the absolute value of the increments.

8. Run the program tsnormal, with the -p option, on the time series of the absolute value of the increments to produce
the mean and standard deviation for the average of the time series of the absolute value of the increments.

9. Run the program tsnormal, with the options -t -s 30, on the time series of the increments to produce a time series
graph of the bell curve of the distribution of the increments in the time series of the increments.

10. Run the program tsnormal, with the options -t -s 30 -f, on the time series of the increments to produce a time
series graph of the distribution of the increments in the time series of the increments.

11. Run the program tsXsquared on the distribution of the increments to produce a 	 2 confidence level that the
distribution of the increments does have a Gaussian distribution.

12. Run the program tsstatest on the distribution of the increments to produce an estimation of the size of the required
data set for reasonable accuracy.

13. Run the program tsderivative on the time series of the increments to produce the first derivative of the time series
of the increments. Additionally, run the program tsnormal, with the options -t -s 30, and -t -s 30 -f to produce a
time series graph of the distribution of the first derivative of the increments.

14. Run the program tsderivative on the time series of the increments to produce the second derivative of the time
series of the increments. Additionally, run the program tsnormal, with the options -t -s 30, and -t -s 30 -f to
produce a time series graph of the distribution of the second derivative of the increments.

15. Run the program tshurst on the time series to produce a graph of the Hurst coefficient of the time series.
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16. Run the program tslsq, with the -p option, on the graph of the Hurst coefficient of the time series to produce the
least squares fit formula for the Hurst coefficient of the time series.

17. Run the program tshcalc on the time series to produce a graph of the H parameter of the time series of the
increments.

18. Run the program tslsq, with the -p option, on the graph of the H parameter of the time series of the increments
to produce the least squares fit formula for the H parameter of the time series of the increments.

19. Run the program tsunfairbrownian, with the -f option and the root mean square value of the time series of the
increments, on the fractal time series data set to produce a simulation of the fractal time series data set.

20. Run the program tsfraction on the simulation of the fractal time series data set to produce a time series of the
increments of the simulation of the fractal time series data set.

21. Run the program tsnormal, with the -p option, on the simulation of the time series of the increments to produce
the mean and standard deviation for the average of the increments in the simulation of the time series of the
increments.

22. Run the program tsnormal, with the options -t -s 30, on the simulation of the time series of the increments to
produce a time series graph of the bell curve of the distribution of the increments in the simulation of the time
series of the increments.

23. Run the program tsnormal, with the options -t -s 30 -f, on the simulation of the time series of the increments
to produce a time series graph of the distribution of the increments in the simulation of the time series of the
increments.

24. Run the program tsshannonmax on the fractal time series data set to produce a graph of the maximum Shannon
probability for the fractal time series data set.

25. Run the program tsshannonmax, with the -p option, on the fractal time series data set to produce the value of the
maximum Shannon probability for the fractal time series data set.

26. Run the program tslogreturns, with the -p option, on the fractal time series data set to produce the value of the
logarithmic returns of the fractal time series data set.

27. Run the program tsshannon with the value of the logarithmic returns of the fractal time series data set to produce
the value of the Shannon probability for the fractal time series data set.

28. Run the program tslsq, with the -e -p options, on the fractal time series data set to produce the value of the
coefficient of the exponential returns for the fractal time series data set.

29. Run the program tsshannon with the value of the coefficient of the exponential returns of the fractal time series
data set to produce the value of the Shannon probability for the fractal time series data set.

30. Use the Unix utility egrep(1) with the argument “-e -” on the time series of the increments to “filter” records
containing a negative sign. Pipe this time series to the Unix utility wc(1) to produce a count of the records in the
time series of the increments with negative signs.

31. Use the Unix utility wc(1) on the time series of the increments to produce a count of the records in the time
series of the increments.

32. Use the Unix utility awk(1) divide the count of the records in the time series of the increments with negative
signs, by the count of the records in the time series of the increments, and subtracting from unity, to produce the
value of the maximum Shannon probability for the time series of the increments.
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In addition, the Unix utility awk(1) is used to parse and reformat data from this procedure into LATEX macros for
direct import into this manuscript. Appendix C is machine generated.

3.3 Description of the Usage of the Programs in the Procedure

The time series of the increments was made using the program tsfraction, which essentially implements the formula
of Equation 3.1, for the fractal time series data set.

The root mean square of the time series of the increments is calculated using the program tsrms. The program,
also, is used to produce a running graph of the root mean square process.

The average, ie., mean, and standard deviation of the increments of the time series of the increments is calculated
using the program tsnormal.

The root mean square, mean, and standard deviation of the time series of the increments are the metric values
of Equation 3.6. The Shannon probability was calculated by three different methods. One, using the program
shannonmax, which produces the maximum Shannon probability from the original fractal time series data set; another,
by counting the number of records with negative signs in the time series of the increments; and last, by using the
program tsshannon, which calculates the Shannon probability from the logarithmic returns of the fractal time series
data set.

The normalized histogram and bell curve of the time series graphs, in each analysis, was made by first using the
program tsfraction to find the increments of the time series. Then the program tsnormal was run on the increment time
series, with 30 intervals, ie., -s 30 argument, to provide the data for the bell curve. The program tsnormal was executed
again, with -f -s 30 arguments, to provide the histogram. See [Cro95, pp. 250] for the rationale. If the bell curve and
the histogram are approximately the same, then Gaussian increment property, “property 2” as described in [Cro95, pp.
245], is validated, and the time series probably represents a fractional Brownian motion. Additionally, the program is
used with the options -t -s 30, and -t -s 30 -f to produce a time series graph of the distribution of the first and second
derivative of the increments—these are useful for comparison of the distributions with the standard “white noise” for
a “qualitative” verification of the cumulative sum process in empirical data.

The Hurst coefficient graph, in each analysis, was made by running the program tshurst on the time series.
See [Fed88, pp. 153], [Cas94, pp. 253], [PJS92, pp. 493], [Ç93, pp. 172], [Pet91, pp. 62], or, [Sch91, pp. 129], for
the rationale. The program tslsq was used on this Hurst coefficient data, with the -p argument, to calculate the least
squares approximation to the Hurst coefficient.

The H parameter graph, in each analysis, was made by running the program tshcalc on the time series. See [Cro95,
pp. 249] for the rationale. The program tslsq was used on the H parameter data, with the -p argument, to calculate the
least squares approximation to the H parameter data.

For the optimum fiscal strategy, the program tslogreturns was run on the fractal time series data set with the -p
option to print the formulas for the logarithmic returns. As an alternative, the program tslsq was used with the -e and
-p options to print the formulas for a least squares exponential fit to the fractal time series data set. This renders a
slightly more accurate set of formulas, but was not used in the analysis to be consistent with [Pet91, pp. 81]

For the calculation of the Shannon probability, the program tsshannon was run with the formulas derived from
the tslogreturns program, above. The formulas were parsed with a Bourne shell script, using the Unix stream editor,
sed(1), and presented to the program tsshannon via the command line.

For the simulations, the program tsunfairbrownian was used. This program performs the inverse function of
tsfraction. Given a Shannon probability, or alternatively, the fraction of the cumulative sum to be “wagered” on each
element in the time series of the increments of the fractal time series data set, a simulated fractal time series data set
can be produced that has the “wager” altered to the metric values calculated above. This simulation can be analyzed
using the procedure outlined herein, and the characteristics of the simulation compared against the original.

In this way, the data analysis and reduction were largely automated for each of the individual markets studied. It
should be reiterated that the data analysis methodology presented here is remedial by contemporary standards for such
issues. A more formal approach has been suggested by [Cro95, pp. 259] using Fourier analysis do derive the spectral
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exponent of a time series. The program tsdft, described briefly in appendix B, can perform this function. The Hurst
coefficient is related to the spectral exponent, by the relation:õ ) 2 ö÷* 1 (3.9)

where
õ

is the Fourier spectral exponent, and ö is the Hurst coefficient, [Sch91, pp. 130], [Cro95, pp. 262], [Ç93, pp.
207]. This methodology is difficult to implement without manual intervention, but produces superior accuracies.

Additionally, the Hurst coefficient is related to the Shannon probability of a time series as derived in Chapter 2. A
Shannon probability of 0.5 should give a far term Hurst coefficient of 0.5. Other values of Shannon probability and
Hurst coefficient are related, however, there are known accuracy issues with the methodology of deriving the Hurst
coefficient. See [Fed88, pp. 156], [BdL95, pp. 27].

Additionally, there are methods of fractal analysis that address concepts of fractal dimension. The fractal dimension
of a time series is related to the Hurst coefficient by the following relationship, [Fed88, pp. 196], [PJS92, pp. 495]:ø ) 2 �1ö (3.10)

where
ø

is the fractal dimension, and ö is the Hurst coefficient.

3.4 Verification Methodology

As a cursory verification methodology:

1. Using the mean and root mean square values of the normalized increments of the time series data, and the Shannon
probability as calculated by counting the total number of records that the market movement was positive, in
relation to the total number of records in the data set, verify the accuracy of the equality in Equation 3.8.

2. Compare the Shannon probability, as found by the tsshannonmax program to the value of the Shannon probability
as calculated by counting the total number of records that the market movement was positive, in relation to the
total number of records in the data set

3. Compare the four methods of calculating the logarithmic returns:� By calculation based on the mean of the normalized increments.� By the calculation of the constant in the least squares approximation to the normalized increments.� By the calculation of the exponential least squares fit to the original time series data set, with the program
tslsq.� By the calculation of the logarithmic returns, with the program tslogreturns.

4. Using the mean, standard deviation, and the root mean square of the normalized increments, and the Shannon
probability as calculated by counting the total number of records that the market movement was positive, in
relation to the total number of records in the data set, verify the accuracy of the equality of Equation 2.104.

5. Compare the accuracy of the equality of the absolute value and root mean square of the normalized increments2.

Note that the numerical manipulations are relatively simple, and can be implemented with simple awk(1) scripts.

2The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Chapter 4

Conclusions and Observations

This chapter presents various qualitative conclusions, as analyzed in appendix C and appendix D, concerning the
Fractal Analysis of Various Market Segments in the North American Electronics Industry. It should not be concluded
that these industries are representative of industries in general, and is offered in academic perspective, and under no
circumstances would it be appropriate to consider it financial advice.

4.1 Comparison of Derived Relationships with Industrial Observations

There are some interesting relationships that were presented, and, although they may be coincidental, taken in the larger
context that many of the relationships are very close to what industry analysts have used as “rules of thumb,” or “bench
marks” derived through years of experience, it would seem that using fractal analysis on industry or market place
historical data sets may possibly provide an additional analytical “tool” for optimizing industrial pro forma issues. As
a partial selection of the relationships:� Research,development, and infrastructural investments seem reasonable at about 12 to 20 percent of the rate of

revenue returns for the market segments analyzed. This seems consistent with the industry.� Venture success rates at 60 months seems reasonable at about 1 in 11, which is commensurate with the industry.� Project success rates, of 8 month duration, are about 1 in 3, which is consistent with numbers from the Application
Specific Integrated Circuit business, which could be considered as “representative.”� The “80/20 rule” that 80% of an organization’s revenue comes from only a few, 3 was shown to be typical,
products is really, probably, 84.13%, or one standard deviation—which is consistent through the industry.� The “80/20 rule” that 80% of an organization’s products should be “industry standard,” and the remainder
“proprietary” is probably, one standard deviation, or 84.13%.� Although prediction of product life cycle in the operations sections proved to be “pessimistic,” it was, none the
less, depending on the reader’s point of view, reasonable, and was fairly consistent with industry averages.� The inventory control dynamics presented in the operations section, seem to be consistent with the markets
analyzed.� The failure rate of Fortune 500 Companies seems consistent with predicted failure rate of organizations in the
markets analyzed, although the rate of failure was shown to be “optimistic,” when related to re-investment
strategy.
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4.2. ASIDES AND SPECULATIONS

� The calculated number of companies participating in the markets analyzed is reasonably close to the industry
numbers, and there is inferential evidence that they are operating optimally—at least in the entropic sense as
defined in Chapter 2—which seems consistent with the economic theory that the companies that operate the most
optimally or efficiently will, eventually, dominate the market. (The calculated number of companies participating
in the various markets varied between 6 and 28, with an average of 10, and with Shannon probabilities for
the individual company’s market time series varying between 0.54 and 0.6, with an average of 0.57, which,
interestingly, is close, within approximately 5%, to the Shannon probability for the various company’s stock
price time series.)� The variance in the aggregate market time series is smaller than the the variance of the time series for any
company participating in the market, which is consistent with the industries analyzed.� It would seem that there is some supporting evidence that optimizing a company’s fiscal strategy to achieve
maximum market growth and optimizing a company’s fiscal strategy to optimize capital growth may be mutually
exclusive, which has, traditionally, been the case in the industries analyzed. Additionally, it would seem that, at
least in the markets analyzed, the fiscal strategies deployed would tend to be optimizing market growth, which
seems consistent with author’s experience in these industries.

4.2 Asides and Speculations

Several issues that were not addressed are the relationship between a company’s valuation, perhaps calculated by the
value of its stock, and company’s rate of revenue returns. If their is a causality, it would seem that there would be,
in general, a reason offered as to why the Dow Jones Average is rising exponentially. Additionally, it would seem
that there would be a correlation that could be confirmed in employment figures, economic indicators, flow of money,
etc. These speculations are offered as a suggestion for further investigation into the applicability of fractal analysis to
industrial markets—as a possible means of induction.

There is some possibility that fractal analysis can be used in conjuction with other contemporary methodologies of
operations research. For example, possibly, failure analysis could be used to optimize the expected life of a company
vs. the growth rate of a company as alluded to in the optimally maximal fiscal strategy sections of appendix C.
Additionally, perhaps, fractal analysis could be used in forecasting market dynamics in conjunction with mathematical
methods and linear programming optimization of corporate operations, specifically inventory control.

There are remaining issues that, although addressed, were not addressed to the author’s satisfaction. Specifically,
there was no reason offered as to why the companies analyzed were not operating closer to the maximum Shannon
probabilities, as presented in the simulation and maximization sections of appendix C. Additionally, it would seem
that visibility into the future, regarding rate of revenue returns, was only a few months, at best. This would seem
to be in disagreement with the prevailing concept that “strategic planning” should be “long term.” An interesting
interpretation of this may be that these industries require a more dynamic management methodology, perhaps using
“rolling” budgets, etc. But this would seem to be inconsistent with methodologies where objectives are monitored on
an annual basis. It would seem that, looking at the graphs of the normalized increments in all sections presented in
appendix C, that profit and loss issues are very dynamic, and, probably, require detailed attention at no more than a
monthly rate—these graphs show that a lot of dynamic changes can occur in a year, or even a quarter.

4.3 Conclusion

Overall, taken in context, it would seem, depending on the reader’s point of view, that fractal analysis could provide
additional insight into market and industrial operations—perhaps offering appropriate optimizations in specific circum-
stances. Granted, this is a controversial usage of the methodology, and there are interpretations that were made, which
may or may not be considered appropriate—the text states that, in all cases where such interpretations were made, that

Id: chap4.tex,v 0.0 1995/11/20 04:38:13 john Exp 49



4.3. CONCLUSION

it was an “interesting interpretation,” in an attempt not to mislead the reader. The application of fractal analysis to the
optimization of industrial operations should be considered as “novel,” and, although there may be academic value, it
would be inappropriate to accept any conclusions presented in this manuscript as “factual” at this time.

Id: appa.tex,v 0.0 1995/11/20 04:38:13 john Exp 50



Appendix A

Tutorial on Fractal Time Series

This appendix presents a remedial tutorial on the optimization of betting strategies in speculative markets. It is offered
in academic perspective, and under no circumstances would it be appropriate to consider it financial advice. It can serve,
however, as an introduction to the contemporary economic theory of speculative markets. Rigorous and sophisticated
approaches that address the issues of investing in speculative markets are contained in the bibliography.

This section begins with the analysis of a very simple speculative game, that of tossing coins. The analysis will
then be expanded by permitting the use of unfair coins in the game, roughly following [Sch91, pp. 128]. An optimal
betting strategy will be developed for the game, and this strategy will then be generalized and extended to include
remedial betting strategies in certain speculative markets.

A.1 The Coin Tossing Game

Consider a coin tossing game, where a player makes a wager, and then, flips a coin. If the coin comes up heads, then
the player wins twice the original wager, (ie., makes back the original wager plus an amount equal to the original wager
from the “bank.”) But if the coin comes up tails, then the player looses the wager to the bank. The game is iterated,
many times, until the player decides not to play any more, or goes “bust.”

A.1.1 Strategic Considerations in the Iterated Coin Tossing Game

The player has an initial cash reserve, to which are added the cumulative returns, and from which each wager is made,
and the cumulative returns will increase by the amount of the wager each time the player wins, and, likewise the
cumulative returns will decrease by the amount of the wager each time the player looses. The objective of the player
is, obviously, to maximize the magnitude of the cumulative returns, over time. Note that this is a speculative game, in
that the player speculates on the likelihood that the coin will come up heads on next iteration of the game, and adjusts
the wager accordingly, betting zero if the outcome of the next coin toss is anticipated to be tails.

Description of “Time Series” and “Fractal”

Time Series: If the player makes a list, recording the time, and magnitude of cumulative returns, for each iteration of
the game, such a table is called the time series of the cumulative returns [Sch91, pp. 223], [Ç93, pp. 199].

Fractal: If the player plots a graph of the time series, time on the X—axis and magnitude of cumulative returns on
the Y—axis, this graph will exhibit fractal1 characteristics, which means that it represents a system that has the

1Technically, the term, as used here, should be Random Fractal, or Fractional Brownian Motion, [Fed88, pp. 170].
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A.2. OPTIMAL BETTING STRATEGY IN THE ITERATED COIN TOSSING GAME

characteristics of a cumulative sum, (ie., integrative process,) of random events, coin tosses in this case [Cro95,
pp. 229], [Fed88, pp. 163].

It is an important concept that the magnitude of the cumulative returns, at any time during the iterated game, is the
cumulative sum of all of the wins and losses of wagers made in the previous iterations of the game, starting with the
initial cash reserves, ie., it is an integrative process. If the player does not have “a priory” knowledge of the outcome
of the future coin tosses, then optimizing this integrative process is the strategic objective of playing a rational game.

For example, it would be foolish for the player to always wager zero, since, although there would never be a
loss, there would never be a win, either. Likewise, it would be foolish for the player to wager a large percentage
of the cumulative returns, since a few losses in succession would deplete the cash reserves and cumulative returns
to zero, and the player would “go bust,” thus ending the game. Obviously, the player could wager too much, or too
little of the cumulative returns on a single game iteration. The series optimum wagers, is termed the optimal betting
strategy, [Sch91, pp. 128], [Rez94, pp. 450], [Pie80, pp. 270].

A.2 Optimal Betting Strategy in the Iterated Coin Tossing Game

If the coin is a fair coin, ie., it has a 50% chance of coming up heads and a 50% chance of coming up tails, then
the player should elect not to play. The rationale for this statement is that, in the long run, some iterated games will
be won, and some lost, with the amount of money won equal to the amount of money lost—so there is no financial
incentive to play the game. However, suppose that there is a 60% chance for the coin to come up heads, on any single
iteration of the game, and a 40% chance of coming up tails. It turns out that the fractal characteristics of the game can
be exploited to determine the optimal betting strategy2. The optimal betting strategy, in this case, is for the player to
wager 20% of the cumulative returns, every iteration of the game. As it turns out, this will maximize the growth of the
player’s cumulative returns [Sch91, pp. 128], [Rez94, pp. 450], [Pie80, pp. 270]. The way that this was computed
was from the formula: ! ) 2 �G� 1 (A.1)

where ! is the fraction of the player’s cumulative returns that should be wagered on an iteration of a game with a �
chance of winning the game [Sch91, pp. 151], [Rez94, pp. 450], [Pie80, pp. 270]. In the above case, with a 60%, (ie.,� ) 0 � 6,) chance of winning: ! ) (2 � 0 � 6) � 1 (A.2)

! ) 1 � 2 � 1 (A.3)

! ) 0 � 2 (A.4)

or ! is 20% of the player’s cumulative returns3. Playing this betting strategy, the player can expect an average of 2%
increase in the magnitude of cumulative returns on each toss of the coin4.

2Fortunately, there is a large analytical infrastructure in mathematics and economics available that addresses these issues. The answers are
provided by Information Theory, and the applications of these entropic principles are a firmly entrenched discipline in the field of economics [Sch91,
pp. 127], [Rez94, pp. 450], [Pie80, pp. 270].

3This will maximize the logarithmic growth of the player’s cumulative returns, and is the highest value that can be attained, as given by Shannon’s
information capacity, ù»úûìkük� 1 0ÂýØúûìkü of a binary symmetric channel with an error probability of ì . Here, ý{úþì]ü is the entropy function,ýØúûìkü¿�702ÿ ì ln ì/�ú 1 0ì]ü ln ú 1 0�ìkü [Sch91, pp. 128, 151], [SW49, pp. 38], [Rez94, pp. 114, pp. 450], [Pie80, pp. 270], [KF88, pp.
155], [Ash65, pp. 9].

4This value is computed by taking the logarithm to the base 2, ý{úþì]ük� 0 ; 97 bits per game, and 2 ��� 1 ; 02, or 2% each game [Sch91, pp.
128], [SW49, pp. 36], [Ash65, pp. 30], [Rez94, pp. 450], [Pie80, pp. 270].
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For those wishing to experiment with optimal betting strategies, the unfair coin can be simulated with a six sided
die. After the wager, the die is rolled, and if the die comes up 1, 2, 3, or 4 the player wins. But if it comes up 5 or
6, the player loses. The probability of winning, � , in this case is 0.66 since the player will win 4 times out of 6, on
average. The optimal wager will be ! ) > 2 � 0 � 66 ? � 1 ) 0 � 33, or 33% of the cumulative returns should be wagered
on each iteration of the game. It is interesting to play many iterations of the game, particularly using different betting
strategies—for example change the wager fraction to 20%, or 40% of the cumulative returns—and see how the long
term cumulative returns change in response to the different betting strategies.

The program, tsunfaircoin, which is briefly described in Appendix B, uses a random number generator to simulate
the unfair coin in an iterated coin tossing game. The program’s command line options control the wager fraction, ! ,
and the Shannon probability, � , and the number of iterations of the game. The cumulative returns for each iteration
of the game are printed to the terminal, and may be plotted, to show that there is indeed an optimum value of wager
fraction, ! , for any value of Shannon probability, � , provided � is greater than 1

2 .

A.3 Important Intuitive Concepts of Speculative Games

The unfair coin tossing game is probably one of the simplest speculative games. It is important to develop an intuitive
concept based on the fundamentals of this simple game. Speculative games have the following characteristics:� Speculative games are iterated. A wager is made from the player’s cumulative returns for the game, and

depending on the outcome of the iteration of the game, the player either wins or looses the wager for that
iteration. The winnings or losses, for each iteration, are summed to the player’s cumulative returns.� The outcome of a particular iteration has random characteristics, ie., the outcome of a particular iteration is not
“predictable.”� The objective of the game is to maximize the value of the player’s cumulative returns.

As it turns out, these simple concepts have many applications, for example, they can be used to model and analyze
the capital markets [Pet91, pp. 81].

A.4 An Analytical Approach to the Iterated Unfair Coin Tossing Game

In Section A.2 it was assumed that the player had knowledge about the probability of a tossed coin coming up heads.
In most speculative games, knowledge of the random mechanism is not available. For a simple game, like tossing an
unfair coin, the coin could be tossed many times, and the probability of it coming up heads measured. The methodology
would be to toss the coin, say, 100 times, and count how many times it came up heads. Say it comes up heads 60
times out of the 100 tosses. Then the probability that the coin will come up heads on any particular iteration of the
game would be 60%, and the player could arrange a betting strategy, accordingly. It turns out that this concept is very
extensible.

In many speculative games, there is no knowledge available about the characteristics of the random process of
the game. As a simple example, assume that no knowledge is available about the underlying random process of the
unfair coin tossing game. Like the capital markets, we have only historical data about the wagering process, ie., what
was won, and what was lost during each iteration of the game. If we look at the historical time series of the game,
we would observe that since the cumulative returns are increasing, that the game is unfair. It would be desirable gain
some insight into the random process that controls the outcome of an iteration of the game, so a betting strategy can
be formulated. Referring to the preceeding paragraph, when the coin was tossed a hundred times to count how many
times it came up heads, it should be realized that this was a cumulative sum of number of times the coin came up heads
over a hundred iterations.
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Being formal, in � many tosses of the coin, it would be expected that the coin came up heads, �G�(� many times,
and come up tails, > 1 �9� ? �N� many times, where � is the probability of the coin coming up heads. If a counting
process is started, tallied in ¸ , by which, if the coin is tossed, and it comes up heads, we increase the count by one,
and if it comes up tails, we decrease the count by one, then it would be expected, after � many tosses5:¸ ) ��� ��� (1 �1� ) � � (A.5)

Notice that ¸ was derived empirically, and from ¸ , we can compute the probability, � , of the coin coming up
heads in any iteration of the game. Rearranging:¸ ) �G�Ï�I�1�Â*6�M� � (A.6)

and dividing both sides of the equation by � :¸ � ) �M� 1 *5� ) 2 �Ï�G� 1 (A.7)

and solving for � :

� ) � & * 1

2
(A.8)

noting that
� & is the “average” ¸ .

The same methodology can be used in general. Access to the unfair coin to measure the probability of it coming up
heads on any iteration is not necessary—this information can be deduced from the historical files of a game where the
coin was used. For example, we can take the historical time series of a unfair coin tossing game, and for each iteration,
subtract the value of the cumulative returns of the previous iteration from the value of the cumulative returns of the
next iteration, dividing the result of the subtraction by the value of the cumulative returns in the previous iteration,
making a new time series. This is a very powerful concept in the strategy of speculative games. The new time series
contains the fraction of the cumulative returns that was won or lost on each iteration of the game.

Using our example of the unfair coin tossing game, we would observe that the new time series would be a list of
numbers, containing either *�! , if the wager was won in an iteration, or �»! , if the wager was lost, (assuming that !
was constant throughout the game.) The important concept here is that, given a specific iteration, the fraction of the
cumulative returns wagered can be deduced, and whether the wager was won or lost. It is an important concept that
we can reconstruct the characteristics of the random mechanism, and the fraction of the cumulative returns wagered
from the historical data of a speculative game, without having knowledge of the random mechanism6. As before, we
do a cumulative sum on the random game’s process, only instead of it being a tossed coin, it is the new time series that
contains the fraction of the cumulative returns that was won or lost in each iteration of the game. Formalizing, using
Equation A.8, and replacing

� & , the average value of ¸ , with the “average” value of ! , found by summing all of the
values in the new time series, and dividing by the number of iterations:

� ) 1
2
* 1

2 � &� Q � 0

! ( X ) (A.9)

5For computational reasons, it is advantageous to implement counting of the number of heads in a series of coin tosses in this manner, which finds
the “average” ù by summing both heads and tails, with differing signs. In the unfair coin tossing game, the random mechanism can be analyzed by
simply counting the number of times heads comes up in series of tosses. However, in speculative games, in general, the random mechanisms are
much more sophisticated, requiring an “average” to be taken. This methodology provides a means of extensibility to these types of systems.

6It is not a complicated concept, actually, if you look at the process by which the historical time series was made. A wager is made, that is a
fraction of the cumulative returns, and the wager was either added or subtracted from the cumulative returns for the game, depending on the results
of a random process. When we subtract the value of the cumulative returns of a previous iteration from the value of the cumulative returns of the
next iteration, and dividing by the value of the cumulative returns in the previous iteration, we are actually “undoing” the cumulative returns process
of the game—kind of working backward to create the underlying random process and betting strategy.
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or more generally:

� ) 1
2
* 1

2 � � "
0

! ( � )
� � (A.10)

Interestingly, if we want to find out the fraction of the cumulative returns that was wagered each iteration of the
game, the absolute value of !�>TX ? can be taken in Equation A.9. In the simple case of the unfair tossed coin, it is simply! , since !�>YX ? is either *�! or �O! , ie., we simply remove the signs, and the equation reduces to7:! ) 2 �G� 1 (A.11)

which is the same as Equation A.1. Although this is a generalization, this derivation has not shown that this is indeed
an optimal solution. See Section 2.3.3 in Chapter 2 for a presentation on the optimal solution—it turns out that! ) 2 �M� 1 is, indeed, the optimal solution.

7The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Appendix B

Computer Programs Used in the Analysis of
Fractal Time Series

The “C” language sources to the following programs are available by sending an electronic mail to john-archive-
request@johncon.johncon.com with a subject of “archive get fractal”. The source distribution also contains the LATEX
sources to this document. The figures in this appendix were made from the regression tests for the programs, and can
be reconstructed with the Unix make(1) utility in the ../simulation/test, and ../utilities/test directories.

B.1 Legal Restrictions

A license is hereby granted to reproduce this software source code and to create executable versions from this source
code for personal, non—commercial use. The copyright notice included with the software must be maintained in all
copies produced.

THESE PROGRAMS ARE PROVIDED “AS IS”. THE AUTHOR PROVIDES NO WARRANTIES WHATSO-
EVER, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, TITLE, OR FITNESS
FOR ANY PARTICULAR PURPOSE. THE AUTHOR DOES NOT WARRANT THAT USE OF THIS PROGRAM
DOES NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY IN ANY COUN-
TRY.

B.2 Fractal Time Series Analytical Utilities

B.2.1 tsderivative

Source tsderivative.c, for taking the derivative of a time series. The value of a sample in the time series is subtracted
from the previous sample in the time series. The derivative time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsderivative program appears in Figure B.1.
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B.2.2 tsintegrate

Source tsintegrate.c, for taking the integral of a time series. The value of a sample in the time series is added to the
previous samples in the time series. The integral time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsintegrate program appears in Figure B.2.
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Figure B.1: Example output of the tsderivative pro-
gram, using the output of the tsbrownian program
with 1500 records as input. The frequency histogram
should have the same distribution as that produced by
the tswhite program in Figure B.41.
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Figure B.2: Example output of the tsintegrate pro-
gram, using the output of the tswhite program with
1500 records as input. The frequency histogram
should have the same distribution as that produced
by the tsbrownian program in Figure B.37.

B.2.3 tshcalc

Source tshcalc.c, for calculating the H parameter for a one variable fractional Brownian motion time series. The
algorithm is from [Cro95, pp. 249].
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The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tshcalc program appears in Figure B.3.

B.2.4 tshurst

Source tshurst.c, for calculating the Hurst coefficient for a time series. The method used is from [Cas94, pp.
253], [Pet91, pp. 63], [Sch91, pp. 129], or [Ç93, pp. 172]. The time series is broken into variable length intervals,
which are assumed to be independent of each other, and the R/S value is computed for each interval based on the
deviation from the average over the interval. These R/S values are then averaged for all of the intervals, then printed to
stdout. The -r flag sets operation as described in “Chaos and Order in the Capital Markets,” by Edgar E. Peters, pp 81,
and should only be used for time series from market data since logarithmic returns sum to cumulative return—negative
numbers in the time series file are not permitted with this option. The ln > n � ? vs ln >T��XR<� ? plot is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tshurst program appears in Figure B.4.

B.2.5 tslogreturns

Source tslogreturns.c, is for taking the logarithmic returns of of a time series. The value of a sample in the time series
is divided by the value of the previous sample in the time series, and the logarithm of the quotient is printed to stdout.

The form of the best fit is � ¤ " for exponential least squares fit, or � " for power least squares fit, or 2 P " for binary fit.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.
Note: The derivation for exponential least squares fit is:

� ( � ) ) � � 1 'K� 2 " (B.1)Z ( � ) ) ln

t � � 1 'K� 2 "� � 1 'K� 2( "43 1) u (B.2)) ln fY� � 1 'K� 2 "43 � 1 3 � 2 " 'K� 2 h (B.3)) ln fY� � 2 h (B.4)) = 2 (B.5)

Note: The derivation for power least squares fit is:

� ( � ) ) � � 1 'K� 2 " (B.6)Z ( � ) ) ln

t � � 1 'K� 2 "� � 1 'K� 2( "43 1) u (B.7)
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Figure B.3: Example output of the tshcalc program,
using simulated Hurst coefficients of 0.0, 0.1, 0.3, 0.5,
0.7, 0.9, and 1.0, as simulated by the tsfBm program.
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Figure B.4: Example output of the tshurst program,
using simulated Hurst coefficients of 0.0, 0.1, 0.3, 0.5,
0.7, 0.9, and 1.0, as simulated by the tsfBm program.

) ln fY� � 1 'K� 2 "43 � 1 3 � 2 " 'K� 2 h (B.8)) ln f � � 2 h (B.9)) = 2 (B.10)�	� " ) � " (B.11)�i� ) ln fY� " h (B.12)) � ln ( � ) (B.13)� ) ln ( � ) (B.14)� ) � � (B.15)

Note: The derivation for the binary least squares fit is:

� ( � ) ) � � 1 'K� 2 " (B.16)Z ( � ) ) ln

t � � 1 'K� 2 "� � 1 'K� 2( "43 1) u (B.17)

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 59



B.2. FRACTAL TIME SERIES ANALYTICAL UTILITIES

) ln fT� � 1 ']� 2 "�3 � 1 3 � 2 " ']� 2 h (B.18)) ln f � � 2 h (B.19)) = 2 (B.20)� � " ) 2 � " (B.21)� " ) 2 � " (B.22)� ) 2 � (B.23)= ln (2) ) ln ( � ) (B.24)= ) ln ( � )
ln (2)

(B.25)

(B.26)

An example output from the tslogreturns program appears in Figure B.5.

B.2.6 tsshannon

Source tsshannon.c, for calculating the probability, given the Shannon information capacity. See [Sch91, pp. 128,
151]. Uses Newton—Raphson method for an iterative solution for the probability, � .

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
From [Sch91, pp. 151]:� ) 0 � 55, 2

� B 0 J 55 C ) 0 � 005, (probably a typo, meaning 1 � 005,) which by calculator, ¸�> 0 � 55 ? ) 0 � 0072, (this program
gives ¸Â> 0 � 549912 ? ) 0 � 0072).
Derivation, starting with [Sch91, pp. 151]:

¸ (� ) ) 1 *H�i�Y� 2 (� ) * (1 �� ) �Y� 2 (1 ��� ) (B.27)¸ (� ) ) 1 *H� t �R� (� )�R� (2) u * (1 �� )

t �Y� (1 ��� )�Y� (2) u (B.28)

¸ (� ) ) t
1�Y� (2) u ( �Y� (2) *��i�Y� (� ) * (1 �� ) �Y� (1 ��� )) (B.29)

¸ (� ) ) t
1�Y� (2) u ( �Y� (2) *��i�Y� (� ) *��R� (1 �� ) ����R� (1 ��� )) (B.30)� ¸ (� )� � ) t
1�Y� (2) u t

1 *1�R� (� ) �7> 1
(1 ��� ) ? � t �Y� (1 ��� ) �7> �

(1 �� ) ? u�u (B.31)

) t
1�Y� (2) u t

1 *1�R� (� ) �7> 1
(1 ��� )

� �R� (1 �� ) * t �
(1 �� ) u�u (B.32)

) t
1�Y� (2) u t �R� (� ) � �Y� (1 ��� ) * t �

(1 ��� ) u � t
1

(1 ��� ) uOu (B.33)

) t
1�Y� (2) u t

1 *1�R� (� ) � �Y� (1 ��� ) * t
(��� 1)
(1 ��� ) u»u (B.34)

) t
1�Y� (2) u (1 *6�Y� (� ) � �R� (1 ��� ) � 1) (B.35)

) t
1�Y� (2) u ( �Y� (� ) � �R� (1 �� )) (B.36)

An example output from the tsshannon program appears in Figure B.6.
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� B 0 J 013797" C ) 1 � 013892 B " C ) 2 B 0 J 019905" C
Figure B.5: Example output of the tslogreturns pro-
gram, the input was produced by the tscoin program,
with a Shannon probability of 0.6, as shown in Fig-
ure B.44 in Section B.3.8.

¸�> 0 � 582866 ? ) 0 � 019905

Figure B.6: Example output of the tsshannon pro-
gram, the input was produced by the tslogreturns pro-
gram, as shown in Figure B.5, which was derived
from the output of the tscoin program, with a Shan-
non probability of 0.6, and is shown in Figure B.44 in
Section B.3.8.

B.2.7 tsshannonmax

Source tsshannonmax.c, for calculating unfair returns of a time series, as a function of Shannon probability. The input
time series is presumed to have a Brownian distribution. The main function of this program is regression scenario
verification—given an empirical time series, speculative market pro forma performance can be analyzed, as a function
of Shannon probability. The cumulative sum process is Brownian in nature.

To find the maximum returns, the “golden” method of minimization is used. As a reference on the “golden” method
of minimization, see [PFTV88, pp. 298].

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsshannonmax program appears in Figure B.7.

B.2.8 tsfraction

Source tsfraction.c, for finding the fraction of change in a time series. The value of a sample in the time series is
subtracted from the previous sample in the time series, and divided by the value of the previous sample. The fraction
time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsfraction program appears in Figure B.8.

B.2.9 tsrms

Source tsrms.c, for taking the root mean square of a time series. The value of a sample in the time series is squared
and added to the cumulative sum of squares to make a new time series. The new time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsrms program appears in Figure B.9.
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Figure B.7: Example output of the tsshannonmax pro-
gram, using the file produced by the tscoin program,
with a Shannon probability of 0.6, which is shown in
Figure B.44 in Section B.3.8.
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Figure B.8: Example output of the tsfraction pro-
gram, the input was produced by the tscoin program,
with a Shannon probability of 0.6, as shown in Fig-
ure B.44 in Section B.3.8. The tsfraction program
produces a time series of the “wins” or “losses” in
the game, which in this case is º�� ) º{> 2 �G� 1 ? )º{> 2 � 0 � 6 � 1 ? ) º 0 � 2.

B.2.10 tslsq

Source tslsq.c, for making a least squares fit time series from a time series.
The form of the best fit is WK*��g� , for linear least squares fit, � P ' ¤ " , ï � ' " , or 2 ¥³'�� " for exponential least squares fit,¶ÏD > 1 *6� 3 B P ' ¤ " C ? for the logistic least squares fit, � W2*6�g� for the square root fit, ln >YWK* �g� ? for the natural logarithmic

fit, and and >TW2*6�g� ? 2 for the square law fit.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time. Uses Newton—Raphson method for an iterative solution for the probability, � .

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
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An example output from the tslsq program appears in Figure B.10.
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Figure B.9: Example output of the tsrms program, the
input was produced by the tsfraction program, shown
in Figure B.8, which used the output of the tscoin
program, with a Shannon probability of 0.6, and is
shown in Figure B.44 in Section B.3.8.
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Figure B.10: Example output of the tslsq program,
the input was produced by the tsfraction program,
shown in Figure B.8, which used the output of the
tscoin program, with a Shannon probability of 0.6,
and is shown in Figure B.44 in Section B.3.8.

B.2.11 tsnormal

Source tsnormal.c, for making a histogram or frequency plot of a time series.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsnormal program appears in Figure B.11.
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B.2.12 tschangewager

Source tschangewager.c, for changing the unfair returns of a time series. The idea is to change the returns of a time
series which is weighted unfairly, by changing the increments by a constant factor. The main function of this program is
regression scenario verification—given an empirical time series, and a “wager” fraction, speculative market pro forma
performance can be analyzed. The input time series is assumed to be cumulative sum with fractional or Brownian
characteristics.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tschangewager program appears in Figure B.12.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-40 -30 -20 -10 0 10 20 30 40

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution of Increments

"tsfBm-h0.5.tsnormal"
"tsfBm-h0.5.tsnormal-f"

Figure B.11: Example output of the tsnormal pro-
gram, using a simulated Hurst coefficient of 0.5 as
simulated by the tsfBm program.
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Figure B.12: Example output of the tschangewager
program, using the file produced by the tscoin pro-
gram, with a Shannon probability tscoin program,
with a Shannon probability of 0.6, which is shown in
Figure B.44 in Section B.3.8. The wager was reduced
by 50%.

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 64



B.2. FRACTAL TIME SERIES ANALYTICAL UTILITIES

B.2.13 tsavg

Source tsavg.c, for taking the average of a time series. The value of a sample in the time series is added to the
cumulative sum of the samples to make a new time series by dividing the cumulative sum by the number of samples,
for each sample. The new time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsavg program appears in Figure B.13.

B.2.14 tssample

Source tssample.c, for sampling a time series. The value of a sample in the time series is printed to stdio only if it is a
multiple of the specified interval.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tssample program appears in Figure B.14.

B.2.15 tsXsquared

Source tsXsquared.c, for taking the Chi—Square of two time series, the first file contains the observed values, the
second contains the expected values.

The input file structures are text files consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsXsquared program appears in Figure B.15.

B.2.16 tsavgwindow

Source tsavgwindow.c, for taking the average of a time series. The value of a sample in the time series added to the
cumulative sum of the samples to make a new time series by dividing the cumulative sum by the number of samples,
for each sample. The new time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsavgwindow program appears in Figure B.16.

B.2.17 tsrmswindow

Source tsrmswindow.c, is for taking the root mean square of a time series. The square of a value of a sample in the time
series added to the cumulative sum of the square of the samples to make a new time series by dividing the cumulative
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Figure B.13: Example output of the tsavg program,
the input was produced by the tsfraction program,
shown in Figure B.8, which used the output of the
tscoin program, with a Shannon probability of 0.6,
and is shown in Figure B.44 in Section B.3.8.
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Figure B.14: Example output of the tssample pro-
gram, sampling every other record. The input was
produced by the tscoin program, shown in Fig-
ure B.44, in Section B.3.8, with a Shannon probability
of 0.6.

chi-squared value = 13.991, 5 percent critical value = 98.778, for 100 samples

Figure B.15: Example output of the tsXsquared program, the input was produced by the tsnormal program,
as shown in Figure B.1, which was derived from the output of the tsbrownian program with 1500 records
as input.

sum of the square of the samples by the number of samples, for each sample. The new time series is printed to stdout.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.
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An example output from the tsrmswindow program appears in Figure B.17.
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Figure B.16: Example output of the tsavgwindow
program, the input was produced by the tsfraction
program, shown in Figure B.8, which used the output
of the tscoin program, with a Shannon probability of
0.6, and is shown in Figure B.44 in Section B.3.8.
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Figure B.17: Example output of the tsrmswindow
program, the input was produced by the tsfraction
program, shown in Figure B.8, which used the output
of the tscoin program, with a Shannon probability of
0.6, and is shown in Figure B.44 in Section B.3.8.

B.2.18 tsshannonwindow

Source tsshannonwindow.c, for finding the windowed Shannon probability of a time series. The Shannon probability
is calculated by the following method:

1. For each sample in the time series:

(a) Find the value of the sample’s normalized increment by subtracting the previous value of the time series
from the current value of the time series, and then dividing this value of the increment by the previous
value in the time series, (note that this is similar to the procedure used by the program tsfraction).

(b) Find the running value of the root mean square of a window of the normalized increments, (note that this
is similar to the procedure used by the program tsrmswindow).
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(c) Find the running value of the average of a window of the normalized increments, (note that this is similar
to the procedure used by the program tsavgwindow).

2. Compute the Shannon probability of the windows by eight methods:

(a) using the formula:

� ) ¤�ª³«¯ @ S * 1

2
(B.37)

which is derived in Chapter 2, in Equation 2.58.

(b) using the formula:

� ) �,<HZ¿* 1
2

(B.38)

which is derived in Chapter 2, by combining Equations 2.55 and 2.56.

(c) using the formula:

� ) � �g�,��* 1

2
(B.39)

which is derived in Chapter 2, by combining Equations 2.68, and, 2.55.

(d) by taking the absolute value of the normalized increments and using the formula:

� ) �gWÏZ\* 1
2

(B.40)

which is derived in Appendix A, in Equation A.11.

(e) counting the up movements in the window of the time series, and considering adjacent elements from the
time series with equal magnitude as an up movement.

(f) counting the up movements in the window of the time series, and considering adjacent elements from the
time series with equal magnitude as a down movement.

(g) finding an exponential least squares fit of the values of the time series in a window, and iteratively calculating
the Shannon probability from the least squares fit variable using Newton—Raphson method for finding the
roots of a function.

(h) finding the logarithmic returns of the values of the time series in a window, and iteratively calculating the
Shannon probability from the least squares fit variable using Newton—Raphson method for finding the
roots of a function.

Where � is the Shannon probability, �g�N� is the running average of a window of the normalized increments, and,�,<HZ is the running root mean square of a window of the increments. The Shannon probability of the windows of the
increments is a time series that is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
Note: The derivation for exponential least squares fit is:
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1. input the value of the time series for each time interval, �g�N�R´���>Y� ? , and store the logarithm of the value, ie.:� ( � ) ) ln ( �g�N�R´�� ( � )) (B.41)

2. compute the least squares fit to � >Y� ? b³��*6W�� , then:

ln ( � ( � )) ) W2*6�g� (B.42)

3. exponentiate the values in � >Y� ? :
��XR� ( � ) ) �+P]�(� ¤ " (B.43)) � P ' ¤ " (B.44)

where �iXY�V>T� ? is the least squares exponential fit.
Note: The derivation for exponential least squares fit is:

� ( � ) ) � � 1 'K� 2 " (B.45)Z ( � ) ) ln

t � � 1 'K� 2 "� � 1 'K� 2( "43 1) u (B.46)) ln fY� � 1 'K� 2 "43 � 1 3 � 2 " 'K� 2 h (B.47)) ln fY� � 2 h (B.48)) = 2 (B.49)

And for the binary least squares fit, letting = ) = 2:

� ( � ) ) � � 1 'K� 2 " (B.50)Z ( � ) ) ln

t � � 1 'K� 2 "� � 1 'K� 2( "43 1) u (B.51)) ln f � � 1 ']� 2 "�3 � 1 3 � 2 " ']� 2 h (B.52)) ln fT� � 2 h (B.53)) = 2 (B.54)� � " ) 2 � " (B.55)� " ) 2 � " (B.56)� ) 2 � (B.57)= ln (2) ) ln ( � ) (B.58)= ) ln ( � )
ln (2)

(B.59)

Note: The derivation for calculating the Shannon probability, given the Shannon information capacity, where the
information capacity is the exponent derived from the least squares fit to the values of the time series, divided by the
natural logarithm of two. See [Sch91, pp. 128, 151]. Uses Newton-Raphson method for an iterative solution for the
probability, p.
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¸ (� ) ) 1 *H�i�Y� 2 (� ) * (1 �� ) �Y� 2 (1 ��� ) (B.60)¸ (� ) ) 1 *H� t �R� (� )�R� (2) u * (1 �� )

t �Y� (1 ��� )�Y� (2) u (B.61)

¸ (� ) ) t
1�Y� (2) u ( �Y� (2) *��i�Y� (� ) * (1 �� ) �Y� (1 ��� )) (B.62)

¸ (� ) ) t
1�Y� (2) u ( �Y� (2) *��i�Y� (� ) *��R� (1 �� ) ����R� (1 ��� )) (B.63)� ¸ (� )� � ) t
1�Y� (2) u t

1 *1�R� (� ) �7> 1
(1 ��� ) ? � t �Y� (1 ��� ) �7> �

(1 �� ) ? u�u (B.64)

) t
1�Y� (2) u t

1 *1�R� (� ) �7> 1
(1 ��� )

� �R� (1 �� ) * t �
(1 �� ) u�u (B.65)

) t
1�Y� (2) u t �R� (� ) � �Y� (1 ��� ) * t �

(1 ��� ) u � t
1

(1 ��� ) uOu (B.66)

) t
1�Y� (2) u t

1 *1�R� (� ) � �Y� (1 ��� ) * t
(��� 1)
(1 ��� ) u»u (B.67)

) t
1�Y� (2) u (1 *6�Y� (� ) � �R� (1 ��� ) � 1) (B.68)

) t
1�Y� (2) u ( �Y� (� ) � �R� (1 �� )) (B.69)

An example output from the tsshannonwindow program appears in Figure B.18.

0.584390 0.600000 0.591864 0.600000 0.584390 0.584390 0.585330 0.582893

Figure B.18: Example output of the tsshannonwindow program, the input was produced by the the tscoin
program, with a Shannon probability of 0.6, and is shown in Figure B.44 in Section B.3.8.

B.2.19 tspole

Source tspole.c, is for single pole low pass filtering of a time series. The single pole low pass filter is implemented
from the following discrete time equation: � & ' 1 ) °�� = 2 *5� & �(= 1 (B.70)

where ° is the value of the current sample in the time series, � & are the value of the output time series, and = 1 and = 2
are constants determined from the following equations:= 1 ) � 3 2 U � U � (B.71)

and = 2 ) 1 �6= 1 (B.72)
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where � is a constant that determines the frequency of the pole-a value of unity, the default, places the pole at the
sample frequency of the time series.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

This program is based on [Con78, pp. 11].
An example output from the tspole program appears in Figure B.19.

B.2.20 tsdft

Source tsdft.c, is for taking the Discrete Fourier Transform (power spectrum) of a time series.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

Note: the algorithm used in this program is a modified version of the program dft.c, written and c
�

1985 Nicholas
B. Tufillaro.

An example output from the tsdft program appears in Figure B.20.

B.2.21 tsmath

Source tsmath.c, for for performing arithmetic operations on each element in a time series. The resultant time series
is printed to stdio.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsmath program appears in Figure B.21.

B.2.22 tsdeterministic

Source tsdeterministic.c, is for determining if a time series was created by a deterministic mechanism. The idea is
place each element of a time series in an array structure that contains the element and the next element in the time
series, and then sort the array. The array is output and may be plotted. For example, using the program tsdlogistic to
make a discrete time series of the logistic, (quadratic function,) with the command “tsdlogistic -a 4 -b -4 1000 > XXX”
and then using this program on the output file, XXX, will result in a plot of a parabola. See [PJS92, pp. 745].

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsdeterministic program appears in Figure B.22.
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Figure B.19: Example output of the tspole program,
the input was produced by the tscoin program, with
a Shannon probability of 0.6, and is shown in Fig-
ure B.44 in Section B.3.8. The pole frequency was
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Figure B.20: Example output of the tsdft program,
the input was produced by the tscoin program, with
a Shannon probability of 0.6, and is shown in Fig-
ure B.44 in Section B.3.8. A plot of 1| 2 is superim-
posed on the plot.

B.2.23 tsstatest

Source tsstatest.c, for making a statistical estimation of a time series. The number of samples, given the maximum
error estimate, and the confidence level required is computed for both the standard deviation, and the mean.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

Consider the following formula for determination of the Shannon Probability, � , of an equity market time series,
using the average and root mean square of the normalized increments, �g�,� , and, �,<HZ , respectively, by rearranging
Equation 2.58: � ) ¤�ª³«¯ @ S * 1

2
(B.73)
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Figure B.21: Example output of the tsmath program,
taking the logarithm of the file produced by the tscoin
program, with a Shannon probability of 0.6, which is
shown in Figure B.44 in Section B.3.8.
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Figure B.22: Example output of the tsdeterministic
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program, using the command “tsdlogistic -a 4 -b -1
1000 > filename,” which is shown in Figure B.48 in
Section B.3.12.

which is useful in the determination of the optimal fraction of capital, � , to invest in a stock, from Equation 2.55:� ) 2 �G� 1 (B.74)

The objective is to estimate how large the data set has to be for determining � to a given accuracy, possibly using
statistical estimates of how many data points are required for a given confidence level that the error is less than a
specific value.

Suppose we have a confidence level, 0 ¹�¶�¹ 1, that a value is within, plus or minus, an error level, � . What this
means, for example if ¶ ) 0 � 9, and � ) 0 � 1, is that for 90% of the cases, the value will be within the limits of º^� , or,
5% of the time, on the average, it will be less than �»� , and 5% of the time more than *�� .

The error level for �g�,� , � ¤�ª³« ,for a given confidence level, will be:� ¤�ª³« ) = �+<�Z� � (B.75)

where � is the number of records in the data set, and = is a function involving a normal distribution. The error level

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 73



B.2. FRACTAL TIME SERIES ANALYTICAL UTILITIES

for �,<HZ , for the same given confidence level, will be:�+¯ @ S ) = �+<HZ� 2 � (B.76)

where = is identical in both cases. Also, the number of records required for a given error level would be:

� ¤�ª³« ) t >T�,<HZ¼��= ?� ¯ @ S u 2

(B.77)

and

�p¯ @ S ) 1
2

t >Y�,<HZ2�(= ?� ¯ @ S u 2

(B.78)

where = is the same as above.
For equity market indices, a typical value for �,<HZ would be 0 � 01, and 0 � 0003 for �g�,� . This is probably typical for

many stocks, however, high gain stocks, in a “bull” market can have an �,<HZ of 0 � 04, and an �g�,� of 0 � 005.
The value of = can be determined from standard statistical tables, as shown in table B.1, where = ) sigma level,

for a confidence level, ¶ .
Table B.1: Confidence Level vs. 
 Level.

Confidence Level, ½ ¾ level
(%)
50 0.67
68.27 1.00
80 1.28
90 1.64
95 1.96
95.45 2.00
99 2.58
99.73 3.00

Note that for a given confidence level:

�g�,��,<HZ ) �g�N��º6= ¯ @ S® &�+<�Z¿º6= ¯ @ S®
2 & (B.79)

) ¤�ªA«¯ @ S º6= 1® &
1 º5= 1

4
® & (B.80)

Now, consider the specific example of ���,� and �,<HZ for an exponential function. In this specific case, �g�,� ) �,<HZ ,
and ¤�ªA«¯ @ S ) 1. Since = is assumed to be a function of a normally distributed random variable, the error in the ratio¤�ª³«¯ @ S as a function of the data set size, n, can be found by superposition, and adding the contributing error values as a
function of � for both �+<�Z and �g�,� root mean square, or:À

12 * t
1
4 u 2 ) 1 � 030776406 (B.81)

or:
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�g�N��+<�Z Á �g�,��,<HZ º 1 � 03
1� � = Á �g�N��+<HZ º 1� � = (B.82)

where = is determined from the table, above. In this specific case, where ���,� ) �,<HZ :���,��+<�Z Á �g�,��,<HZ t
1 º 1� � = u (B.83)

An interpretation of what this means is that, given a data set size, � , and a confidence level of, say 90%, then 90%
of the time, our measurements of ¤�ª³«¯ @ S , would fall within an error level of º 1 � 64 1® & , ie., 5% of the time it would be
greater than the error value, and 5% of the time, it would be lower than the error value. In general, the concern is with
the lower error value since from the equation: � ) ¤�ª³«¯ @ S * 1

2
(B.84)

(at least in this specific case where �g�N� ) �,<HZ ,) that a 90% confidence level would imply that there is a 5% chance of
the real value ¤�ª³«¯ @ S being zero is where: =� � ) 1 (B.85)

or:

1 � 64� � ) 1 (B.86)

or � ) 2 � 6896 Á 3.
What this means is that, if we repeat the experiment of finding 3 records in a row that have �,<HZ ) �g�,� , with neither

equal to zero, many times, that we would loose money in 5% of the cases, making the measured Shannon probability,� , unity, and the estimated Shannon probability, 0 � 95, eg., we should consider the Shannon probability as 0 � 95 in this
specific case—ie., it would be ill advised to invest all of the capital in such a scenario, since, sooner or later, all of the
capital would be lost, (on average, by the 20’th game.)

This implies a simple methodology. Measure �g�,� and �+<�Z , and compute the Shannon probability. Decease
that probability by a factor—ie., one minus the confidence level, divided by two—that the wager could be a loosing
proposition, based on the estimates that �g�,� could be zero, (which is a function of the confidence level, and the number
of records in the data set.) This, conceivably, could provide a quantitative estimate on the number of records required
in a data set.

Note that if ¤�ª³«¯ @ S is measured at 0 � 9, then:

1 � 64� � ) 0 � 9 (B.87)

for the same confidence level of 0 � 9, or � ) 3 � 32 (B.88)

and:
for the same confidence level 0 � 9. What the table means is that if you have a stock price time series of 67 records,

then the minimum measured Shannon probability must be at least 0 � 6—and the wagering strategy should use the
Shannon probability of 0 � 57—and the minimum number of records used to measure �g�N� and �+<HZ is 67. Additionally,
a stock time series with a Shannon probability of 0 � 53 should be measured using not less than 1076 records, and no
wager should be made, unless the measurements involve substantially more than 1076 records. In general, the Shannon
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Table B.2: Shannon Probability vs. Data Set Size.Ã[ÄrÅÆ�Ç2È É Ê Ç2Ë�Ã³ÈTÌ�Æ[Ë�Í Ê
1.0 2.7 1.00 0.95
0.9 3.3 0.95 0.90
0.8 4.2 0.90 0.86
0.7 5.5 0.85 0.81
0.6 7.5 0.80 0.76
0.5 10.8 0.75 0.71
0.4 16.8 0.70 0.67
0.3 29.9 0.65 0.62
0.2 67.2 0.60 0.57
0.1 268.9 0.55 0.52

0.05 1075.8 0.53 0.50

probability of almost all stock time series fall, inclusively, in this range. 67 business days is, approximately, 13 � 4
weeks, or little more than a calendar quarter. 1076 business days is slightly longer than four calendar years.

Note that [Pet91, pp. 83] referencing [Fed88, pp. 179], the claim is made that 2500 records is the minimum size
of the data set for using fractal analytical methodologies. Note that a data set of this size would have, with an ¤�ª³«¯ @ Sof 0 � 5—which is “typical” for a stock time series, a Shannon probability error level that is approximately 1%, since it
lies between 2 and 3 sigma, and ¶ would be approximately 0 � 99. This would seem to be consistent with the empirical
arguments of both Peters and Feder, although Peters implies that less could be used if the system being analyzed is
“chaotic” in nature, and one “cycle” of the system’s, apparently, “strange attractor” is less than 2500 time units. This
analysis would seem to be consistent with the observations of these authors, provided that it is a requirement that the
measured Shannon probability be used to calculate the optimum wager fraction.

What this analysis would tend to suggest is that, although Feder’s and Peter’s arguments seem to be confirmed, that
there may, also, be other viable solutions for data sets, (or fragments thereof,) that are very much smaller, provided
that the measured Shannon probability of the data set, or segment, is sufficiently large—for example, a stock that has
a time series fragment that has 5 out of 6 upward movements may prove to be a viable investment opportunity at a
measured Shannon probability that is greater than 0 � 85, ( 5

6 ) a Shannon probability of 0 � 833 Á 0 � 85,) if played at a
Shannon probability as high as 0 � 8, but no higher.

For example, using a Shannon probability, � , of 0 � 51 for the tscoins program, to provide an input fractal time series
for the tsstatest program, and iterating, indicates that for a standard deviation of 0 � 020000, with a confidence level of
0 � 960784 that the error did not exceed 0 � 020000, 3 samples would be required.

Since the Shannon probability is calculated directly from the standard deviation, (ie., �+<HZ = root mean square of
the normalized increments,) the maximum error can be calculated:

0 � 5
0 � 51 ) 0 � 980392157 (B.89)

which means that a confidence level of 0 � 960784314 that the error level in the standard deviation is less than 0 � 02
because standard deviation ) �+<�Z ) 0 � 02 � 0 � 02 ) 0, which would correspond to a Shannon probability, � , of 0 � 5,
and since half the errors outside the range of 0 � 02 would be negative, (and the other half positive,) the confidence level
required would be 1 �7>³> 1 � 0 � 980392157 ? � 2 ? .

What this means is that >³> 1 � 0 � 960784314 ? D 2 ? � 100 percent of the time, the actual �+<�Z value will be sufficiently
small to make � equal to, or less than 0 � 5. This means that � must be decreased by 1 � 960784300 percent. The
reasoning is that after many iterations, the measured � would be too small by 1 � 90784300% of the time, on average,
making the measured � , over all of the iterations, 0 � 5.
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This suggests a dynamic rule: do not wager unless the Shannon probability, � , is strictly greater than 0 � 51, as
measured on strictly more than 3 time units. Interestingly, the Hurst Coefficient, as measured by the tshurst program,
graph of a random walk, Brownian motion, or fractional Brownian motion fractals indicates that there is significant
near term correlations for 4 or less time units. This suggests a dynamic trading methodology for equities.

Similar reasoning would indicate that using a value of � ) 0 � 6 for the tscoins and tsfraction programs to provide
input to the tsstatest program with a confidence level of 0 � 8, and an error of 0 � 12, (ie., 10% of the time the value of� would be less than 0 � 9 � 0 � 6 ) 0 � 54, where 0 � 2 � 0 � 12 ) 0 � 08, and 0 � 54 ) 0 J 08 ' 1

2 ,) would require a minimum of 3
records. The fraction of capital wagered should be 2 � 0 � 54 � 1 ) 0 � 08.

To review what has been presented so far, we really are not confident that we know the value of the Shannon
probability, � , until we have sufficiently many records, � . One way of addressing this issue is to wait to make a wager
until we do. But this strategy has an “opportunity cost,” since, approximately 50% of the time, we would not have
made an investment when we should have. Note that since investing in equities is not a 100% assured proposition, we
only invest a fraction of our capital, � , where � ) 2 �M� 1. Since investing with a data set size that is insufficient, ie.,� is too small, lowers the probability of the wins, the Shannon probability, � , will have to be lowered to maintain the
optimum wager fraction of the capital. We can compute the value that the Shannon probability, � , must be lowered to
account for this.

The relationship between the Shannon probability, � , and the root mean square of the normalized increments of a
time series, �+<�Z , is: � ) �,<HZ¿* 1

2
(B.90)

Let the error, � , in �,<HZ created by an insufficient data set size be:� ) �+<HZ¼�6�+<�Z�� (B.91)

where 0 ���,<HZ � �E�+<�Z . This means that although �,<HZ was measured it could be as low as �+<�Z � . The confidence
level that �,<HZ is not less than �+<HZ � can be found by statistical estimate. The Shannon probability, � � , associated with�,<HZ � is: � � ) �,<HZ � * 1

2
(B.92)� � is the Shannon probability if the root mean square value of the normalized increments of the time series is �,<HZ � .

Since we want to alter the measured Shannon probability, � , to accommodate the error created by a insufficient
data set size, we multiply � by the confidence level that the real value of � is not less than � � , or the confidence level,¸ , is: ¸ ) � �� (B.93)

The reasoning is that a value of ¸ , say 0 � 9, means that the root mean square value of the increments could be below
the measured value, �,<HZ , by an amount � for 5% of the time, and above �+<HZ by an amount � for 5% of the time, so
that: ��� ) ¸�� (B.94)

Substituting: ¸�� ) �,<HZ � * 1
2

(B.95)

and solving for �,<HZ � :
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�,<HZ � ) 2 ¸��M� 1 (B.96)

or: � ) �+<�Z¿� (2 ¸��M� 1) ) �,<HZ¿� 2 ¸��7* 1 (B.97)

and substituting for �,<HZ , where �+<HZ ) 2 �M� 1:� ) 2 �M� 1 � 2 ¸��5* 1 ) 2 �M� 2 ¸�� ) 2 � (1 �8¸ ) (B.98)

and substituting � � ) ¸�� : � ) 2 �M� 2 ��� ) 2 f%�M�6��� h (B.99)¸ now has to be adjusted because we are only concerned with the values of �+<HZ � that are less than �+<HZ , where:¶ ) 1 � 2 (1 �6¸ ) ) 1 � 2 * 2 ¸ ) 2 ¸`� 1 (B.100)

but since ¸ ) � � D+� : ¶ ) 2 � �� � 1 (B.101)

or we have: � ) 2 f%�G�1��� h (B.102)

and: ¶ ) 2 � �� � 1 (B.103)

which are the two general equations for use of this program for trading equities.
Making a plot of these equations, of � � vs. � for various � presents an interesting conjecture. The graph can be

crudely approximated by a single pole filter, with a pole at 0 � 033, ie., using the program tscoins with a -p 0.6 argument
to simulate an equity value time series, and the program tsinstant, with the -s option, to calculate the instantaneous
Shannon probability of the time series, followed by the program tspole with a -p 0.033 argument, would output,
approximately, � � . The � � tends to under wager for �¿� 7, and over wager for ��� 0 � 7. The approximation is simple,
but crude. Interestingly, using the program tshurst on the same time series indicates that there is good correlation for�2� 5, and if this temporal range is of interest, this simple solution may prove adequate for non-rigorous requirements.
Additionally, perhaps using the tsmath program, the output of the tspole program could have 0 � 5 subtracted, multiplied
by, say, 0 � 85, and then the 0 � 5 re-added to extend the usefulness to approximately 100 business days. The accuracy over
this range is approximately º 0 � 01 out of 0 � 55. Naturally, after very many days, for example, if � ) 0 � 6, � � would still
be 0 � 585, creating a long term error in �,<HZ of 0 � 2 � 0 � 17 ) 0 � 03. Note that the error created in the exponential growth
of the capital would be 0 � 04 � 0 � 0289. A substantial long term error. Alternately, perhaps a recursive feed-forward
technique could be implemented that would allow the pole frequency to be selected for far term compatibility with the
statistical estimate, while at the same time approximating the near term. Naturally, this, also, should not be considered
a substitute for statistical estimates, but using statistical estimates would probably require a recursive procedure, and
that is a formidable proposition.

This program will require finding the value of the normal function, given the standard deviation. The method used
is to use Romberg/trapezoid integration to numerically solve for the value.

This program will require finding the functional inverse of the normal, ie., Gaussian, function. The method used
is to use Romberg/trapezoid integration to numerically solve the equation:
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! ( � ) ) � �
0

1
2  � ~"! 22

� �#* 0 � 5 (B.104)

which has the derivative: � ( � ) ) 1
2  � ~"# 2

2 (B.105)

Since !�>$� ? is known, and it is desired to find � ,! ( � ) � � �
0

1
2  � ~"! 22

� � * 0 � 5 ) � ( � ) ) 0 (B.106)

and the Newton-Raphson method of finding roots would be:�2&(' 1 ) �2&�� � ( � )� ( � )
(B.107)

An example output from the tsstatest program appears in Figure B.23.

For a mean of 0.005574, with a confidence level of 0.900000
that the error did not exceed 0.000557, 26949322 samples would be required.
(With 1500 samples, the estimated error is 0.074707 = 1340.381071 percent.)

For a standard deviation of 1.759051, with a confidence level of 0.900000
that the error did not exceed 0.175905, 136 samples would be required.
(With 1500 samples, the estimated error is 0.052826 = 3.003078 percent.)

Figure B.23: Example output of the tsstatest program, the input was produced by the the tsfBm program, with a Hurst
coefficient of 0.5. The tsstatest parameters are for a confidence level of 90%, with an error estimate of º 10%, on the
distribution of the normalized increments.

B.2.24 tsshannonaggregate

Source tsshannonaggregate.c, aggregate Shannon probability of many concurrent Shannon probabilities.
Consider gambling on two unfair coin tossing games, at the same time, one game having a Shannon probability

of 0 � 55, and the other having a Shannon probability of 0 � 65. Assuming that the coins in both games are tossed
concurrently for each iteration of the game, the combinatorics of the possible outcomes of wins and losses in each
iteration are:

outcomes probability fraction average�%� : 0 � 157500 � 0 � 400000 � 0 � 063000ï�� : 0 � 192500 � 0 � 200000 � 0 � 038500�Yï : 0 � 292500 0 � 200000 0 � 058500ïOï : 0 � 357500 0 � 400000 0 � 143000

where � is a loss, and ï is a win, and the probability is calculated by multiplying the individual probabilities of a loss
or win for the respective coins, ie., for both coins to win, the probability would be 0 � 55 � 0 � 65 ) 0 � 3575. (1 �8� is
used for the probability of a loss for each coin.) The fraction is the fraction of capital waged on an individual game,
and is computed as optimal, from the equation 2 �F� 1, where � is the Shannon probability of the individual unfair
coin and is either 0 � 55 or 0 � 65. The average is computed as the product of the probability and the fraction.
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What this means is that 35 � 75% of the time, a win-win outcome will be observed in the iterated games, and 15 � 75%
of the time, a lose-lose outcome will be observed. The amount won in the win-win scenario will be the sum of the
fractions wagered on each coin, which is > 2 � 0 � 55 � 1 ? *6> 2 � 0 � 65 � 1 ? ) 0 � 1 * 0 � 3 ) 0 � 4. The product of this fraction
and probability is the contribution over many plays to the capital do to this outcome. Summing these averages for the
different outcomes is the average over many plays of the capital growth by playing both games, and is numerically
identical to the sum of the average of the normalized increments of both games.

Since the average and root mean square of the normalized increments are related by:�,<HZ ) Z ó �+�V>Y�g�g� �,�,��� ? (B.108)

squaring the average will be the root mean square of the normalized increments, or:

Average rms Shannon probability
0.100000 0.316228 0.658114

where the Shannon probability, P, is computed by:� ) �+<�Z-* 1
2 ) 1 � 316228

2 ) 0 � 658114 (B.109)

The implication is that the two concurrent unfair coin tossing games could be “modeled” as a single game with a
Shannon probability of 0 � 658114.

Although it is generally more expedient just to sum, root mean square, the individual root mean square of the
normalized increments of each game, (where � ) �+<�Z ) 2 �M� 1,) and then compute the Shannon probability by:

� ) � ((2 � 0 � 55) � 1)2 * ((2 � 0 � 65) � 1)2 * 1
2

(B.110)

) � 0 � 12 * 0 � 32 * 1
2

(B.111)

) � 0 � 01 * 0 � 09 * 1
2

(B.112)

) � 0 � 1 * 1
2

(B.113)) 0 � 316227766 * 1
2

(B.114)) 1 � 316227766
2

(B.115)) 0 � 658113883 (B.116)

this program does it with combinatorics.
An example output from the tsshannonaggregate program appears in Figure B.24.

B.2.25 tsunfraction

Source tsunfraction.c, is for making a cumulative sum of the fraction of change in a time series. The value of a sample
in the time series is multiplied by the running cumulative sum of the time series, and added to the running sum of the
time series. The resultant time series is printed to stdout. (This program is the inverse of the tsfraction program.) Note
that:

tsfraction data | tsunfraction
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ll: probability of 0.157500 * fraction of -0.400000 = average of -0.063000
wl: probability of 0.192500 * fraction of -0.200000 = average of -0.038500
lw: probability of 0.292500 * fraction of 0.200000 = average of 0.058500
ww: probability of 0.357500 * fraction of 0.400000 = average of 0.143000

Average = 0.100000, rms = 0.316228, Shannon Probability = 0.658114

Figure B.24: Example output of the tsshannonaggregateprogram, with verbose print option, and Shannon probabilities
of 0 � 55 and 0 � 65.

does nothing. An interesting application of this program is:

tsgaussian -t 10000 | tsmath -t -m 0.01 | tsmath -t -a 0.0003 | tsunfraction

which would manufacture a data file with statistics that are similar to equity market indices.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsunfraction program appears in Figure B.25.

B.2.26 tsinstant

Source tsinstant.c, for finding the instantaneous fraction of change in a time series. The value of a sample in the time
series is subtracted from the previous sample in the time series, and divided by the value of the previous sample. For
Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change1. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change. The values are printed to stdout.

For fractional Brownian motion time series, substantial filtering will be required of the output time series. The
programs tspole and tsavgwindow may be used, perhaps in a cascade fashion, to implement a filtering technique, which
potentially could be used in an adaptive computational system. Markov techniques may also be applicable. Note that in
fractal time series, the short term correlation, say less than three time units as a typical value, is quite high—this can be
verified by the tshurst program, eg., filtering, to find the average value, over a few time units, may be an advantageous
strategy in adaptive computational control systems.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsinstant program appears in Figure B.26.

1The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure B.25: Example output of the tsunfraction pro-
gram, reconstructing the file produced by the tscoin
program, with a Shannon probability of 0.6, which is
shown in Figure B.44 in Section B.3.8, after the pro-
gram tsfraction was used to construct the normalized
increments.
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Figure B.26: Example output of the tsinstant pro-
gram, the input file was produced by the tscoin pro-
gram, with a Shannon probability of 0.6, which is
shown in Figure B.44 in Section B.3.8.

B.2.27 tsrunlength

Source tsrunlength.c, is for finding the run lengths of zero free intervals in a time series, which is assumed to be a
Brownian fractal. The value of each sample in the time series is stored, and the run length to a like value in the time
series is stored. A histogram of the number of run lengths of each run length value is printed to stdout as tab delimited
columns of run length value, positive run lengths, negative run lengths, and the sum of both positive and negative run
lengths, followed by the cumulative sum of the positive run lengths, the cumulative sum of negative run lengths, and
the cumulative sum of both positive and negative run lengths.

The idea is to create a run length structure, that tallies how many time intervals a run length was either positive or
negative, for each element in the time series. When a run length transition is made, (ie., when the value of the time
series has passed through the value of the time series when the run length structure was created, from a positive or
negative direction,) then the run length is tallied into histogram arrays, and the structure removed. See [Sch91, pp.
260]
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As approximations for the probability, � , of the run lengths, for �'& 1, � ) 1

2 U ��( 32 ) , which can be integrated for the

cumulative probability, � , for �'& 1, � ) 1® " . For �+* 1, � ) � ���K> 1® " ? .Note: there is an issue with this methodology—a run length is not considered complete until the value is passed,
so, for example, a square wave function input will never be tallied, ie., a 1 to � 1 to 1 to � 1 to 2 sequence is a negative
run length of 3 time units.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsrunlength program appears in Figures B.27 and B.28.
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Figure B.27: Example output of the tsrunlength pro-
gram, using 100,000 records produced by the tsfrac-
tionalprogram. This is a plot of the run length distri-
bution..
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Figure B.28: Example output of the tsrunlength pro-
gram, using 100,000 records produced by the tsfrac-
tional program.This is a plot of the cumulative run
length distribution.
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B.2.28 tsrootmean

Source tsrootmean.c for finding the root mean of a time series. The number of consecutive samples of like movements
in the time series is tallied, and the resultant distribution is printed to stdout-a simple random walk fractal with a
Gaussian/normal distributed increments would be the combinatorial probabilities, 0 � 5, 0 � 25, 0 � 125, 0 � 625, �����

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsrootmean program appears in Figure B.29.

B.2.29 tsrunmagnitude

Source tsrunmagnitude.c is for finding the magnitude of the run lengths in a time series. The value of each sample
in the time series is stored, and subtracted from all other values in the time series, each point being tallied root mean
square. The magnitude deviation is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsrunmagnitude program appears in Figure B.30.

B.2.30 tsshannonvolume

Note: Conceptually, this program is used to “adjust” the Shannon probability of a stock by considering the volumes of
trade in a time interval. Unfortunately, the results were not encouraging, and the concept was abandoned. It is left in
the program inventory for future reference.

Tsshannonvolume.c, is for finding the fundamental Shannon probability of a time series, given a stocks value, and
the number of shares traded, in each time interval. The value of a sample in the time series is divided by the volume,
and added to the cumulative sum of the samples, and the square of the value, after dividing by the volume, is added to
the sum of the squares to make a new time series by dividing both the cumulative sum and the square root of the sum
of the squares by the number of samples for each sample. The new time series is printed to stdout. The time series
printed to stdout is a tab delimited table of:

1. The average of a normalized increment, �g�,� , and is computed by:

���,� ) � " �1� "�3 1� "43 1
� 1c (B.117)

where c is the trading volume, at time � .
2. The root mean square of the normalized increment, �+<HZ , and is computed by:

�+<HZ ) À t � " �1� "43 1� "43 1 u 2 � 1c (B.118)

where c is the trading volume, at time � .
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Figure B.29: Example output of the tsrootmean pro-
gram, using simulated Hurst coefficients of 0.0, 0.1,
0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the tsfBm
program.
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"tsfBm-h0.0.tsrunmagnitude"
"tsfBm-h0.1.tsrunmagnitude"
"tsfBm-h0.3.tsrunmagnitude"
"tsfBm-h0.5.tsrunmagnitude"
"tsfBm-h0.7.tsrunmagnitude"
"tsfBm-h0.9.tsrunmagnitude"
"tsfBm-h1.0.tsrunmagnitude"

Figure B.30: Example output of the tsrunmagnitude
program, using simulated Hurst coefficients of 0.0,
0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the
tsfBm program.

3. The Shannon probability, � , as computed by:

� ) ¤�ªA«¯ @ S * 1

2
(B.119)

4. The Shannon probability, � , as computed by:

� ) � �g�,��* 1

2
(B.120)

5. The Shannon probability, � , as computed by:

� ) �,<HZ-* 1
2

(B.121)

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
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in the record. Data records must contain at least two fields, which is the data value of the sample, followed by the
volume of the sample, but may contain many more fields-if the record contains many more fields, then the first field is
regarded as the sample’s time, and the next to the last field the value, with the last field as the sample’s volume at that
time.

Note that since the average of the normalized increments of a time sampled time series goes up linearly on the
number of samples in a sampled interval, and the root mean square of the normalized increments goes up with the
square root of the of the number of samples in a sampled interval, it would be reasonable to assume that that the average
of the normalized increments would go up linearly with the trading volume of a stock, and the root mean square would
to go up with the square root of the trading volume.

If we consider capital, � , invested in a savings account, and calculate the growth of the capital over time:� " ) � "�3 1 (1 *6� " ) (B.122)

where � " is the interest rate at time � , (usually a constant2.) In equities, � " is not constant, and varies—perhaps being
negative at certain times, (meaning that the value of the equity decreased.) This fluctuation in an equity’s value can be
represented by modifying � " in Equation B.122: � " ) � " ! " (B.123)

where the product � " �(! " is the fluctuation in the equity’s value at time � .
An equity’s value, over time, is similar to a simple tossed coin game [Sch91, pp. 128], where � " is the fraction of

a gambler’s capital wagered on a toss of the coin, at time � , and ! " is a random variable3, signifying whether the game
was a win, or a loss, ie., whether the gambler’s capital increased or decreased, and by how much. The amount the
gambler’s capital increased or decreased is � " �(! " . In general, ! " is a function of a random variable, with an average,
over time, of �g�N� | , and a root mean square value, �,<HZ | , of unity. Note that for simple, time invariant, compound
interest, ! " has an average and root mean square, both being unity, and � " is simply the interest rate, which is assumed
to be constant. For a simple, single coin game, ! " is a fixed increment, (ie., either * 1 or � 1,) random generator.
From an analytical perspective, it would be advantageous to measure the the statistical characteristics of the generator.
Substituting Equation B.123 into Equation B.1224:

2For example, if Ñ�� 0 ; 06, or 6%, then at the end of the first time interval the capital would have increased to 1 ; 06 times its initial value. At the
end of the second time interval it would be (1 ; 06)2, and so on. What Equation B.122 states is that the way to get the value, Ò in the next time interval
is to multiply the current value by 1 ; 06. Equation B.122 is nothing more than a “prescription,” or a process to make an exponential, or “compound
interest” mechanism. In general, exponentials can always be constructed by multiplying the current value of the exponential by a constant, to get
the next value, which in turn, would be multiplied by the same constant to get the next value, and so on. Equation B.122 is nothing more than a
construction of Ò ( Ó ) �Ô Õ4Ö where ×�� ln (1 /�Ñ ). The advantage of representing exponentials by the “prescription” defined in Equation B.122 is
analytical expediency. For example, if you have data that is an exponential, the parameters, or constants, in Equation B.122 can be determined by
simply reversing the “prescription,” ie., subtracting the previous value, (at time Ó�0 1,) from the current value, and dividing by the previous value
would give the exponentiating constant, (1 /�Ñ Ö ). This process of reversing the “prescription” is termed calculating the “normalized increments.”
(Increments are simply the difference between two values in the exponential, and normalized increments are this difference divided by the value of
the exponential.) Naturally, since one usually has many data points over a time interval, the values can be averaged for better precision—there is a
large mathematical infrastructure dedicated to precision enhancement, for example, least squares approximation to the normalized increments, and
statistical estimation.

3“Random variable” means that the process, . Ö , is random in nature, ie., there is no possibility of determining what the next value will be.
However, . Ö can be analyzed using statistical methods [Fed88, pp. 163], [Sch91, pp. 128]. For example, . Ö typically has a Gaussian distribution
for equity values [Cro95, pp. 249], in which case the it is termed a “fractional Brownian motion,” or simply a “fractal” process. In the case of
a single tossed coin, it is termed “fixed increment fractal,” “Brownian,” or “random walk” process. In any case, determination of the statistical
characteristics of . Ö are the essence of analysis. Fortunately, there is a large mathematical infrastructure dedicated to the subject. For example, . Ö
could be verified as having a Gaussian distribution using Chi—Square techniques. Frequently, it is convenient, from an analytical standpoint, to
“model” . Ö using a mathematically simpler process [Sch91, pp. 128]. For example, multiple iterations of tossing a coin can be used to approximate
a Gaussian distribution, since the distribution of many tosses of a coin is binomial—which if the number of tosses is sufficient will represent a
Gaussian distribution to within any required precision [Sch91, pp. 144], [Fed88, pp. 154].

4Equation B.124 is interesting in many other respects. For example, adding a single term, Ù�Ú(Ò ÖRÛ 1, to the equation results in Ò Ö �Ò ÖYÛ 1 f 1 /�Ü Ö . Ö /ÂÙ8Ú4Ò ÖYÛ 1 h which is the “logistic,” or ‘S’ curve equation, (formally termed the “discreet time quadratic equation,”) and has
been used successfully in many unrelated fields such as manufacturing operations, market and economic forecasting, and analyzing disease
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� " ) � "�3 1 (1 *5� " ! " ) (B.124)

and subtracting � "�3 1 from both sides: � " �5� "�3 1 ) � "43 1 (1 *5� " ! " ) �5� "�3 1 (B.125)

and dividing both sides by � "43 1: � " �6� "43 1� "43 1
) � "�3 1 (1 *7� " ! " ) �6� "43 1� "43 1

(B.126)

and combining: � " �8� "43 1� "43 1
) (1 *9� " ! " ) � 1 ) � " ! " (B.127)

We now have a “prescription,” or process, for calculating the characteristics of the random process that determines
an equity’s value. That process is, for each unit of time, subtract the value of the of the equity at the previous time
from the value of the equity at the current time, and divide this by the value of the equity at the previous time. The
root mean square5 of these values are the root mean square of the random process. The average of these values are
the average of the random process, �g�N� | . The root mean square of these values can be calculated by any convenient
means, and will be represented by �,<HZ . The average of these values can be found by any convenient means, and will
be represented by �g�N� 6. Therefore, if � " ) � , and does not vary over time:�+<�Z ) � (B.128)

which, if there are sufficiently many samples, is a metric of the equity value’s “volatility,” and:�g�,� ) ���(! " (B.129)

and if there are sufficiently many samples, the average of ! " is simply �g�,�g| , or:�g�,� ) ���(�g�,� | (B.130)

which is a metric on the equity value’s rate of “growth.” Note that this is the “effective” compound interest rate from
Equation B.122.

Equations B.128 and B.130 are important equations, since they can be used in portfolio management. For example,
Equation B.128 states that the volatility of the capital invested in many equities, simultaneously, is calculated as the

epidemics [Mod92, pp. 131]. There is continuing research into the application of an additional “non-linear” term in Equation B.124 to model
equity value non-linearities. Although there have been modest successes, to date, the successes have not proved to be exploitable in a systematic
fashion [Pet91, pp. 133]. The reason for the interest is that the logistic equation can exhibit a wide variety of behaviors, among them, “chaotic.”
Interestingly, chaotic behavior is mechanistic, but not “long term” predictable into the future. A good example of such a system is the weather. It is
an important concept that compound interest, the logistic function, and fractals are all closely related.

5In this section, “root mean square” is used to mean the variance of the normalized increments. In Brownian motion fractals, this is computed byÝ ÖYÞ ÓßÑÏà 2 � Ý 2
1 / Ý 2

2 /IÚ[Ú4Ú However, in many fractals, the variances are not calculated by adding the squares, (ie., a power of 2,) of the values—the
power may be “fractional,” ie., 3 á 2 instead of 2, for example [Sch91, pp. 130], [Fed88, pp. 178]. However, as a first order approximation, the
variances of the normalized increments of equity values can successfully be added root mean square [Cro95, kpp. 250]. The so called “Hurst”
coefficient, which can be measured, determines the process to be used. The Hurst coefficient is range of the equity values over a time interval,
divided by the standard deviation of the values over the interval, and its determination is commonly called “ âKá�ã ” analysis. As pointed out in [Sch91,
pp. 157] the errors committed in such simplified assumptions can be significant—however, for analysis of equities, squaring the variances seems to
be a reasonable simplification.

6For example, many calculators have averaging and root mean square functionality, as do many spreadsheet programs—additionally, there are
computer source codes available for both. See the programs tsrms and tsavg. The method used is not consequential.
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root mean square of the individual volatility of the equities. Equation B.130 states that the growths in the same equity
values add together linearly7.

Dividing Equation B.130 by Equation B.128 results in the two � ’s canceling, or:���,��+<�Z ) �g�,�g| (B.131)

There may be analytical advantages to “model” ���,�g| as a simple tossed coin game, (either played with a single
coin, or multiple coins, ie., many coins played at one time, or a single coin played many times8.) The number of wins
minus the number of losses, in many iterations of a single coin tossing game would be:�M� (1 �1� ) ) 2 �M� 1 (B.132)

where P is the probability of a win for the tossed coin. (This probability is traditionally termed, the “Shannon
probability” of a win.) Note that from the definition of ! " above, that � ) �g�N��| . For a fair coin, (ie., one that comes
up with a win 50% of the time,) � ) 0 � 5, and there is no advantage, in the long run, to playing the game. However, if��ë 0 � 5, then the optimal fraction of capital wagered on each iteration of the single coin tossing game, � , would be
2 �`� 1. Note that if multiple coins were used for each iteration of the game, we would expect that the volatility of the
gambler’s capital to increase as the square root of the number of coins used, and the growth to increase linearly with
the number of coins used, irregardless of whether many coins were tossed at once, or one coin was tossed many times,
(ie., our random generator, ! " would assume a binomial distribution—and if the number of coins was very large, then! " would assume, essentially, a Gaussian distribution.) Many equities have a Gaussian distribution for the random

7There are significant implications do to the fact that equity volatilities are calculated root mean square. For example, if capital is invested in �
many equities, concurrently, then the volatility of the capital will be 1ä å Ú³æAÙ^ç of an individual equity’s volatility, æ³Ù�ç , provided all the equites

have similar statistical characteristics. But the growth in the capital will be unaffected, ie., it would be statistically similar to investing all the capital
in only one equity. What this means is that capital, or portfolio, volatility can be minimized without effecting portfolio growth—ie., volatility risk
can addressed. Further, it does not make any difference, as far as portfolio value growth is concerned, whether the individual equities are invested
in concurrently, or serially, ie., if one invested in 10 different equities for 100 days, concurrently, or one could invest in only one equity, for 10
days, and then the next equity for the next 10 days, and so on. The capital growth would have the same characteristics for both agendas. (Note
that the concurrent agenda is superior since the volatility of the capital will be the root mean square of the individual equity volatilities divided by
the square root of the number of equities. In the serial agenda, the volatility of the capital will be simply the root mean square of the individual
equity volatilities.) Almost all equity wagering strategies will consist of optimizing variations on combinations of serial and concurrent agendas.
There are further applications. For example, Equation B.127 could be modified by dividing both the normalized increments, and the square of the
normalized increments by the daily trading volume. The quotient of the normalized increments divided by the trading volume is the instantaneous
growth, ÑÏèVé ê , of the equity, on a per-share basis. Likewise, the square root of the square of the normalized increments divided by the daily trading
volume is the instantaneous root mean square, æ³Ù�ç ê , of the equity on a per-share basis, ie., its instantaneous volatility of the equity. (Note that
these instantaneous values are the statistical characteristics of the equity on a per-share bases, similar to a coin toss, and not on time.) Additionally,
it can be shown that the range—the maximum minus the minimum—of an equity’s value over a time interval will increase with the square root of
of the size of the interval of time [Fed88, pp. 178]. Also, it can be shown that the number of expected stock value “high and low” transitions scales
with the square root of time, meaning that the probability of an equity value “high or low” exceeding a given time interval is proportional to the
square root of the time interval [Sch91, pp. 153].

8Here the “model” is to consider two black boxes, one with a stock “ticker” in it, and the other with a casino game of a tossed coin in it. One
could then either invest in the equity, or, alternatively, invest in the tossed coin game by buying many casino chips, which constitutes the starting
capital for the tossed coin game. Later, either the equity is sold, or the chips “cashed in.” If the statistics of the equity value over time is similar
to the statistics of the coin game’s capital, over time, then there is no way to determine which box has the equity, or the tossed coin game. The
advantage of this model is that gambling games, such as the tossed coin, have a large analytical infrastructure, which, if the two black boxes are
statistically the same, can be used in the analysis of equities. The concept is that if the value of the equity, over time, is statistically similar to the
coin game’s capital, over time, then the analysis of the coin game can be used on equity values. Note that in the case of the equity, the terms inÜ Ö Ú�. Ö can not be separated. In this case, Ü���æAÙ^ç is the fraction of the equity’s value, at any time, that is “at risk,” of being lost, ie., this is the
portion of a equity’s value that is to be “risk managed.” This is usually addressed through probabilistic methods, as outlined below in the discussion
of Shannon probabilities, where an optimal wagering strategy is determined. In the case of the tossed coin game, the optimal wagering strategy is to
bet a fraction of the capital that is equal to ÜO�æ³Ù�çk� 2 ì{0 1 [Sch91, pp. 128, 151], where ì is the Shannon probability. In the case of the equity,
since Ü���æAÙ�ç is not subject to manipulation, the strategy is to select equities that closely approximate this optimization, and the equity’s value,
over time, on the average, would increase in a similar fashion to the coin game. The growth of either investment would be equal to ÑÏèVé»�HæAÙ^ç 2,
on average, for each iteration of the coin game, or time unit of equity investment. This is an interesting concept from risk management since it
maximizes the gain in the capital, while, simultaneously, minimizing risk exposure to the capital.
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process, ! " . It may be advantageous to determine the Shannon probability to analyze equity investment strategies.
From Equation B.131: ���,��+<�Z ) �g�,� | ) 2 ��� 1 (B.133)

or: �g�,��,<HZ * 1 ) 2 � (B.134)

and: � ) ¤�ª³«¯ @ S * 1

2
(B.135)

where only the average and root mean square of the normalized increments need to be measured,using the “prescription”
or process outlined above.

Interestingly, what Equation B.133 states is that the “best” equity investment is not, necessarily, the equity that
has the largest average growth, �g�,� | . The best equity investment is the equity that has the largest growth, while
simultaneously having the smallest volatility. In point of fact, the optimal decision criteria is to choose the equity that
has the largest ratio of growth to volatility, where the volatility is measured by computing the root mean square of the
normalized increments, and the growth is computed by averaging the normalized increments.

We now have a “first order prescription” that enables us to analyze fluctuations in equity values, although we have
not explained why equity values fluctuate. For a formal presentation on the subject, see the bibliography in [Art95]
which, also, offers non-mathematical insight into the explanation.

Consider a very simple equity market, with only two people holding equities. Equity value “arbitration” (ie., how
equity values are determined,) is handled by one person posting (to a bulletin board,) a willingness to sell a given
number of stocks at a given price, to the other person. There is no other communication between the two people. If the
other person buys the stock, then that is the value of the stock at that time. Obviously, the other person will not buy the
stock if the price posted is too high—even if ownership of the stock is desired. For example, the other person could
simply decide to wait in hopes that a favorable price will be offered in the future. So the stock seller must not post a
price that the other person would consider too high, and the other person would not buy at the price if it is reasoned
that the seller’s pricing strategy will be to lower the offering price in the future, which would be a reasonable deduction
if the posted price is considered too high. What this means is that the seller must consider not only the behavior of the
other person, but what the other person thinks the seller’s behavior will be, ie., the seller must base the pricing strategy
on the seller’s pricing strategy. Such convoluted logical processes are termed “self referential,” and the implication
is that the market can never operate in a consistent fashion that can be the subject of deductive analysis [Pen89, pp.
101]9. As pointed out by [Art95, Abstract], these types of indeterminacies pervade economics10.

9Penrose, referencing Russell’s paradox, presents a very good example of logical contradiction in a self-referential system. Consider a library
of books. The librarian notes that some books in the library contain their titles, and some do not, and wants to add two index books to the library,
labeled “A” and “B,” respectively; the “A” book will contain the list of all of the titles of books in the library that contain their titles; and the “B”
book will contain the list of all of the titles of the books in the library that do not contain their titles. Now, clearly, all book titles will go into either
the “A” book, or the “B” book, respectively, depending on whether it contains its title, or not. Now, consider in which book, the “A” book or the “B”
book, the title of the “B” book is going to be placed—no matter which book the title is placed, it will be contradictory with the rules. And, if you
leave it out, the two books will be incomplete.)

10[Art95] cites the “El Farol Bar” problem as an example. Assume one hundred people must decide independently each week whether go to
the bar. The rule is that if a person predicts that more than, say, 60 will attend, it will be too crowded, and the person will stay home; if less than
60 is predicted, the person will go to the bar. As trivial as this seems, it destroys the possibility of long-run shared, rational expectations. If all
believe few will go, then all will go, thus invalidating the expectations. And, if all believe many will go, then none will go, likewise invalidating
those expectations. Predictions of how many will attend depend on others’ predictions, and others’ predictions of others’ predictions. Once again,
there is no rational means to arrive at deduced a-priori predictions. The important concept is that expectation formation is a self-referential process
in systems involving many agents with incomplete information about the future behavior of the other agents. The problem of logically forming
expectations then becomes ill-defined, and rational deduction, can not be consistent or complete. This indeterminacy of expectation-formation is by
no means an anomaly within the real economy. On the contrary, it pervades all of economics and game theory [Art95].
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What the two players do, in absence of a deductively consistent and complete theory of the market, is to rely
on inductive reasoning. They form subjective expectations or hypotheses about how the market operates. These
expectations and hypothesis are constantly formulated and changed, in a world that forms from others’ subjective
expectations. What this means is that equity values will fluctuate as the expectations and hypothesis concerning the
future of equity values change11. The fluctuations created by these indeterminacies in the equity market are represented
by the term � " ! " in Equation B.124, and since there are many such indeterminacies, we would anticipate ! " to have a
Gaussian distribution.

This is a rather interesting conclusion, since analyzing the actions of aggregately many “agents,” each operating on
subjective hypothesis in a market that is deductively indeterminate, can result in a system that can not only be analyzed,
but optimized.

The only remaining derivation is to show that the optimal wagering strategy is, as cited above:� ) �,<HZ ) 2 �M� 1 (B.136)

where � is the fraction of a gambler’s capital wagered on each toss of a coin that has a Shannon probability, � , of
winning.

Following [Rez94, pp. 450], consider that the gambler has a private wire into the future who places wagers on the
outcomes of a game of chance. We assume that the side information which he receives has a probability, � , of being
true, and of 1 �8� , of being false. Let the original capital of gambler be ��> 0 ? , and ��>T� ? his capital after the � ’th
wager. Since the gambler is not certain that the side information is entirely reliable, he places only a fraction, � , of
his capital on each wager. Thus, subsequent to � many wagers, assuming the independence of successive tips from the
future, his capital is: � ( � ) ) (1 *9� ) í (1 �8� ) î � (0) (B.137)

where ï is the number of times he won, and � ) �I�6ï , the number of times he lost. These numbers are, in general,
values taken by two random variables, denoted by ² and ð . According to the law of large numbers:

lim&,ñ�ò 1� ² ) � (B.138)

and:

lim&,ñ�ò 1� ð )Mó�) 1 �1� (B.139)

The problem with which the gambler is faced is the determination of � leading to the maximum of the average
exponential rate of growth of his capital. That is, he wishes to maximize the value of:� ) lim&,ñ�ò 1� ln

� ( � )� (0)
(B.140)

with respect to � , assuming a fixed original capital and specified � :� ) lim&,ñ�ò ² � ln (1 *5� ) * ð � ln (1 �6� ) (B.141)

or: � ) � ln (1 *7� ) * ó ln (1 �8� ) (B.142)

11Interestingly, the system described is a stable system, ie., if the players have a hypothesis that changing equity positions may be of benefit, then
the equity values will fluctuate—a self fulfilling prophecy. Not all such systems are stable, however. Suppose that one or both players suddenly
discover that equity values can be “timed,” ie., there are certain times when equities can be purchased, and chances are that the equity values will
increase in the very near future. This means that at certain times, the equites would have more value, which would soon be arbitrated away. Such a
scenario would not be stable.
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which, by taking the derivative with respect to � , and equating to zero, can be shown to have a maxima when:� �� � ) � (1 *5� ) m 3 1 (1 �5� )1 3 mH� (1 �1� ) (1 �6� )1 3 m 3 1 (1 *5� ) m ) 0 (B.143)

combining terms: � (1 *7� ) m 3 1 (1 �6� )1 3 m�� (1 �6� ) (1 �6� ) m (1 *7� ) m ) 0 (B.144)

and splitting: � (1 *5� ) m 3 1 (1 �5� )1 3 m ) (1 �6� ) (1 �6� ) m (1 *7� ) m (B.145)

then taking the logarithm of both sides:

ln ( � ) * ( �G� 1) ln (1 *7� ) * (1 �6� ) ln (1 �6� ) ) ln (1 �6� ) �1� ln (1 �5� ) *5� ln (1 *5� ) (B.146)

and combining terms:

( �G� 1) ln (1 *7� ) �6� ln (1 *5� ) * (1 �1� ) ln (1 �6� ) *6� ln (1 �5� ) ) ln (1 �1� ) � ln ( � ) (B.147)

or:

ln (1 �5� ) � ln (1 *7� ) ) ln (1 �1� ) � ln ( � ) (B.148)

and performing the logarithmic operations:

ln

t
1 �6�
1 *5� u ) ln

t
1 �1�� u (B.149)

and exponentiating:

1 �6�
1 *5� ) 1 �6�� (B.150)

which reduces to: � (1 �5� ) ) (1 �6� ) (1 *5� ) (B.151)

and expanding: �M�6�{� ) 1 �1�{���1�M*5� (B.152)

or: � ) 1 �1�M*5� (B.153)

and, finally: � ) 2 �G� 1 (B.154)
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B.2.31 tsshannonfundamental

Source tsshannonfundamental.c, is for finding the fundamental Shannon probability of a time series, given a stocks
value, and the number of shares traded. The value of a sample in the time series is added to the cumulative sum of
the samples, and the square of the value is added to the sum of the squares to make a new time series by dividing the
cumulative sum by the number of samples, and the square root of the sum of the squares divided by the number of
samples for each sample. The new time series is printed to stdout.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least two fields, which is the data value of the sample, followed by the
volume of the sample, but may contain many more fields—if the record contains many more fields, then the first field
is regarded as the sample’s time, and the next to the last field the value, with the last field as the sample’s volume at
that time.

Note that since the average of the normalized increments of a time sampled time series goes up linearly on the
number of samples in a sampled interval, and the root mean square of the normalized increments go up with the square
root of the of the number of samples in a sampled interval, it would be reasonable to assume that that the average of
the normalized increments would go up linearly with the trading volume of a stock, and the root mean square to go up
with the square root of the trading volume of a stock.

B.2.32 tsnumber

Source tsnumber.c, is for numbering the records of a time series. The new time series is printed to stdout.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

B.2.33 tsunshannon

Source tsunshannon.c, is for calculating the Shannon information capacity, (and optimal gain,) given the Shannon
probability. See [Sch91, pp. 128, 151]

This program is the inverse of the tsshannon program, and solves the equation:¸ (� ) ) 1 *���R� 2 (� ) * (1 ��� ) �R� 2 (1 ��� ) (B.155)

where the optimal gain is calculated as 2
� B ��C , and � , the fraction of capital wagered, is 2��� 1.

From [Sch91, pp. 151]:� ) 0 � 55, 2
� B 0 J 55 C ) 0 � 005, (probably a typo, meaning 1 � 005) by this program, 2

� B 0 J 550000C ) 20 J 007226 ) 1 � 005021.

B.2.34 tskurtosis

Source tskurtosis.c is for finding the coefficient of excess kurtosis of a time series. The value of a sample in the time
series is analyzed to find the running coefficient of excess kurtosis to make a new time series. The new time series is
printed to stdout.

The method used is described in [She69, pp. 563]:� 4 ) < 4< 2
2

(B.156)

where:
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< ¯ ) 1� &� Q � 1

� Q >.� Q ? ¯ (B.157)

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tskurtosis program appears in Figure B.31.

B.2.35 tskurtosiswindow

Source tskurtosiswindow.c is for finding the coefficient of excess kurtosis of a time series. The value of a sample in
the time series is analyzed to find the running coefficient of excess kurtosis to make a new time series. The new time
series is printed to stdout.

The method used is described in [She69, pp. 563]:� 4 ) < 4< 2
2

(B.158)

where:

< ¯ ) 1� &� Q � 1

� Q >.� Q ? ¯ (B.159)

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tskurtosiswindow program appears in Figure B.32.

B.2.36 tsgain

Source tsgain.c is for finding the gain of a time series. The value of a sample in the time series added to the cumulative
sum of the samples, and is squared and added to the cumulative sum of squares, the Shannon probability, � , calculated
using: � ) ¤�ª³«¯ @ S * 1

2
(B.160)

where �+<HZ is the root mean square of the marginal returns, and �g�N� is the average of the marginal returns, and the
gain, � , calculated using: � ) (1 *6�,<HZ ) m � (1 �1�,<HZ ) m 3 1 (B.161)

to make a new time series. The new time series is printed to stdout.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
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Figure B.31: Example output of the tskurtosis pro-
gram, using simulated Hurst coefficients of 0.0, 0.1,
0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the tsfBm
program.
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Figure B.32: Example output of the tskurtosis pro-
gram, using simulated Hurst coefficients of 0.0, 0.1,
0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the tsfBm
program.

fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsgain program appears in Figure B.33.

B.2.37 tsgainwindow

Source tsgainwindow.c is for finding the windowed gain of a time series. The value of a sample in the time series
added to the cumulative sum of the samples, and is squared and added to the cumulative sum of squares, the Shannon
probability, � , calculated using: � ) ¤�ª³«¯ @ S * 1

2
(B.162)

where �+<HZ is the root mean square of the marginal returns, and �g�N� is the average of the marginal returns, and the
gain, � , calculated using:
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� ) (1 *6�,<HZ ) m � (1 �1�,<HZ ) m 3 1 (B.163)

to make a new time series. The new time series is printed to stdout.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsgainwindow program appears in Figure B.34.
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"tscoin.tsgain"

Figure B.33: Example output of the tsgain program,
using the output of the tscoin program, with a Shannon
probability of 0.6, which is shown in Figure B.44 in
Section B.3.8.
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Figure B.34: Example output of the tsgainwindow
program, using the output of the tscoin program, with
a Shannon probability of 0.6, which is shown in Fig-
ure B.44 in Section B.3.8.

B.2.38 tsscalederivative

Source tsscalederivative.c, for taking the derivative of a time series. The value of a sample in the time series is
subtracted from the previous sample in the time series. The derivative time series is printed to stdout.
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The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ’#’ character as the first non white space character
in the record. Data records must contain at least two fields, which are the time followed by the data value of the sample
at that time, but may contain many fields—if the record contains many fields, then the first field is regarded as the
sample’s time, and the last field as the sample’s value at that time.

An example output from the tsscalederivative program appears in Figure B.35.

B.2.39 tsrootmeanscale

Source tsrootmeanscale.c is for finding the root mean of a time series, at different scales. The number of consecutive
samples of like movements in the time series is tallied, at different scales, and the resultant value of the distribution,
as calculated by using the first value in the distribution, the running mean of the distribution, and the least squares fit
of the distribution, is printed to stdout-a simple random walk fractal with a Gaussian/normal distributed increments
would be the combinatorial probabilities, 0 � 5, 0 � 25, 0 � 125, 0 � 625, �����

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsrootmeanscale program appears in Figure B.36.

B.3 Fractal Time Series Simulation Utilities

Note: these programs use the following functions from other references:

ran1: which returns a uniform random deviate between 0.0 and 1.0. See [PFTV88, pp. 210], referencing Knuth.

gasdev: which returns a normally distributed deviate with zero mean and unit variance, using ran1 () as the source of
uniform deviates. See [PFTV88, pp. 217].

gammln: which returns the log of the results of the gamma function. See [PFTV88, pp. 168].

romberg: which returns the integral of a function, using iterate (), and interpolate (). See [PFTV88, pp. 124].

iterate: which computes the n’th stage of refinement of an extended iterate rule using trapezoid iteration. See [PFTV88,
pp. 120].

interpolate: which interpolates the y value for point x using polynomial interpolation. See [PFTV88, pp. 90].

B.3.1 tsbrownian

Source tsbrownian.c, brownian noise generator—generates a time series. The idea is to produce a 1 DN� squared power
spectrum distribution by running a cumulative sum on white noise. See [Sch91, pp. 128].

An example output from the tsbrownian program appears in Figure B.37.

B.3.2 tsblack

Source tsblack.c, black noise generator—generates a time series. The idea is to produce a 1 DN� cubed power spectrum
distribution by running a cumulative sum on pink noise which is made by running a cumulative sum on relaxation
processes which are generated by a white noise generator. See [Sch91, pp. 126].

An example output from the tsblack program appears in Figure B.38.
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Figure B.35: Example output of the tsscalederivative
program, using simulated Hurst coefficients of 0.0,
0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the
tsfBm program, and the tshurst program in Figure B.4.
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Figure B.36: Example output of the tsrootmeanscale
program, using simulated Hurst coefficients of 0.0,
0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, as simulated by the
tsfBm program.

B.3.3 tsfractional

Source tsfractional.c, fractional brownian noise generator—generates a time series. The idea is to produce a 1 DN� squared
power spectrum distribution by running a cumulative sum on a Gaussian power spectrum distribution. See [Fed88, pp.
172].

An example output from the tsfractional program appears in Figure B.39.

B.3.4 tsgaussian

Source tsgaussian.c, Gaussian noise generator—generates a time series. The idea is to produce a Gaussian power
spectrum distribution.

An example output from the tsgaussian program appears in Figure B.40.
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Figure B.37: Example output of the tsbrownian pro-
gram, using 1500 records. This is a plot of the fre-
quency histogram.
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Figure B.38: Example output of the tsblack program,
using 1500 records. This is a plot of the frequency
histogram.

B.3.5 tswhite

Source tswhite.c, white noise generator—generates a time series. The idea is to produce a flat power spectrum
distribution.

An example output from the tswhite program appears in Figure B.41.

B.3.6 tspink

Source tspink.c, pink noise generator—generates a time series. The idea is to produce a 1 DN� power spectrum distribution
by running a cumulative sum on relaxation processes which are generated by a white noise generator. See [Sch91, pp.
122].

An example output from the tspink program appears in Figure B.42.

B.3.7 tsunfairbrownian

Source tsunfairbrownian.c, unfair returns of a time series. The idea is to produce the returns of a time series which
is weighted unfairly, by a Shannon probability, p, or alternately, a fraction of reserves to be wagered on each time

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 98



B.3. FRACTAL TIME SERIES SIMULATION UTILITIES

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-40 -30 -20 -10 0 10 20 30 40

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution

"tsfractional.tsnormal"
"tsfractional.tsnormal-f"

Figure B.39: Example output of the tsfractional pro-
gram, using 1500 records. This is a plot of the fre-
quency histogram.
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Figure B.40: Example output of the tsgaussian pro-
gram, using 1500 records. This is a plot of the fre-
quency histogram.

increment. The input time series is presumed to have a Brownian distribution. The main function of this program is
regression scenario verification—given an empirical time series, a Shannon probability, or a “wager” fraction, (which
were probably derived from the program tsshannon,) speculative market pro forma performance can be analyzed. The
cumulative sum process is Brownian in nature.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsunfairbrownian program appears in Figure B.43.

B.3.8 tscoin

Source tscoin.c, brownian noise generator, with unfair bias, and cumulative sum—generates a time series. The idea
is to produce a 1 D�� squared power spectrum distribution by running a cumulative sum on white noise. The program
accepts an unfair bias and a wager factor. See [Sch91, pp. 128].
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Figure B.41: Example output of the tswhite program,
using 1500 records. This is a plot of the frequency
histogram.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1.5 -1 -0.5 0 0.5 1 1.5

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution

"tspink.tsnormal"
"tspink.tsnormal-f"

Figure B.42: Example output of the tspink program,
using 1500 records. This is a plot of the frequency
histogram.

The discreet time formula is: � " ) � "43 1 *7��� �7�0� "�3 1 (B.164)

where f is the fraction of the capital to be wagered, and � is a uniform random deviate between 0.0 and 1.0, with the
mean offset appropriately to provide a Shannon probability, � . For the logistic, function, the discreet time formula is:� " ) � "43 1 *7���(�7��� "43 1 *5����� 2"43 1 (B.165)

An example output from the tscoin program appears in Figure B.44.

B.3.9 tscoins

Source tscoins.c, fractional brownian noise generator, with unfair bias, and cumulative sum—generates a time series.
The idea is to produce a 1 DN� squared power spectrum distribution by running a cumulative sum on a Gaussian
power spectrum distribution. The program accepts an unfair bias and a wager factor. See [Fed88, pp. 172]. Uses
Newton—Raphson method for an iterative solution for the probability, � .
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Figure B.43: Example output of the tsunfairbrownian
program, changing the wager fraction from 0.2 to 0.1.
The original time series data set was produced by the
tscoin program using a Shannon probability of 0.6,
and is shown in Figure B.44, corresponding to a wager
fraction, � , of � ) 2 �G� 1 ) 2 � 0 � 6 � 1 ) 0 � 2.
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Figure B.44: Example output of the tscoin program,
using a Shannon probability of 0.6.

The discreet time formula is: � " ) � "43 1 *7��� �7�0� "�3 1 (B.166)

where f is the fraction of the capital to be wagered, and � is a Gaussian function, with the mean offset appropriately
to provide a Shannon probability, � . For the logistic function, the discreet time formula is:� " ) � "43 1 *7���(�7��� "43 1 *5����� 2"43 1 (B.167)

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
The name, tscoins, was chosen since pitching many coins, at once, and counting the number of heads, many times,

will approach a gaussian distribution, if the number of coins is large, and the number of times is large. [Fed88, pp.
154]
The general outline of this program is:
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1. given the Shannon probability, compute the abscissa value that divides the area under the normal curve, into
two sections, such that the area to the left of the value, divided by the total area under the normal curve is the
Shannon probability—a Newton-Raphson iterated approach using Romberg integration to find the area is used
for this

2. for each record:

(a) compute a gaussian distributed random number

(b) add the computed abscissa value to the gaussian distributed number

(c) multiply this number by the fraction of cumulative sum to be wagered

(d) multiply this number by the cumulative sum

(e) add this number to the cumulative sum

This program will require finding the value of the normal function, given the standard deviation. The method used
is to use Romberg/trapezoid integration to numerically solve for the value.

This program will require finding the functional inverse of the normal, ie., Gaussian, function. The method used
is to use Romberg/trapezoid integration to numerically solve the equation:! ( � ) ) � �

0

1
2  � ~"! 22

� �#* 0 � 5 (B.168)

which has the derivative: � ( � ) ) 1
2  � ~"# 2

2 (B.169)

Since !�>$� ? is known, and it is desired to find � ,! ( � ) � � �
0

1
2  � ~"! 22

� � * 0 � 5 ) � ( � ) ) 0 (B.170)

and the Newton-Raphson method of finding roots would be:� &(' 1 ) � & � � ( � )� ( � )
(B.171)

An example output from the tscoins program appears in Figure B.45. The distribution of the normalized increments
appears in Figure B.46.

B.3.10 tsfBm

Source tsfBm.c, fractional brownian noise generator—generates a time series. The idea is to produce a programmable
power spectrum distribution. See [Pet91, pp. 211], or [Fed88, pp. 173], referencing Mandelbrot and Wallis, 1969.

Example outputs from the tsfBm program appear in figures B.11, B.3, and B.4.

B.3.11 tslogistic

Source tslogistic.c, logistic function generator—generates a time series. The idea is to produce a function of the form� >Y� ? ) ¶ÏD > 1 *6� 3 B ¤ " ' P C ? . See [Mor91, pp. 100], or [Mod92, pp. 230].
An example output from the tslogistic program appears in Figure B.47.
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Figure B.45: Example output of the tscoins program,
using a Shannon probability of 0.6.
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Figure B.46: Example output of the tscoins program,
normalized histogram of the normalized increments
of the time series data shown in Figure B.45. The
area under the two curves is identical.

B.3.12 tsdlogistic

Source tsdlogistic.c, discreet logistic function generator—generates a time series. The idea is to iterate the function�]>T� ? ) �]>Y�s� 1 ? �N>Y��*6W¿���K>Y�#� 1 ?A? . See [Pet91, pp. 121].
As a simple set of examples:

tsdlogistic -a 2 -b -2 100

tsdlogistic -a 2.4 -b -2.4 100

tsdlogistic -a 3 -b -3 100

tsdlogistic -a 3.4495 -b -3.4495 100

tsdlogistic -a 3.544 -b -3.544 100

tsdlogistic -a 3.5688 -b -3.5688 100

tsdlogistic -a 3.5696 -b -3.5696 100
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tsdlogistic -a 3.5699456 -b -3.5699456 100

An example output from the tsdlogistic program appears in Figure B.48.
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Figure B.47: Example output of the tslogistic pro-
gram, using the command “tslogistic 1 1 1 100 >
filename.”
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Figure B.48: Example output of the tsdlogistic pro-
gram, using the command “tsdlogistic -a 4 -b -1 1000
> filename.”

B.3.13 tsstockwager

Source tsstockwager.c, stock capital investment simulation. The idea is to simulate an optimal wagering strategy,
dynamically determining the Shannon probability by counting the up movements in a stock’s value in a window from
the stock’s value time series, and using this to compute the fraction of the total capital to be invested in the stock for
the next iteration of the time series, which is 2 �7� 1, where � is the Shannon probability. See, [Sch91, pp. 129, 151].
The assumption is that a stock’s price time series could be modeled as a fixed increment fractal.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsstockwager program appears in Figure B.49.
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B.3.14 tsbinomial

Source tsbinomial.c, is for generating binomial distribution noise, with unfair bias, and cumulative sum—generates
a time series. The idea is to produce a 1 D�� squared power spectrum distribution by running a cumulative sum on a
binomial distribution. The program accepts a an unfair bias and a wager factor. See [Fed88, pp. 154].

This program is a modification of the program tscoin. The wager fraction is computed by first calculating the
optimal wager fraction, � ) 2 �M� 1, where � is the Shannon probability, and � is the optimal wager fraction, (which
is the root mean square ) standard deviation of the normalized increments of the time series,) and then reducing this
value by the standard deviation of the binomial distribution, which is the square root of the number of elements in the
distribution, ie., the root mean square of the normalized increments of the cumulative sum is the same as the standard
deviation of the binomial distribution. See [Fed88, pp. 155].

An example output from the tsbinomial program appears in Figure B.50.
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Figure B.49: Example output of the tsstockwager
program, using the tscoin program with a Shannon
probability of 0.6, which is shown in Figure B.44.
The program tsunfairbrownian was used to change
the wager of the output of the tscoin program from
0.2 to 0.1. This file was used as the input to the
tsstockwager program, and is shown in Figure B.43.
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Figure B.50: Example output of the tsbinomial pro-
gram, using 1500 records. This is a plot of the fre-
quency histogram.
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B.3.15 tsunfairfractional

Note: Conceptually, this program is used to “weight” the returns of a time series with a Gaussian distribution, ie.,
produce a fractional Brownian motion time series, as opposed to a Brownian distribution which would produce a
Brownian time series, as produced by the program tsunfairbrownian. Unfortunately, the precision of the results were
not encouraging, and the concept was abandoned. It is left in the program inventory for future reference.

Source tsunfairfractional.c, unfair returns of a time series. The idea is to produce the returns of a time series which
is weighted unfairly, by a Shannon probability, p. The input time series is presumed to have a Gaussian distribution.
The main function of this program is regression scenario verification—given an empirical time series, a Shannon
probability, and a “wager” fraction, (which were probably derived from the program tsshannon,) speculative market
pro forma performance can be analyzed. Uses Newton—Raphson method for an iterative solution for the inverse
function of the normal function. Also iterates, using Romberg integration, to calculate the cumulative interval value of
the normal function.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
As a reference on Romberg Integration, see [PFTV88, pp. 124].
As a reference on trapezoid iteration, see [PFTV88, pp. 120].
As a reference on polynomial interpolation, see [PFTV88, pp. 90].
An example output from the tsunfairfractional program appears in Figure B.51.

B.3.16 tsintegers

Source tsintegers.c, integers function generator—generates a time series.
An example output from the tsintegers program appears in Figure B.52.

B.3.17 tsshannonstock

Source tsshannonstock.c, is for simulating the gains of a stock investment using Shannon probability. See [Sch91, pp.
128, 151].
the algorithm used is:� Let °±>Y� ? be the amount of capital at time � .� Let ²l>T� ? be the amount of the capital wagered at time � .� Let ��>T� ? be the value of the stock at time � .
Let � be the fraction of the capital, wagered at any time, and assumed not to be a function of time.² ( � ) ) �i° ( �p� 1) (B.172)

° ( � ) ) ° ( �K� 1) *7² ( � ) � ( � ) �6� ( �p� 1)� ( �p� 1)
(B.173)

° ( � ) ) ° ( �s� 1) *5�i° ( �p� 1)
� ( � ) �6� ( �p� 1)� ( �p� 1)

(B.174)
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Figure B.51: Example output of the tsunfairfractional
program, using the tscoin program with a Shannon
probability of 0.6, which is shown in Figure B.44.
The program tsunfairbrownian was used to change
the wager of the output of the tscoin program from
0.2 to 0.1. This file was used as the input to the tsun-
fairfractional program, and is shown in Figure B.43.
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Figure B.52: Example output of the tsintegers pro-
gram, using 1500 records.

° ( � )° ( �K� 1) ) 1 *5� � ( � ) �6� ( �s� 1)� ( �s� 1)
(B.175)

If it is assumed that the stock’s price time series can be represented as a Brownian noise fractal, then the optimum
value of � would be: � ) 2 �G� 1 (B.176)

where � is the Shannon probability of the time series, found by:� ) ¤�ª³«¯ @ S * 1

2
(B.177)
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where avg is the average, and rms is the root mean square, of the normalized increments of the stock’s price time series,
which can be calculated by � ( � ) �6� (1 � 1)� ( �]� 1)

(B.178)

for each data point in the time series.
Represented in pseudo code:

1. for each data point in the stock’s price time series, find the normalized increment from the following equation:� ( � ) �5� (1 � 1)� ( �]� 1)
(B.179)

2. calculate the average of all normalized increments in the stock’s price time series by the following equation:

�g�N� ) 1� &� Q � 0

� ( � ) �6� (1 � 1)� ( �s� 1)
(B.180)

3. calculate the root mean square of all normalized increments in the stock’s price time series by the following
equation:

�,<HZ 2 ) 1� &� Q¡� 0

t � ( � ) �6� (1 � 1)� ( �]� 1) u 2

(B.181)

4. calculate the Shannon probability, � , by the following equation:

� ) ¤�ªA«¯ @ S * 1

2
(B.182)

5. calculate the optimal fraction of the capital to be wagered, � , by the following equation:� ) 2 �M� 1 (B.183)

6. since the stock’s price time series already has a value rms as the root mean square of the normalized increments,
for the optimal wagering strategy, the fraction should be divided by rms to provide a multiplier:

<�´ �R��Xµ���RXY� � ) ��+<HZ (B.184)

so that: ° ( � )° ( �K� 1) ) 1 *6<´±�Y��Xµ�i�YXY� � � � ( � ) �5� (1 � 1)� ( �s� 1)
(B.185)

What this means is that if you have capital, (ie, a portfolio,) °±>Y� ? , the fraction of °�>T� ? that should be wagered with
each iteration of the game, (ie., time unit,) would be twice the Shannon probability minus unity, where the capital,
(or portfolio,) is the sum total of cash on hand, ¸�>T� ? , and the current value of stocks held, ��>T� ? � c , where c is the
number of stocks held, or: ° ( � ) ) ¸ ( � ) *5� ( � ) �(c (B.186)
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It would be convenient, from a comparative standpoint, to let °±> 0 ? , the beginning capital, be the same as ��> 0 ? , the
price of the stock at the beginning of the simulation, so that the wagering strategy can be compared to the price of the
stock over time.c will be adjusted for the next game, (time unit,) such that:c ( �#* 1) ) ° ( � ) �+�� ( � ) (B.187)

where, as above, � is the fraction of capital, (portfolio,) to be wagered:� ) �i�+�g¶���XY·+� ) 2 �M� 1 ) (2 �,ZÏ���g�#� ·,� ) � 1 (B.188)

It would, additionally, for the simulation, be convenient, from an information-theoretic standpoint, to let � be a
fraction, (either larger or smaller,) of the root mean square value of the normalized increments of the stock’s price time
series, ie., let � ) !��+�,<HZ , where ! is a constant value, (usually around unity,) and �,<HZ is the average of the root
mean square value of the normalized increments of the stock’s price time series. This would allow a comparison of
the stock’s price, over time, to the capital, over time, with a wagering strategy that is optimal for a stock price that is
characterized as a Brownian motion fractal over time.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

An example output from the tsshannonstock program appears in Figure B.53.

B.3.18 tsmarket

Source tsmarket.c, is for market simulation by fractional brownian noise generation, with unfair bias, and cumulative
sum—generates a time series. The idea is to produce a 1 D�� squared power spectrum distribution for each company
in an industrial market by running a cumulative sum on a Gaussian power spectrum distribution. The aggregate of
all companies participating in the market is obtained by summing the production of the individual companies. The
program accepts an unfair bias and a wager factor, and the number of companies in the market. See [Fed88, pp. 172].
Uses Newton—Raphson method for an iterative solution for the probability, � .

As an example, consider the Semiconductor Industry Association (SIA,) historical time series, (see the direc-
tory ../markets/ic.namerica,) data for the integrated circuit marketplace in North America:� From the program tsshannonwindow, the Shannon probability, � ) 0 � 758207.� From the programs tsfraction and tsrms, the root mean square value of the normalized increments, �+<�Z )

0 � 087396.� From the programs tsfraction and tsavg, the average of the normalized increments, �g�,� ) 0 � 045132.

Interestingly, the optimal rms value would be �,<HZ ) 2 ��� 1 ) 0 � 516414, if the SIA time series could be represented
a Brownian fractal, (ie., represented as a gambler’s capital time series in an unfair coin toss game. See [Sch91, pp.
128].)
For this analysis, it is assumed that:

1. Each company acts independently, and will receive cash flow from the market.

2. Some of this cash flow will be diverted into new product manufacturing, development, etc., which in turn will go
back into the market, which in turn will create cash flow, and so on-but there is a random element in this process.
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3. Analysis of the SIA graph yields that it is probably a fractal, (fractional Brownian variety,) with a fairly accurate
distribution of the normalized increments that appears to be Gaussian in nature, a range that appears to increase
with the square root of time, and an exponential curvature. These are indicative of system that can be modeled
by as a gambler’s capital in an unfair coin toss game, or Brownian fractal.

To analyze the SIA time series, it is interesting to note that the avg is 0 � 045132, which would be the sum total of
the average of all companies in the market. If the individual companies are assumed to be operating optimally, (and
all identical,) then the �,<HZ would be the square root of the �g�,� , which is 0 � 212442934. This would be the amount
“wagered” in each iteration of the unfair coin game, (which is a Brownian fractal,) and the Shannon probability would
be 0 � 212442934 ) 2 �M� 1, or � ) 0 � 606221467.
Using the program tsmarket:
tsmarket -p 0.6 -c n 2500 > data
The variable n was altered to approximate the statistical data of the SIA numbers. The best seems to be with � ) 5:

from tsshannonwindow, � ) 0 � 744495

from tsfraction and tsrms, �,<HZ ) 0 � 102880

from tsfraction and tsavg, �g�,� ) 0 � 050307

which compares favorably, to about º 5%, with the original SIA numbers:

from tsshannonwindow, � ) 0 � 758207

from tsfraction and tsrms, �,<HZ ) 0 � 087396

from tsfraction and tsavg, �g�,� ) 0 � 045132

which would tend to indicate that the constituent companies in the aggregate are operating optimally, and that the
measurements on the aggregate sum of the market, ie., the SIA numbers, would indicate a higher Shannon probability,� , and a smaller root mean square value of the normalized increments, rms.
The reason is as follows:

1. Consider a market that is supplied by a single company. The time series for the market could be represented, at
least statistically, as an unfair coin tossing game, (see the tscoins program,) with each time unit of manufacturing
going into the marketplace, the marketplace returning cash to the company’s P & L, which is distributed to the
company’s operations to manufacture more product, and so on. But there is an element of randomness in this
process that represents the aggregate of customer desires and market forces-this is assumed be a central limit
phenomena, ie., it can be represented as a random variable with a normal, (Gaussian,) distribution. Note, that like
the gambler, the company’s operations managers are continually wagering on the future-and each wager may, or
may not prove to be a successful. It is further assumed that the company will commit capital to enhancing its
market position, (ie., increase manufacturing capacity, develop new products, etc.,) and, as above, the decision
to do so will contain an element of risk, and will sometimes work out, and sometimes not.

2. Now consider that another company decides to participate in the marketplace-under the same scenario, above.
If everything else is equal, we would expect the market, eventually, to be divided equally between the two
companies, or each company would have half the market. When the second company was added to the
market, the first company’s contribution to the marketplace was cut in half-and its root mean square value of its
normalized increments contribution to the marketplace was also cut in half. The second company’s contribution
to the marketplace is the remaining one half, and its contribution to the root mean square value of its normalized
increments is the same as the first company’s. (The point is that the contributions to the marketplace add linearly,
but the contribution of to the normalized increments of the marketplace add root mean square-so we would
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expect the root mean square value of the normalized increments to decrease when the number of participants
in the marketplace changes from one to two-since the value of the normalized increments for each company
is proportional to the contribution to its the market.) Think of it as a Gaussian noise generator. If we cut the
root mean square value (amplitude,) of the noise generator in one half, and add an identical noise generator, the
resulting noise output of both generators will be the square root of two, divided by two.

3. Or in general, the root mean square value of the normalized increments of a marketplace time series will be
proportional to one over the square root of the number of companies in the market.

The general outline of this program is:

1. given the Shannon probability, compute the abscissa value that divides the area under the normal curve, into
two sections, such that the area to the left of the value, divided by the total area under the normal curve is the
Shannon probability—a Newton-Raphson iterated approach using Romberg integration to find the area is used
for this

2. for each record:

(a) compute a gaussian distributed random number

(b) add the computed abscissa value to the gaussian distributed number

(c) multiply this number by the fraction of cumulative sum to be wagered

(d) add this number to the cumulative sum for the company

(e) add this number to the temporary aggregate sum of the market

3. add the temporary aggregate sum of the market to the aggregate sum of the market

This program will require finding the value of the normal function, given the standard deviation. The method used
is to use Romberg/trapezoid integration to numerically solve for the value.

This program will require finding the functional inverse of the normal, ie., Gaussian, function. The method used
is to use Romberg/trapezoid integration to numerically solve the equation:! ( � ) ) � �

0

1
2  � ~"! 22

� �#* 0 � 5 (B.189)

which has the derivative: � ( � ) ) 1
2  � ~"# 2

2 (B.190)

Since !�>$� ? is known, and it is desired to find � ,! ( � ) � � �
0

1
2  � ~"! 22

� � * 0 � 5 ) � ( � ) ) 0 (B.191)

and the Newton-Raphson method of finding roots would be:�2&(' 1 ) �2&�� � ( � )� ( � )
(B.192)

An example output from the tsmarket program appears in Figure B.54.
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Figure B.53: Example output of the tsshannonstock
program, the input was produced by the tsmarket pro-
gram, with a Shannon probability of 0.6, and 5 com-
panies participating in the market, and is shown in
Figure B.54.
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Figure B.54: Example output of the tsmarket program
with a Shannon probability of 0.6 and 5 companies
participating in the market, using 500 records.

B.3.19 tsstock

Source tsstock.c, is for simulating the gains of a stock investment using Shannon probability.
The input file structure is a text file consisting of records, in temporal order, one record per time series sample.

Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

A large mathematical infrastructure of analytical techniques and methodologies have been dedicated to the analysis
of equity market time series. See, [Cro95, pp. 249], [Sch91, pp. 126], [Pet91], [Lew92, pp. 196, 269, 273,
329], [Cas90, pp. 195, 214], [Cas94, pp. 82, 106, 102, 255, 269], [Mod92, pp. 155].

In addition, a large infrastructure of information—theoretic techniques have been suggested for optimal speculative
wagering strategies in the equity markets, based, generally, on the suggested interpretation in the Kelly reference12.

12“New Interpretation of Information Rate,” J. L. Kelly, Jr., Bell System Technical Journal, Vol. 35, (July, 1956,) pp. 917.
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See, [Pie80, pp. 270], [Rez94, pp. 450], [Ash65, pp. 9], [SW49, pp. 39], [KF88, pp. 155], [Sch91, pp. 151].
This program is an investigation into whether a stock price time series could be modeled as a fractal Brownian

motion time series, and, further, whether, a mechanical wagering strategy could be devised to optimize portfolio growth
in the equity markets.

Specifically, the paradigm is to establish an isomorphism between the fluctuations in a gambler’s capital in the
speculative unfair tossed coin game, as suggested in [Sch91], and speculative investment in the equity markets. The
advantage in doing this is that there is a large infrastructure in mathematics dedicated to the analysis and optimization
of parlor games, specifically, the unfair tossed coin game. See Schroeder reference.

Currently, there is a repository of historical price time series for stocks available at:

http://www.ai.mit.edu/stocks.html

that contains the historical price time series of many hundreds of stocks. The stock’s prices are by close of business
day, and are updated daily.

The stock price history files in the repository are available via anonymous ftp, (ftp.ai.mit.edu,) and the programs
tsfraction, tsrms, tsavg, and tsnormal can be used to verify that, as a reasonable first approximation, stock prices can be
represented as a fractional Brownian motion fractal, as suggested by Schroeder and Crownover. (Note the assumption
that, as a first approximation, a stock’s price time series can be generated by independent increments.)

This would tend to imply that there is an isomorphism between the underlying mechanism that produces the
fluctuations in speculative stock prices and the the mechanism that produces the fluctuations in a gambler’s capital that
is speculating on iterations of an unfair tossed coin.

If this is a reasonably accurate approximation, then the underlying mechanism of a stock’s price time series can
be analyzed, (by “disassembling” the time series,) and a wagering strategy, similar to that of the optimal wagering
strategy in the iterated unfair coin tossing game, can be formulated to optimize equity market portfolio growth.

As a note in passing, it is an important and subtile point, that there are “operational” differences in wagering on the
iterated unfair coin game, and wagering on a stock. Specifically, in the coin game, a fraction of the gambler’s capital
is wagered on the speculative outcome of the toss of the coin, and, depending on whether the toss of the coin resulted
in a win, (or a loss,) the wager is added to the gambler’s capital, (or subtracted from it,) respectively. However, in
the speculative stock game, the gambler wagers on the anticipated fluctuations of the stock’s price, by purchasing the
stock. The important difference is that the stock gambler does not win or loose an amount that was equal to the stock’s
price, (which was equivalent to the wager in the iterated unfair coin game,) but only the fluctuations of the stock’s
price, ie., it is an important concept that a portfolio’s value (which has an investment in a stock,) and the stock’s price
do not, necessarily, “track” each other.

In some sense, wagering on a stock is not like a gambler wagering on the outcome of the toss of an unfair coin, but
like wagering on the capital of the gambler that wagered on the outcome of the toss of an unfair coin. A very subtile
difference, indeed.

Note that the paradigm of the isomorphism between wagering on a stock and wagering in an unfair tossed coin
game is that the graph, (ie., time series,) of the gambler’s capital, who is wagering on the iterated outcomes of an unfair
tossed coin, and the graph of a stock’s price over time are statistically similar.

If this is the case, at least in principle, it should be possible to “dissect” the time series of both “games,” and
determine the underlying statistical mechanism of both. Further, it should be, at least in principle, possible to optimize
portfolio growth of speculative investments in the equity markets using information—theoretic entropic techniques.
See, [Pie80], [Rez94], and [Sch91].

Under these assumptions, the amount of capital won or lost in each iteration of the unfair tossed coin game would
be: � ( � ) �6� ( �]� 1) (B.193)

for all data points in the gambler’s capital time series. This would correspond to the amount of money won or lost on
each share of stock at each interval in the stock price time series.
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Likewise, the normalized increments of the gambler’s capital time series can be obtained by subtracting the value
of the gambler’s capital in the last interval from the value of the gambler’s capital in the current interval, and dividing
by the value of the gambler’s capital in the last interval:� ( � ) �6� ( �]� 1)� ( �]� 1)

(B.194)

for all data points in the gambler’s capital time series. This would correspond to the fraction of the gambler’s capital
that was won or lost on each iteration of the game, or, alternatively, the fraction that the stock price increased or
decreased in each interval.

The normalized increments are a very useful “tool” in analyzing time series data. In the case of the unfair coin
tossing game, the normalized increments are a “graph,” (or time series,) of the fraction of the capital that was won
or lost, every iteration of the game. Obviously, in the unfair coin game, to win or lose, a wager had to be made, and
the graph of the absolute value, or more appropriately, the root mean square13, of the normalized increments is the
fraction of the capital that was wagered on each iteration of the game. As suggested in Schroeder, if an unfair coin
has a chance, � , of coming up heads, (winning) and a chance 1 �5� , of coming up tails, (loosing,) then the optimal
wagering strategy would be to wager a fraction, � , of the gambler’s capital, on every iteration of the game, that is:� ) 2 �G� 1 (B.195)

This would optimize the exponential growth of the gambler’s capital. Wagering more than this value would result
in less capital growth, and wagering less than this value would result in less capital growth, over time. The variable� is also equal to the root mean square of the normalized increments, �,<HZ , and the average, ���,� , of the normalized
increments is the constant of the average exponential growth of the gambler’s capital:¸ ( � ) ) (1 *6�g�,� ) " (B.196)

where ¸�>Y� ? is the gambler’s capital. It can be shown that the formula for the probability, � , as a function of �g�N� and�,<HZ is: � ) ¤�ª³«¯ @ S * 1

2
(B.197)

where the empirical measurement of �g�,� and �+<�Z are:

�g�N� ) 1� &� Q � 0

� ( � ) �5� ( �s� 1)� ( �s� 1)
(B.198)

and,

�,<HZ 2 ) 1� &� Q¡� 0

t � ( � ) �6� ( �]� 1)� ( �p� 1) u 2

(B.199)

respectively, (additionally, note that these formulas can be used to produce the running average and running root mean
square, ie., they will work “on the fly.”)

The formula for the probability, � , will be true whether the game is played optimally, or not, ie., the game we are
“dissecting,” may not be played with � ) 2 �M� 1. However, the formula for the probability, � :� � ) �,<HZ2* 1

2
(B.200)

13The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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will be the same as � , only if the game is played optimally, (which, also, is applicable in “on the fly” methodologies.)
Interestingly, the measurement, perhaps dynamically, (ie., “on the fly,”) of the average and root mean square of the

normalized increments is all that is necessary to optimize the “play of the game.” Note that if � � is smaller than � , then
we need to increase �,<HZ , by increasing � , and, likewise, if � � is larger than � , we need to decrease � . Thus, without
knowing any of the underlying mechanism of the game, we can formulate a methodology for an optimal wagering
strategy. (The only assumption being that the capital can be represented as an independent increment fractal—and, this
too can, and should, be verified with meticulous application of fractal analysis using the programs tsfraction, tsrms,
tsavg, and tsnormal.)

At this point, it would seem that the optimal wagering strategy and analytical methodology used to optimize the
growth of the gambler’s capital in the the unfair tossed coin gain is well in hand. Unfortunately, when applying the
methodology to the equity markets, one finds that, for almost all stocks, � is greater than � � , perhaps tending to imply
that in the equity markets, stocks are over priced.

To illustrate a simple stock wagering strategy, suppose that analytical measurements are made on a stock’s price
time series, and it is found, conveniently, that � ) � � , implying that � ) �,<HZ , (after computing the normalized
increments of the stock’s price time series and calculating �g�,� , �,<HZ , � , and � � .) Note that in the optimized unfair
coin tossing game, that wagering a fraction, � ) �,<HZ , of the gambler’s capital would optimize the exponential growth
of the gambler’s capital, and that the fluctuations, over time, of the gambler’s capital would simply be the normalized
increments of the gambler’s capital. The root mean square of the fluctuations, over time, are the fraction of that the
gambler’s capital wagered, over time. To achieve an optimal strategy when wagering on a stock, the objective would
be that the normalized increments in the value of the portfolio, and the root mean square value of the normalized
increments of the portfolio, also, satisfy the criteria, � ) �,<HZ . Note that the fraction of the portfolio that is invested
in the stock will have normalized increments that have a root mean square value that are the same as the root mean
square value of the normalized increments of the stock.

The issue is to determine the fraction of the stock portfolio that should be invested in the stock such that that fraction
of the portfolio would be equivalent to the gambler wagering a fraction of the capital on a coin toss. It is important
to note that the optimized wagering strategy used by the gambler, when wagering on the outcome of a coin toss, is to
never wager the entire capital, but to hold some capital in reserve, and wager only a fraction of the capital—and in the
optimum case this wager fraction is � ) �,<HZ . In a stock portfolio, even though the investment is totally in stocks, it
could be considered that some of this value is wagered, and the rest held in reserve. The amount wagered would be
the root mean square of the normalized increments of the stocks price, and the amount held in reserve would be the
remainder of the portfolio’s value. (Note the paradigm—there is an isomorphism between the fluctuating gambler’s
capital in the unfair coin tossing game, and the fluctuating value of a stock portfolio.) In the simple case where � ) � � ,
the fraction of the portfolio value that should be invested in the stock is � ) root mean square of the stock’s normalized

increments, which would be the same as � ) 2 �5� 1, where � )21�35465798 ' 1
2 or � ) ¯ @ S ' 1

2 . Note that the fluctuations in
the value of the portfolio do to the fluctuations in the stocks price would be statistically similar to the fluctuations in
the gambler’s capital when playing the unfair coin tossing game.

This also leads to a generality, where � and � � are not equal. If the root mean square of the normalized increments
of the stock price time series are too small, say by a factor of 2, then the fraction of the portfolio invested in the stock
should be increased, by a factor of 2 (in this example.) This would make the root mean square of the fluctuations
in the value of the portfolio the same as the the root mean square of the fluctuations in the gambler’s capital under
similar statistical circumstances, (albeit with twice as much of the portfolio’s equivalent “cash reserves” tied up in the
investment in the stock.

To calculate the ratio by which the fraction of the portfolio invested in a stock must be increased:� ) ¤�ª³«¯ @ S * 1

2
(B.201)

and, � ) 2 �M� 1 ) �,<HZ (B.202)
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and letting the measured �+<�Z by �+<�Z @ ,

� ) 2 �M� 1 ) 2
¤�ª³« 7¯ @ S 7 * 1

2
� 1 ) �g�,� @�,<HZ @ ) �+<HZ (B.203)

(Note that both of the values, ���,� and �+<HZ , are functions of the probability, � , but their ratio is not.)
and letting ! be the ratio by which the fraction of the portfolio invested in a stock must be increased to accommodate� not being equal to � � : ! ) �,<HZ�+<HZ @ ) �g�,� @�+<HZ 2@ (B.204)

and multiplying both sides of the equation by � , to get the fraction of the portfolio that should be invested in the stock
while accommodating � not being equal to � � :!M�,� ) �g�N� @�,<HZ 2@ � �g�,� @�+<HZ @ ) �g�,� 2@�+<HZ 3@ (B.205)

which can be computed, dynamically, or “on the fly,” and where avg and rms are the average and root mean square of
the normalized increments of the stock’s price time series, and assuming that the stock’s price time series is composed
of independent increments, and can be represented as a fractional Brownian motion fractal.

Representing such an algorithm in pseudo code:

1. for each data point in the stock’s price time series, find the, possibly running, normalized increment from the
following equation: � ( � ) �6� ( �p� 1)� ( �]� 1)

(B.206)

2. calculate the, possibly running, average of all normalized increments in the stock’s price time series by the
following equation:

���,� ) 1� &� Q � 0

� ( � ) �6� ( �p� 1)� ( �s� 1)
(B.207)

3. calculate the, possibly running, root mean square of all normalized increments in the stock’s price time series
by the following equation:

�,<HZ 2 ) 1� &� Q � 0

t � ( � ) �6� ( �K� 1)� ( �]� 1) u 2

(B.208)

4. calculate the, possibly running, fraction of the portfolio to be invested in the stock, !M�,� :

!�� � ) �g�,� 2@�,<HZ @ 3
(B.209)

To reiterate what we have so far, consider a gambler, iterating a tossed unfair coin. The gambler’s capital, over time,
could be a represented as a Brownian fractal, on which measurements could be performed to optimize the gambler’s
wagering strategy. There is supporting evidence that stock prices can be “modeled” as a Brownian fractal, and it
would seem reasonable that the optimization techniques that the gambler uses could be applied to stock portfolios. As
an example, suppose that it is desired to invest in a stock. We would measure the average and root mean square of
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the normalized increments of the stock’s price time series to determine a wagering strategy for investing in the stock.
Suppose that the measurement yielded that the the the fraction of the capital to be invested, � , was 0 � 2, (ie., a Shannon
probability of 0 � 6,) then we might invest the entire portfolio in the stock, and our portfolio would be modeled as 20%
of the portfolio would be wagered at any time, and 80% would be considered as “cash reserves,” even though the
80% is actually invested in the stock. Additionally, we have a metric methodology, requiring only the measurement
of the average and root mean square of the increments of the stock price time series, to formulate optimal wagering
strategies for investment in the stocks. The assumption is that the stock’s price time series is composed of independent
increments, and can be represented as a fractional Brownian motion fractal, both of which can be verified through a
metric methodology.

Note the isomorphism. Consider a gambler that goes to a casino, buys some chips, then plays many iterations of an
unfair coin tossing game, and then cashes in the chips. Then consider investing in a stock, and some time later, selling
the stock. If the Shannon probability of the time series of the unfair coin tossing game is the same as the time series
of the stock’s value, then both “games” would be statistically similar. In point of fact, if the toss of the unfair coin was
replaced with whether the stock price movement was up or down, then the two time series would be identical. The
implication is that stock values can be modeled by an unfair tossed coin. In point of fact, stock values are, generally,
fractional Brownian motion in nature, implying that the day to day fluctuations in price can be modeled with a time
sampled unfair tossed coin game.

There is an implication with the model. It would appear that the “best” portfolio strategy would be to continually
search the stock market exchanges for the stock that has the largest value of the quotient of the average and root mean
square of the normalized increments of the stock’s price time series, (ie., ¤�ªA«¯ @ S ,) and invest 100% of the portfolio in
that single stock. This is in contention with the concept that a stock portfolio should be “diversified,” although it is not
clear that the prevailing concept of diversification has any scientific merit.

To address the issue of diversification of stocks in a stock portfolio, consider the example where a gambler, tossing
an unfair coin, makes a wager. If the coin has a 60% chance of coming up heads, then the gambler should wager 20%
of the capital on hand on the next toss of the coin. The remaining 80% is kept as “cash reserves.” It can be argued
that the cash reserves are not being used to enhance the capital, so the gambler should play multiple games at once,
investing all of the capital, investing 20% of the capital, in each of 5 games at once, (assuming that the coins used
in each game have a probability of coming up heads 60% of the time—note that the fraction of capital invested in
each game would be different for each game if the probabilities of the coins were different, but could be measured by
calculating the ¤�ª³«¯ @ S of each game.)

Likewise, with the same reasoning, we would expect that stock portfolio management would entail measuring the
quotient of the average and root mean square of the normalized increments of every stock’s price time series, (ie.,¤�ª³«¯ @ S ,) choosing those stocks with the largest quotient, and investing a fraction of the portfolio that is equal to the this
quotient. Note that with an ¤�ª³«¯ @ S ) 0 � 1, (corresponding to a Shannon probability of 0 � 55—which is “typical” for the
better performing stocks on the New York Stock Exchange,) we would expect the portfolio to be diversified into 10
stocks, which seems consistent with the recommendations of those purporting diversification of portfolios. In reality,
since most stocks in the United States exchanges, (at least,) seem to be “over priced,” (ie., � larger than � � ,) it will
take more capital than is available in the value of the portfolio to invest, optimally, in all of the stocks in the portfolio,
(ie., the fraction of the portfolio that has to be invested in each stock, for optimal portfolio performance, will sum to
greater than 100%.) The interpretation, I suppose, in the model, is that at least a portion of the investment in each
stock would be on “margin,” which is a relatively low risk investment, and, possibly, could be extended into a formal
optimization of “buying stocks on the margin.”

The astute reader would note that the fractions of the portfolio invested in each stock was added linearly, when
these values are really the root mean square of the normalized increments, implying that they should be added root
mean square. The rationale in linear addition is that the Hurst Coefficient in the near term is near unity, and for the far
term 0 � 5. (By definition, this is the characteristic of a Brownian motion fractal process.) Letting the Hurst Coefficient
be ö , then the method of summing multiple processes would be:�;:" � " ) ��:1 *7��:2 *7����� (B.210)
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so in the far term, the values would be added root mean square, and in the near term, linearly. Note that this is also a
quantitative definition of the terms “near term” and “far term.” Since the Hurst Coefficient plot is on a log-log scale,
the demarcation between the two terms is where 1 � ln >T� ? ) 0 � 5 � ln >T� ? , or when ln >Y� ? ) 2, or � ) 7 � 389 ����� The
important point is that the “root mean square formula” used varies with time. For the near term, ö<* 1, and linear
addition is used. For the far term, a root mean square summation process is used. (Note, also, that a far term ö of 0 � 5
is unique to Brownian motion fractals. In general, it can be different than 0 � 5. If it is larger than 0 � 5, then it is termed
fractional Brownian motion, depending on who is doing the defining.)

There are some interesting implications to this near term/far term interpretation. First, the “forecastability” is
better in the near term than far term-which could be interpreted as meaning that short term strategies would yield better
portfolio performance than long term strategies—see [Pet91, pp. 83-84]. Secondly, it can be used to optimize portfolio
long term strategy. For example, suppose that a stock’s Shannon probability is 0 � 52, and all stocks in the portfolio have
the same Shannon probability. This means that the portfolio should consist of 25 stocks. However, in the long run, the
portfolio would have a root mean square value of the square root of 25 times 0 � 04, or 0 � 2. This would tend to imply
that, on the average, over the long run, the stock portfolio would be one fifth of the total investments. Naturally, this
ratio could be adjusted, over time, depending on the instantaneous value of the Shannon probabilities of all different
investments, like bonds, metals, etc.

This would imply that “timing of the market” would have to be initiated to adjust the ratio of investment in stocks.
One of the implications of entropic theory is that this is impossible. However, as the Shannon probability of the
various investments change, statistical estimation can be used to asses the statistical accuracy of these movements, and
the ratios adjusted accordingly. This would tend to suggest that adaptive computational control system methodology
would be an applicable alternative.

As a note in passing, the average and root mean square of the normalized increments of a stock’s price time series,�g�,� and �+<HZ , respectively, represent a qualitative metric of the stock. The average, ���,� , is an expression of the
stock’s growth in price, and the root mean square, �+<HZ , is a expression of the stock’s price volatility. It would seem,
incorrectly, at first glance that stocks should be selected that have high price growth, and low price volatility—however,
it is a more complicated issue since ���,� and �+<HZ are interrelated, and not independent of each other.

In the diversified portfolio, the “volatilities” of the individual stocks add root mean square to the volatility of
the portfolio value, so, everything else being equal, we would expect that the volatility of the portfolio value to be

about 1
3 the volatility of the stocks that make up the portfolio. (The ratio 1

3 came from the = 1
10 , which is about 1

3 .)
(There is a qualification here, it is assumed that all stock price time series are made up of independent increments,
and can be represented as a fractional Brownian motion fractal—note that this statement is not true if the time series
is characterized as simple Brownian motion, like the gambler’s capital in the unfair coin toss game—see [Sch91, pp.
157], for details.) So, it can be supposed, if one desires maximum performance in a stock portfolio, then one should
search the stock market exchanges for the stock that has the highest quotient of the average and root mean square of
the normalized increments of stock price time series, and invest 100% of the portfolio in that stock. As an alternative
strategy, one could diversify the portfolio, investing in multiple stocks, and lower the portfolio volatility at the expense
of lower portfolio performance. Arguments can probably be made for both strategies.

As a note in passing, I have made the statement that, at least in the United States exchanges, stocks tend to be over
priced. The rationale behind the statement is as follows. If the stock’s price time series represents an independent
increment, fractional Brownian fractal, and if the stock’s price performance is optimal, then the equation:� ) 2 �G� 1 (B.211)

where � is the Shannon probability for the stock’s price time series, and � is the fraction of the capital wagered per
game, (or unit time, and where the capital is the stock’s price,) will represent fluctuations in the stock’s price, since the
symbol � is also the root mean square value of the normalized increments of the stock’s time series. Also, the absolute
value of the time derivative of the stock’s price time series is the fluctuations in the stocks price, ie., at any instant, if� is the stock’s price, then �#� will be the fluctuation in price, which is the derivative,

ø ) ¢?>¢ " , or, � ) ø DN� . In
other words, the fair market value of the stock, in relation to the normalized increments of the stock’s value, will be
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the derivative of the stock’s price, divided by the root mean square of the normalized increments of the stock’s price,
which is also � 14. If the argument has merit, then, at least the stocks available from http://www.ai.mit.edu/stocks.html
would seem to be over priced. (It is a straight forward shell programming exercise, using the programs tsderivative,
tsfraction, tsmath, and tsrms, to verify this.)

A final derivation, following [Rez94]. Consider the case of a gambler with a private wire into the future who places
wagers on the outcomes of a game of chance. We assume that the side information which he receives has a probability,� , of being true, and of 1 �6� , of being false. Let the original capital of gambler be ��> 0 ? , and ��>T� ? his capital after
the � ’th wager. Since the gambler is not certain that the side information is entirely reliable, he places only a fraction,� , of his capital on each wager. Thus, subsequent to � many wagers, assuming the independence of successive tips
from the future, his capital is: � ( � ) ) (1 *9� ) í (1 �8� ) î � (0) (B.212)

where ï is the number of times he won, and � ) �I�6ï , the number of times he lost. These numbers are, in general,
values taken by two random variables, denoted by ² and ð . According to the law of large numbers:

lim&,ñ�ò 1� ² ) � (B.213)

and:

lim&,ñ�ò 1� ð )Mó�) 1 �1� (B.214)

The problem with which the gambler is faced is the determination of � leading to the maximum of the average
exponential rate of growth of his capital. That is, he wishes to maximize the value of:� ) lim&,ñ�ò 1� ln

� ( � )� (0)
(B.215)

with respect to � , assuming a fixed original capital and specified � :� ) lim&,ñ�ò ² � ln (1 *5� ) * ð � ln (1 �6� ) (B.216)

or: � ) � ln (1 *7� ) * ó ln (1 �8� ) (B.217)

which, by taking the derivative with respect to � , and equating to zero, can be shown to have a maxima when:� �� � ) � (1 *5� ) m 3 1 (1 �5� )1 3 m � (1 �1� ) (1 �6� )1 3 m 3 1 (1 *5� ) m ) 0 (B.218)

combining terms: � (1 *7� ) m 3 1 (1 �6� )1 3 m�� (1 �6� ) (1 �6� ) m (1 *7� ) m ) 0 (B.219)

and splitting: � (1 *5� ) m 3 1 (1 �5� )1 3 m ) (1 �6� ) (1 �6� ) m (1 *7� ) m (B.220)

then taking the logarithm of both sides:

14The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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ln ( � ) * ( �G� 1) ln (1 *7� ) * (1 �6� ) ln (1 �6� ) ) ln (1 �6� ) �1� ln (1 �5� ) *5� ln (1 *5� ) (B.221)

and combining terms:

( �G� 1) ln (1 *7� ) �6� ln (1 *5� ) * (1 �1� ) ln (1 �6� ) *6� ln (1 �5� ) ) ln (1 �1� ) � ln ( � ) (B.222)

or:

ln (1 �5� ) � ln (1 *7� ) ) ln (1 �1� ) � ln ( � ) (B.223)

and performing the logarithmic operations:

ln

t
1 �6�
1 *5� u ) ln

t
1 �1�� u (B.224)

and exponentiating:

1 �6�
1 *5� ) 1 �6�� (B.225)

which reduces to: � (1 �5� ) ) (1 �6� ) (1 *5� ) (B.226)

and expanding: �M�6�{� ) 1 �1�{���1�M*5� (B.227)

or: � ) 1 �1�M*5� (B.228)

and, finally: � ) 2 �G� 1 (B.229)

As a passing note, the methodology used in this derivation comes from information—theoretic concepts, formally
called entropic principles, and is firmly entrenched branch of market and economic analysis.

Continuing with the derivation of the methodology used herein, consider a gambler, wagering on the iterated
outcomes of an unfair tossed coin game. A fraction, � , of the gambler’s capital will be wagered on the outcome of
each iteration of the unfair tossed coin, and if the coin comes up heads, with a probability, � , then the gambler wins
the iteration, (and an amount equal to the wager is added to the gambler’s capital,) and if the coin comes up tails,
with a probability of 1 �1� , then the gambler looses the iteration, (and an amount of the wager is subtracted from the
gambler’s capital.)

As a passing note, the iterations of a random variable, a flipped coin in this case, that are added together (ie., to a
cumulative sum,) the gambler’s capital, in this case, are called “fractal” processes. The origins of the name are recent
and obscure, but there are different varieties of fractal processes. In this case, since the distribution of the increments is
either plus or minus one, it is called a Brownian motion fractal. If the distribution of the increments had a Gaussian, or
normal distribution, it would be called a fractional Brownian motion fractal. (Typically distribution of the increments
in a stock price time series fall someplace in between the two.) The analytical methodology of investigation into such
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matters is called “fractal analysis,” and that is what is going to be done here, in general, for the gambler’s capital,
which is a Brownian motion fractal.

If we let the outcome of the first coin toss, (ie., whether it came up as a win or a loss,) be ¶,> 1 ? and the outcome of
the second toss be ¶,> 2 ? , and so on, then the outcome of the � ’th toss, ¶,>Y� ? , would be:¸ ( � ) ) a ïOXY�]b with a probability of P�R·+·�ZÏ��b with a probability of 1 - P

(B.230)

for convenience, let a win to be represented by * 1, and a loss by � 1:¸ ( � ) ) a * 1 b with a probability of P� 1 b with a probability of 1 - P
(B.231)

for the reason that when we multiply the wager, � , by ¶,>Y� ? , it will be a positive number, (ie., the wager will be added
to the capital,) and for a loss, it will be a negative number, (ie., the wager will be subtracted from the capital.) This is
convenient, since the increment, by with the gambler’s capital increased or decreased in the � ’th iteration of the game
is ���(¶,>Y� ? .

If we let ¸�> 0 ? be the initial value of the gambler’s capital, ¸�> 1 ? be the value of the gambler’s capital after the first
iteration of the game, then: ¸ (1) ) ¸ (0) � (1 *5¶ (1) � � (1)) (B.232)

after the first iteration of the game, and:¸ (2) ) ¸ (0) � ((1 *6¶ (1) �+� (1)) � (1 *6¶ (2) �,� (2))) (B.233)

after the second iteration of the game, and, in general, after the � ’th iteration of the game:

¸ ( � ) ) ¸ (0) � ((1 *5¶ (1) � � (1)) � (1 *6¶ (2) �+� (2)) � ����� � (1 *5¶ ( � ) �+� ( � )) � (1 *6¶ ( ��* 1) �+� ( ��* 1)))
(B.234)

For the normalized increments of the time series of the gambler’s capital, it would be convenient to rearrange these
formulas. For the first iteration of the game:¸ (1) �6¸ (0) ) ¸ (0) � (1 *5¶ (1) � � (1)) �6¸ (0) (B.235)

or: ¸ (1) �6¸ (0)¸ (0) ) ¸ (0) � (1 *6¶ (1) �+� (1)) �5¸ (0)¸ (0)
(B.236)

and after reducing, the first normalized increment of the gambler’s capital time series is:¸ (1) �5¸ (0)¸ (0) ) (1 *6¶ (1) �,� (1)) � 1 ) ¶ (1) �+� (1) (B.237)

and for the second iteration of the game:¸ (2) ) ¸ (0) � ((1 *6¶ (1) �+� (1)) � (1 *6¶ (2) �,� (2))) (B.238)

but ¸Â> 0 ? �g>A> 1 *6¶,> 1 ? �,�K> 1 ?A? is simply ¸�> 1 ? :¸ (2) ) ¸ (1) � (1 *5¶ (2) � � (2)) (B.239)

or:
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¸ (2) �6¸ (1) ) ¸ (1) � (1 *5¶ (2) � � (2)) �6¸ (1) (B.240)

which is: ¸ (2) �6¸ (1)¸ (1) ) ¸ (1) � (1 *6¶ (2) �+� (2)) �5¸ (1)¸ (1)
(B.241)

and after reducing, the second normalized increment of the gambler’s capital time series is:¸ (2) �6¸ (1)¸ (1) ) 1 *6¶ (2) �,� (2) � 1 ) ¶ (2) �+� (2) (B.242)

and it should be obvious that the process can be repeated indefinitely, so, the � ’th normalized increment of the gambler’s
capital time series is: ¸ ( � ) �6¸ ( ��� 1)¸ ( � ) ) ¶ ( � ) �(� ( � ) (B.243)

Note that we can tell the fraction of the capital that the gambler wagered in the n’th iteration, it is simply the
absolute value of the normalized increment for the iteration, @ ¶,>Y� ? �(�]>T� ? @ , ie., ¶,>Y� ? �g�K>Y� ? is what was won or lost
in the � ’th iteration, and removing ¶,>T� ? ) º 1, is the fraction of the wager. Another, more formal alternative, is to
square the � ’th normalized increment, (which, also, removes any negative sign,) and then take the square root of the
square. Which leads to the formalization for the root mean square of the normalized increments, �,<HZ , (provided that� is sufficiently large15):

�,<HZ 2 ) 1� &� Q � 0

t ¸ ( � ) �6¸ ( �s� 1)¸ ( �p� 1) u 2

(B.244)

This is an important concept, since it shows that �+<�Z ) � , or:

�,<HZ 2 ) 1� &� Q � 0

� 2 ) 1� �I�(� 2 ) � 2 (B.245)

or, importantly: �+<�Z ) � (B.246)

For the average, �g�,� , of the normalized increments of the gambler’s capital, consider that in an interval of � many
iterations of the game, (provided that � is sufficiently large,) there will be � many wins, and 1 �6� many losses, and
since the gambler’s capital increased by *�� for the wins, and �^� for the losses, or:�g�,� ) ��� [ �M� (1 �1� )] ) ��� (2 �M� 1) (B.247)

but since f = rms: ���,� ) �,<HZ¼� (2 �M� 1) (B.248)

or: �g�,��,<HZ ) 2 �M� 1 (B.249)

15The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is : 0 ; 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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and rearranging:

2 � ) �g�,��,<HZ * 1 (B.250)

and solving for � : � ) ¤�ª³«¯ @ S * 1

2
(B.251)

Which is the formula for the Shannon probability, � , as a function of the average and root mean square of the
normalized increments of the gambler’s capital, �g�,� and �+<�Z , respectively. It is an important concept that with the
measurement of these two quantities, (and the metrics on these two quantities can be deduced dynamically, or “on the
fly,”) that an optimal wagering strategy, (or cash flow optimization,) can be formulated.

It should be noted that this derivation is for analyzing a time series that is characterized as a Brownian motion
fractal. A similar derivation can be used for time series that are characterized by fractional Brownian motion. However,
the derivation is much more formidable, mathematically.

As a matter of practical interest, the term “provided that � is sufficiently large” needs to be qualified. Note that
when the term “running average” or “running root mean square” is used, we really need to know how many iterations
of coin tosses, � , are necessary to be considered “sufficiently large.” If we consider the formula:� ) ¤�ª³«¯ @ S * 1

2
(B.252)

and noting that the Shannon probability, � , has a range 0 � � � 1, and we are using a summing process for both
the average, and root mean square of the normalized increments, then n would have to be 100 to achieve a somewhat
less than 1% error in � . The reasoning is that if we sum 100 ones, then the resultant sum would be 100, and the next
iteration that is to be added to the sum could create at most a 1% error. The implication of this is that one should use a
window of at least 100 time units. (hours, days, weeks, or whatever is being used as a unit time in the time series being
analyzed,) to achieve a 1%, or better uncertainty in � . In stock price performance analysis, this is a marginal accuracy,
so a larger window size would be recommended. A more formal methodology would use the program tsstatest to
determine, precisely, the size of the data set required.

As a few examples of using very simple programs to perform fractal metric analysis on stock time series:

tscoin -p 0.6 2500

would generate a fractal time series characterized by optimal Brownian motion consisting of 2500 records, and a
Shannon probability, � , of 0 � 6.

tscoins -p 0.6 2500

would generate a fractal time series characterized by optimal fractional Brownian motion consisting of 2500 records,
and a Shannon probability, � , of 0 � 6.

tscoins -p 0.6 -f 0.55 2500

would generate a fractal time series characterized by non—optimal fractional Brownian motion consisting of 2500
records, and a Shannon probability, � , of 0 � 6, with a wagering fraction of 0 � 1.

tscoins -p 0.6 -f 0.55 2500 | tsfraction

would generate the normalized increments of a fractal time series characterized by non—optimal fractional Brownian
motion consisting of 2500 records, and a Shannon probability, � , of 0 � 6, with a wagering fraction of 0 � 1.

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 123



B.3. FRACTAL TIME SERIES SIMULATION UTILITIES

tscoins -p 0.6 -f 0.55 2500 | tsfraction | tsavg -p
tscoins -p 0.6 -f 0.55 2500 | tsfraction | tsrms -p

would generate average and the root mean square of the normalized increments of a fractal time series characterized
by non—optimal fractional Brownian motion consisting of 2500 records, and a Shannon probability, � , of 0 � 6, with a
wagering fraction of 0 � 1.

tsfraction my.stock | tsavg -p
tsfraction my.stock | tsrms -p

would measure the average and the root mean square of the normalized increments of the stock time series, my.stock.
It would be convenient to consolidate the various programs into a single monolithic architecture for the analysis

and simulation of wagering strategies of stock market time series. It would, further, be convenient, from a comparative
standpoint, to let value of the portfolio, at time zero, be the same as the price of a single stock at the beginning of the
simulation, so that the portfolio value using the wagering strategy to invest in a single stock can be compared to the
price of the stock, over time. To reiterate the previous concepts, suppose that the measurement yielded that the the the
fraction of the capital to be invested, � , was 0 � 2, (ie., a Shannon probability of 0 � 6,) then we might invest the entire
portfolio in the stock, and our portfolio would be modeled as 20% of the portfolio would be wagered at any time,
and 80% would be considered as “cash reserves,” even though the 80% is actually invested in the stock. Assume the
following pseudo code:

calculate the average and root mean square of the normalized increments, �g�,� and �,<HZ , respectively¶���� XY����� ) value of stock at time 0, (ie., the portfolio value at time zero, is one share of stock)

multiplier ACBEDGF 2HGIKJ 3 L 1M (ie., the value of the multiplier, N L	O in the derivations, by which the fraction
of the capital that is to be wagered must be increased, ie., NPARQ multiplier)

for each time interval, (ie., for each increment in the time series)

if not the first interval?, (ie., we need to calculate the normalized increments, so the first
interval can not be used)SET�UWV.X5T"Y A Y.T[Z\X5SET�UWV.X5T"Y L Q^] Y_X5V`UaY_V.b�c Led 1 f V.ghSEc	b Q b0ghX�i , (ie., this is the new capital

for today)Y_T[Z\X5SETEUWV_X5T"Y A SETEUWV_X5T"Y , (ie., this is yesterday’s capital, tomorrow)

where the increment is calculated by subtracting todays stock value from yesterday’s stock value, and dividing by
yesterday’s stock value: V.gWS�cjb Q b�gWX Alk ( X ) m k ( X m 1)k ( X m 1)

(B.253)

Note that: SETEUhV.X5T"Y A Y.T[Z\X5SET�UWV.X5T"Y L Q^] Y.X5V`UnY.V.b�c Lod 1 f V.gWSEc	b Q b�gWX�i (B.254)
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SETEUhV.X5T"Y A Y.T[Z\X5SET�UWV.X5T"Y L Q^] Y.X5V`UnY.V.b�c Lqp 1 f k ( X ) m k ( X m 1)k ( X m 1) r (B.255)

SETEUWV_X5T"Y A Y_T[Z\X5SETEUhV.X5T"Y L Qs] Y_X5V`UaY_V.b�c L p 1 f k ( X )k ( X m 1)
m 1 r (B.256)

S�TEUWV.X5TtY A Y_T[Z\X5SETEUWV_X5T"Y L Q^] Y.X5V�UaY.V_b0c L k ( X )k ( X m 1)
(B.257)

which, not surprisingly, if Q^] Y.X5V�UaY.V_b0c A 1, (ie., uvARu�w ):SETEUhV.X5T"Y A Y.T[Z\X5SET�UWV.X5T"Y L k ( X )k ( X m 1)
(B.258)

meaning that the portfolio value would track the stock’s value, as we would expect. Likewise, if Q^] Y.X5V�UaY.V_b0c is greater
than 1, the portfolio value would linearly track the stock value, by a constant of proportionality, and the amount of
the portfolio invested in the stock would be greater than the value of the portfolio, possibly indicating that the the
remainder of the stock investment was purchased on margin. If the program is used to determine the fraction of the
portfolio that is to be invested in a specific stock, then the fraction can be calculated from:

O A 2 uxm 1 (B.259)

and:

O cjToS�X5V.yjg AzQ^] Y.X5V�UaY.V_b0c LjO (B.260)

It would also be desirable to be able to automatically determine the number of stocks that should be held. The total
capital invested in a stock is: SETEUhV.X5T"Y L Q^] Y_X5V`UaY_V.b�c (B.261)

and dividing this value by the current value of the stock will give the number of stocks that should be invested in.
Note that the portfolio investment simulation model is very simple, and assumes perfect liquidity of the stock,

(ie., as many as necessary can be bought or sold at exactly the day’s closing price of the stock,) and that there are no
transaction commissions.

An example output from the tsstock program appears in Figure B.55.

B.3.20 tsstocks

Source tsstocks.c, is for simulating the optimal gains of multiple stock investments. The program decides which of
all available stocks to invest in at any single time, by calculating the instantaneous Shannon probability of all stocks,
and using an approximation to statistical estimation techniques to estimate the accuracy of the calculated Shannon
probability.

One of the implications of considering stock prices to have fractal characteristics, ie., random walk or Brownian
motion, is that future prices can not be predicted from past stock price performance. The Shannon probability of a
stock price time series is the likelihood that a stocks price will increase in the next time interval. It is typically 0 { 51, on
a day to day bases, (although, occasionally, it will be as high as 0 { 6) What this means, for a typical stock, is that 51% of
the time, a stock’s price will increase, and 49% of the time it will decrease—and there is no possibility of determining
which will occur—only the probability.

However, another implication of considering stock prices to have fractal characteristics is that there are statistical
optimizations to maximize portfolio performance. The Shannon probability, u , is related to the volatility of a stock’s
price, (measured as the root mean square of the normalized increments of the stock’s price time series,) c Q Z , by
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(4.925045 @ 374.353743 = 1843.708895) + 341.049570 = 2184.758465
(4.796908 @ 449.224492 = 2154.888603) + 398.611643 = 2553.500246
(4.672105 @ 539.069390 = 2518.588969) + 465.888996 = 2984.477965
(4.854439 @ 431.255512 = 2093.503546) + 387.256625 = 2480.760171
(5.043888 @ 345.004410 = 1740.163700) + 321.895764 = 2062.059464
(4.912660 @ 414.005292 = 2033.867132) + 376.225072 = 2410.092204
(4.784845 @ 496.806350 = 2377.141591) + 439.724037 = 2816.865628
(4.660356 @ 596.167620 = 2778.353640) + 513.940307 = 3292.293946
(4.539106 @ 715.401144 = 3247.281935) + 600.682739 = 3847.964674
(4.716250 @ 572.320915 = 2699.208298) + 499.299989 = 3198.508286

Figure B.55: Example output of the tsstock program, the input file was produced by the tscoin program, with a Shannon
probability of 0.6, which is shown in Figure B.44.

c Q Z A 2 u|m 1. Also, the average of the normalized increments is the growth in the stock’s price, and is equal to the
square of the c Q Z . Unfortunately, the measurements of To}"~ and c Q Z must be made over a long period of time, to
construct a very large data set for analytical purposes do to the necessary accuracy requirements. Statistical estimation
techniques are usually employed to quantitatively determine the size of the data set for a given analytical accuracy.

There are several techniques used to optimize stock portfolio performance. Since the volatility of an individual
stock price, c Q Z , is considered to have a Gaussian distribution, the volatilities add root mean square. What this
means is that if the portfolio consists of 10 stocks, concurrently, with each stock representing 10% of the portfolio,
then the volatility of the portfolio will be decreased by a factor of the square root of 10, (assuming all stocks are
statistically identical.) Further, since it is assumed that the stocks are statistically identical, the average growth of
the stocks adds linearly in the portfolio, ie., it would not make any difference, from a portfolio growth standpoint,
whether the portfolio consisted of 1 stock, or 10 stocks. This indicates that control of stock portfolio volatility can be
an “engineered solution.” (In reality, of course, the stocks are not statistically identical, but the volatilities still add root
mean square. The growth of the portfolio would be less, since it was not totally invested in the stock with the highest
growth rate—this would be the cost of managing the volatility risk.)

Now consider “timing the market.” If a stock’s price has fractal characteristics, this is impossible, (at least more
than 51% of the time, on average, for most stocks.) Attempting to do so, say by selling a stock for the speculative
reason that the stocks price will decrease in the future, will result in selling a stock that 51% of the time would increase
in value in the future, and 49% of the time would decrease in value. Of course, holding a stock would have the same
probabilities, also.

If a stock’s price is fractal, it will, over time, exhibit price increases, and decreases, that have a range that is
proportional to the square root of time, and a probable duration that is proportional to the reciprocal of the square root
of time. In point of fact, measurements on these characteristics in stock pro forma for the past century offer compelling
evidence that stock prices exhibit fractal characteristics. These increases and decreases in stock price over time would
lead to the intuitive presumption that a “buy low and sell high” strategy could be implemented. Unfortunately, if stock
prices are indeed fractal in nature, that is not the case, because no matter what time scale you use, the characteristics
are invariant, (ie., on a time scale—be it by the tick, by the day, by the month, or by the year—the range and duration
phenomena is still the same, ie., made up of “long term” increases and decreases, that have no predictive qualities,
other than probabilistic.)

The issue with attempting to “time the market” is that if you sell a stock to avoid an intuitively expected price
decrease, (which will be correct, 49% of the time, typically,) then you will, also, give up the chance of the stock price
increasing, (which will happen 51% of the time.) However, there is an alternative, and that would be to sell the stock,
and invest in another stock, (which would also have a 51% chance of increasing in price, on the average—a kind of
“hedging” strategy.)
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To implement such a strategy, one would never sell a stock for a stock with a smaller Shannon probability, without
compelling reasons. In point of fact, it would probably be, at least heuristically, the best strategy to always be
invested in the stocks with the most recent largest Shannon probability, the assumption being that during the periods
when a stock’s price is increasing, the short term “instantaneous” average Shannon probability will be larger than
the long term average Shannon probability. (Not that this will always be true—only 51% of the time, for an average
stock, will it succeed in the next time interval.) This will require specialized filtering, (to “weight” the most recent
instantaneous Shannon probability more than the least recent,) and statistical estimation (to determine the accuracy
of the measurement of the Shannon probability, upon which the decision will be made as to which stocks are in the
portfolio at any instant in time.)

This decision would be based on the normalized increments,

k�� m k���� 1k���� 1
(B.262)

of the time series, which, when averaged over a “sufficiently large” number of increments, is the mean of the
normalized increments, To}"~ . The term “sufficiently large” must be analyzed quantitatively. For example, the following
table is the statistical estimate for a Shannon probability, u , of a time series, vs, the number of records required, based
on a mean of the normalized increments A 0 { 04, as shown in table B.3.

Table B.3: Shannon Probability vs. Number of Records.� �t��� � � �
0 � 51 0 � 0004 0 � 0396 0 � 7000 27
0 � 52 0 � 0016 0 � 0384 0 � 7333 33
0 � 53 0 � 0036 0 � 0364 0 � 7667 42
0 � 54 0 � 0064 0 � 0336 0 � 8000 57
0 � 55 0 � 0100 0 � 0300 0 � 8333 84
0 � 56 0 � 0144 0 � 0256 0 � 8667 135
0 � 57 0 � 0196 0 � 0204 0 � 9000 255
0 � 58 0 � 0256 0 � 0144 0 � 9333 635
0 � 59 0 � 0324 0 � 0076 0 � 9667 3067
0 � 60 0 � 0400 0 � 0000 1 � 0000 inf

where Te}	~ is the average of the normalized increments, b is the error estimate in To}	~ , S is the confidence level of
the error estimate, and g is the number of records required for that confidence level in that error estimate. What this
table means is that if a step function, from zero to 0 { 04, (corresponding to a Shannon probability of 0 { 6,) is applied
to the system, then after 27 records, we would be 70% confident that the error level was not greater than 0 { 0396, orTo}	~ was not lower than 0 { 0004, which corresponds to an effective Shannon probability of 0 { 51. Note that if many
iterations of this example of 27 records were performed, then 30% of the time, the average of the time series, To}	~ ,
would be less than 0 { 0004, and 70% greater than 0 { 0004. This means that the the Shannon probability, 0 { 6, would have
to be reduced by a factor of 0 { 85 to accommodate the error created by an insufficient data set size to get the effective
Shannon probability of 0 { 51. Since half the time the error would be greater than 0 { 0004, and half less, the confidence
level would be 1 m dGd 1 m 0 { 85 i L 2 i A 0 { 7, meaning that if we measured a Shannon probability of 0 { 6 on only 27
records, we would have to use an effective Shannon probability of 0 { 51, corresponding to an Te}	~ of 0 { 0004. For 33
records, we would use an To}"~ of 0 { 0016, corresponding to a Shannon probability of 0 { 52, and so on.

The table above was made by iterating the tsstatest program, and can be approximated by a single pole low pass
recursive discreet time filter [Con78, pp. 11], with the pole frequency at 0 { 00045 times the time series sampling
frequency. The accuracy of the approximation is about � 10% for the first 260 samples, with the approximation
accuracy prediction becoming optimistic thereafter, ie., about f 30%.
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A pole frequency of 0 { 033 seems a good approximation for working with the root mean square of the normalized
increments, with a reasonable approximation to about 5 m�m�m 10 time units.

The “instantaneous,” weighted, and statistically estimated Shannon probability, u , can be determined by dividing
the filtered c Q Z by the filtered Te}	~ , adding unity, and dividing by two.

(Note: there is some possibility of operating on the absolute value of the normalized increments, which is a close
approximation to the root mean square of the normalized increments. Another possibility is to use trading volumes to
calculate the instantaneous value for the average and root mean square of the increments as in the tsshannonvolume
program. Also, another reasonable statistical estimate approximation is u+� J � A 0 { 5 f d 1 m 1 � Z\�jc	X d g9i�i L\dGd 2 L u I � B J i m
1 i L 0 { 5, where u I � B J is the measured Shannon probability over g many records, and u�� J � is the Shannon probability
that should be used do to the uncertainty created by an inadequate data set size.)

The advantage of the discreet time recursive single pole filter approximation is that it requires only 3 lines of code
in the implementation—two for initialization, and one in the calculation construct.

The single pole low pass filter is implemented from the following discrete time equation:}t���
1 A|� L�� 2 f }"� L0� 1 (B.263)

where � is the value of the current sample in the time series, } are the value of the output time series, and � 1 and � 2
are constants determined from the following equations:

� 1 A b � 2 � �"� � (B.264)

and

� 2 A 1 m � 1 (B.265)

where U is a constant that determines the frequency of the pole—a value of unity places the pole at the sample
frequency of the time series.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ‘#’ character as the first non white space character
in the record. Data records must contain at least one field, which is the data value of the sample, but may contain many
fields—if the record contains many fields, then the first field is regarded as the sample’s time, and the last field as the
sample’s value at that time.

B.3.21 tstrade

Source tstrade.c is for simulating the optimal gains of multiple equity investments. The program decides which of all
available equities to invest in at any single time, by calculating the instantaneous Shannon probability of all equities,
and using an approximation to statistical estimation techniques to estimate the accuracy of the calculated Shannon
probability.

The input file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ’#’ character as the first non white space character
in the record. Each data record represents an equity transaction, consisting of a minium of six fields, separated by
white space. The fields are ordered by time stamp, equity ticker identifier, maximum price in time unit, minimum price
in time unit, closing price in time unit, and trade volume. The existence of a record with more than 6 fields is used to
suspend transactions on the equity, concluding with the record, for example:

930830 AA 38.125 37.875 37.938 333.6
930830 AALR 3.250 2.875 3.250 7.2 Suspend
930830 AHP 64.375 63.625 64.375 335.9
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Note: this program uses the following functions from other references:

ran1: which returns a uniform random deviate between 0.0 and 1.0. See [PFTV88, pp. 210], referencing Knuth.

gasdev: which returns a normally distributed deviate with zero mean and unit variance, using ran1 () as the source of
uniform deviates. See [PFTV88, pp. 217].

Introduction

One of the prevailing concepts in financial quantitative analysis, (eg., “financial engineering,”) is that equity prices
exhibit “random walk,” (eg., Brownian motion, or fractal,) characteristics. The presentation by Brian Arthur [Art95] of-
fers a compelling theoretical framework for the random walk model. William A. Brock and Pedro J. F. de Lima [BdL95]
among others, have published empirical evidence supporting Arthur’s theoretical arguments.

There is a large mathematical infrastructure available for applications of fractal analysis to equity markets.
For example, the publications authored by Richard M. Crownover [Cro95], Edgar E. Peters [Pet91], and Manfred
Schroeder [Sch91] offer formal methodologies, while the books by John L. Casti [Cas90], [Cas94] offer a less formal
approach for the popular press.

There are interesting implications that can be exploited if equity prices exhibit fractal characteristics:

1. It would be expected that equity portfolio volatility would be equal to the root mean square of the individual
equity volatilities in the portfolio.

2. It would be expected that equity portfolio growth would be equal to the linear addition of the growths of the
individual equities in the portfolio.

3. It would be expected that an equity’s price would fluctuate, over time, and the range, of these fluctuations (ie.,
the maximum price minus the minimum price,) would increase with the square root of time.

4. It would be expected that the number of equity price fluctuations in a time interval, (ie., the number of times
an equity’s price reaches a local maximum, then reverse direction and decreases to a local minimum,) would
increase with the square root of time.

5. It would be expected that the time between fluctuations in an equity’s price, (ie., the interval between an equity’s
price reaching a local maximum and then a local minimum,) would decrease with the reciprocal of the square
root of time.

6. It would be expected that an equity’s price, over time, would be mean reverting, (ie., if an equity’s price is below
its average, there would be a propensity for the equity’s price to increase, and vice versa.)

Note that 1 and 2 above can be exploited to formulate an optimal hedging strategy; 3, 4, and 5 would tend to imply
that “market timing” is not attainable; and 6 can be exploited to formulate an optimal buy-sell strategy.

Derivation

As a tutorial, the derivation will start with a simple compound interest equation. This equation will be extended to a
first order random walk model of equity prices. Finally, optimizations will derived based on the random walk model
that are useful in optimizing equity portfolio performance.

If we consider capital, k , invested in a savings account, and calculate the growth of the capital over time:

k � A k �5� 1 (1 f T � ) (B.266)
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where T � is the interest rate at time X , (usually a constant16.) In equities, T � is not constant, and varies—perhaps being
negative at certain times, (meaning that the value of the equity decreased.) This fluctuation in an equity’s value can be
represented by modifying T � in Equation B.266: T � A O � N � (B.267)

where the product O � L N � is the fluctuation in the equity’s value at time X .
An equity’s value, over time, is similar to a simple tossed coin game [Sch91, pp. 128], where O � is the fraction

of a gambler’s capital wagered on a toss of the coin, at time X , and N � is a random variable17, signifying whether the
game was a win, or a loss, ie., whether the gambler’s capital increased or decreased, and by how much. The amount
the gambler’s capital increased or decreased is O � L N � .In general, N � is a function of a random variable, with an average, over time, of Te}	~ M , and a root mean square value,c Q Z M , of unity. Note that for simple, time invariant, compound interest, N � has an average and root mean square, both
being unity, and O � is simply the interest rate, which is assumed to be constant. For a simple, single coin game, N � is a
fixed increment, (ie., either f 1 or m 1,) random generator. From an analytical perspective, it would be advantageous
to measure the the statistical characteristics of the generator. Substituting Equation B.267 into Equation B.26618:

k � A k �5� 1 (1 f O � N � ) (B.268)

and subtracting k �5� 1 from both sides:

k�� m k��5� 1 A k���� 1 (1 f O � N � ) m k��5� 1 (B.269)

and dividing both sides by k���� 1:

16For example, if ��� 0 � 06, or 6%, then at the end of the first time interval the capital would have increased to 1 � 06 times its initial value. At the
end of the second time interval it would be (1 � 06)2, and so on. What Equation B.266 states is that the way to get the value, � in the next time interval
is to multiply the current value by 1 � 06. Equation B.266 is nothing more than a “prescription,” or a process to make an exponential, or “compound
interest” mechanism. In general, exponentials can always be constructed by multiplying the current value of the exponential by a constant, to get
the next value, which in turn, would be multiplied by the same constant to get the next value, and so on. Equation B.266 is nothing more than a
construction of � ( � ) �^ ?¡�¢ where £�� ln (1 ¤¥� ). The advantage of representing exponentials by the “prescription” defined in Equation B.266 is
analytical expediency. For example, if you have data that is an exponential, the parameters, or constants, in Equation B.266 can be determined by
simply reversing the “prescription,” ie., subtracting the previous value, (at time �a¦ 1,) from the current value, and dividing by the previous value
would give the exponentiating constant, (1 ¤¥� ¢ ). This process of reversing the “prescription” is termed calculating the “normalized increments.”
(Increments are simply the difference between two values in the exponential, and normalized increments are this difference divided by the value of
the exponential.) Naturally, since one usually has many data points over a time interval, the values can be averaged for better precision—there is a
large mathematical infrastructure dedicated to precision enhancement, for example, least squares approximation to the normalized increments, and
statistical estimation.

17“Random variable” means that the process, § ¢ , is random in nature, ie., there is no possibility of determining what the next value will be.
However, § ¢ can be analyzed using statistical methods [Fed88, pp. 163], [Sch91, pp. 128]. For example, § ¢ typically has a Gaussian distribution
for equity values [Cro95, pp. 249], in which case the it is termed a “fractional Brownian motion,” or simply a “fractal” process. In the case of
a single tossed coin, it is termed “fixed increment fractal,” “Brownian,” or “random walk” process. In any case, determination of the statistical
characteristics of § ¢ are the essence of analysis. Fortunately, there is a large mathematical infrastructure dedicated to the subject. For example, § ¢
could be verified as having a Gaussian distribution using Chi—Square techniques. Frequently, it is convenient, from an analytical standpoint, to
“model” § ¢ using a mathematically simpler process [Sch91, pp. 128]. For example, multiple iterations of tossing a coin can be used to approximate
a Gaussian distribution, since the distribution of many tosses of a coin is binomial—which if the number of tosses is sufficient will represent a
Gaussian distribution to within any required precision [Sch91, pp. 144], [Fed88, pp. 154].

18Equation B.268 is interesting in many other respects. For example, adding a single term, ¨P©0� ¢_ª 1, to the equation results in � ¢ �� ¢.ª 1 « 1 ¤¥¬ ¢ § ¢ ¤¨®©�� ¢.ª 1 ¯ which is the “logistic,” or ‘S’ curve equation, (formally termed the “discreet time quadratic equation,”) and has
been used successfully in many unrelated fields such as manufacturing operations, market and economic forecasting, and analyzing disease
epidemics [Mod92, pp. 131]. There is continuing research into the application of an additional “non-linear” term in Equation B.268 to model
equity value non-linearities. Although there have been modest successes, to date, the successes have not proved to be exploitable in a systematic
fashion [Pet91, pp. 133]. The reason for the interest is that the logistic equation can exhibit a wide variety of behaviors, among them, “chaotic.”
Interestingly, chaotic behavior is mechanistic, but not “long term” predictable into the future. A good example of such a system is the weather. It is
an important concept that compound interest, the logistic function, and fractals are all closely related.
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k�� m k���� 1k ��� 1
A k��5� 1 (1 f O � N � ) m k���� 1k ��� 1

(B.270)

and combining:

k�� m k���� 1k���� 1
A (1 f O � N � ) m 1 A O � N � (B.271)

We now have a “prescription,” or process, for calculating the characteristics of the random process that determines
an equity’s price, over time. That process is, for each unit of time, subtract the value of the of the equity at the previous
time from the value of the equity at the current time, and divide this by the value of the equity at the previous time. The
root mean square19 of these values are the root mean square of the random process. The average of these values are
the average of the random process, To}"~ M . The root mean square of these values can be calculated by any convenient
means, and will be represented by c Q Z . The average of these values can be found by any convenient means, and will
be represented by To}"~ 20. Therefore, if O � A O , and assuming that it does not vary over time:c Q Z A O (B.272)

which, if there are sufficiently many samples, is a metric of the equity value’s “volatility,” and:To}	~ A O¥L N � (B.273)

and if there are sufficiently many samples, the average of N � is simply To}	~ M , or:To}	~ A O¥L To}	~ M (B.274)

which is a metric on the equity value’s rate of “growth.” Note that this is the “effective” compound interest rate from
Equation B.266. Equations B.272 and B.274 are important equations, since they can be used in portfolio management.
For example, Equation B.272 states that the volatility of the capital invested in many equities, simultaneously, is
calculated as the root mean square of the individual volatility of the equities. Equation B.274 states that the growths
in the same equity values add together linearly21. Dividing Equation B.274 by Equation B.272 results in the two O ’s
canceling, or:

19In this section, “root mean square” is used to mean the variance of the normalized increments. In Brownian motion fractals, this is computed by° ¢.± �²�\³ 2 � ° 2
1 ¤ ° 2

2 ¤´©�©�© However, in many fractals, the variances are not calculated by adding the squares, (ie., a power of 2,) of the values—the
power may be “fractional,” ie., 3 µ 2 instead of 2, for example [Sch91, pp. 130], [Fed88, pp. 178]. However, as a first order approximation, the
variances of the normalized increments of equity values can successfully be added root mean square [Cro95, kpp. 250]. The so called “Hurst”
coefficient, which can be measured, determines the process to be used. The Hurst coefficient is range of the equity values over a time interval,
divided by the standard deviation of the values over the interval, and its determination is commonly called “ ¶�µ�· ” analysis. As pointed out in [Sch91,
pp. 157] the errors committed in such simplified assumptions can be significant—however, for analysis of equities, squaring the variances seems to
be a reasonably accurate simplification.

20For example, many calculators have averaging and root mean square functionality, as do many spreadsheet programs—additionally, there are
computer source codes available for both. See the programs tsrms and tsavg. The method used is not consequential.

21There are significant implications do to the fact that equity volatilities are calculated root mean square. For example, if capital is invested in ¸
many equities, concurrently, then the volatility of the capital will be 1¹ º ©�»G¨½¼ of an individual equity’s volatility, »�¨¾¼ , provided all the equites

have similar statistical characteristics. But the growth in the capital will be unaffected, ie., it would be statistically similar to investing all the capital
in only one equity. What this means is that capital, or portfolio, volatility can be minimized without effecting portfolio growth—ie., volatility risk
can addressed. There are further applications. For example, Equation B.271 could be modified by dividing both the normalized increments, and
the square of the normalized increments by the daily trading volume. The quotient of the normalized increments divided by the trading volume is
the instantaneous growth, �\¿?À\Á , of the equity, on a per-share basis. Likewise, the square root of the square of the normalized increments divided
by the daily trading volume is the instantaneous root mean square, »G¨½¼ Á , of the equity on a per-share basis, ie., its instantaneous volatility of the
equity. (Note that these instantaneous values are the statistical characteristics of the equity on a per-share bases, similar to a coin toss, and not on
time.) Additionally, it can be shown that the range—the maximum minus the minimum—of an equity’s value over a time interval will increase with
the square root of of the size of the interval of time [Fed88, pp. 178]. Also, it can be shown that the number of expected equity value “high and
low” transitions scales with the square root of time, meaning that the probability of an equity value “high or low” exceeding a given time interval is
proportional to the square root of the time interval [Sch91, pp. 153].
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Te}	~c Q Z A To}	~ M (B.275)

There may be analytical advantages to “model” N � as a simple tossed coin game, (either played with a single coin,
or multiple coins, ie., many coins played at one time, or a single coin played many times22.) The number of wins
minus the number of losses, in many iterations of a single coin tossing game would be:u|m (1 mÂu ) A 2 u|m 1 (B.276)

where P is the probability of a win for the tossed coin. (This probability is traditionally termed, the “Shannon
probability” of a win.) Note that from the definition of N � above, that uvA To}"~ M . For a fair coin, (ie., one that comes
up with a win 50% of the time,) uvA 0 { 5, and there is no advantage, in the long run, to playing the game. However, ifuÄÃ 0 { 5, then the optimal fraction of capital wagered on each iteration of the single coin tossing game, O , would be
2 uzm 1. Note that if multiple coins were used for each iteration of the game, we would expect that the volatility of the
gambler’s capital to increase as the square root of the number of coins used, and the growth to increase linearly with
the number of coins used, irregardless of whether many coins were tossed at once, or one coin was tossed many times,
(ie., our random generator, N � would assume a binomial distribution—and if the number of coins was very large, thenN � would assume, essentially, a Gaussian distribution.) Many equities have a Gaussian distribution for the random
process, N � . It may be advantageous to determine the Shannon probability to analyze equity investment strategies.
From Equation B.275: Te}	~c Q Z A To}	~ M A 2 uRm 1 (B.277)

or: To}	~c Q Z f 1 A 2 u (B.278)

and:

uÅA BED�FHGIKJ f 1

2
(B.279)

where only the average and root mean square of the normalized increments need to be measured,using the “prescription”
or process outlined above.

Interestingly, what Equation B.277 states is that the “best” equity investment is not, necessarily, the equity that
has the largest average growth, To}	~ M . The best equity investment is the equity that has the largest growth, while
simultaneously having the smallest volatility. In point of fact, the optimal decision criteria is to choose the equity that
has the largest ratio of growth to volatility, where the volatility is measured by computing the root mean square of the
normalized increments, and the growth is computed by averaging the normalized increments.

22Here the “model” is to consider two black boxes, one with a equity “ticker” in it, and the other with a casino game of a tossed coin in it. One
could then either invest in the equity, or, alternatively, invest in the tossed coin game by buying many casino chips, which constitutes the starting
capital for the tossed coin game. Later, either the equity is sold, or the chips “cashed in.” If the statistics of the equity value over time is similar
to the statistics of the coin game’s capital, over time, then there is no way to determine which box has the equity, or the tossed coin game. The
advantage of this model is that gambling games, such as the tossed coin, have a large analytical infrastructure, which, if the two black boxes are
statistically the same, can be used in the analysis of equities. The concept is that if the value of the equity, over time, is statistically similar to the
coin game’s capital, over time, then the analysis of the coin game can be used on equity values. Note that in the case of the equity, the terms in¬ ¢ ©E§ ¢ can not be separated. In this case, ¬��Æ»G¨½¼ is the fraction of the equity’s value, at any time, that is “at risk,” of being lost, ie., this is the
portion of a equity’s value that is to be “risk managed.” This is usually addressed through probabilistic methods, as outlined below in the discussion
of Shannon probabilities, where an optimal wagering strategy is determined. In the case of the tossed coin game, the optimal wagering strategy is to
bet a fraction of the capital that is equal to ¬Ç�^»�¨¾¼'� 2 È;¦ 1 [Sch91, pp. 128, 151], where È is the Shannon probability. In the case of the equity,
since ¬É�Æ»G¨¾¼ is not subject to manipulation, the strategy is to select equities that closely approximate this optimization, and the equity’s value,
over time, on the average, would increase in a similar fashion to the coin game. The growth of either investment would be equal to �\¿?ÀÊ�Ë»G¨½¼ 2,
on average, for each iteration of the coin game, or time unit of equity investment. This is an interesting concept from risk management since it
maximizes the gain in the capital, while, simultaneously, minimizing risk exposure to the capital.
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Market

We now have a “first order prescription” that enables us to analyze fluctuations in equity values, although we have not
explained why equity values fluctuate. For a formal presentation on the subject, see the bibliography in [Art95] which,
also, offers non-mathematical insight into the subject.

Consider a very simple equity market, with only two people holding equities. Equity value “arbitration” (ie., how
equity values are determined,) is handled by one person posting (to a bulletin board,) a willingness to sell a given
number of equities at a given price, to the other person. There is no other communication between the two people.
If the other person buys the equity, then that is the value of the equity at that time. Obviously, the other person will
not buy the equity if the price posted is too high—even if ownership of the equity is desired. For example, the other
person could simply decide to wait in hopes that a favorable price will be offered in the future. What this means is
that the seller must consider not only the behavior of the other person, but what the other person thinks the seller’s
behavior will be, ie., the seller must base the pricing strategy on the seller’s pricing strategy. Such convoluted logical
processes are termed “self referential,” and the implication is that the market can never operate in a consistent fashion
that can be the subject of deductive analysis [Pen89, pp. 101]23. As pointed out by [Art95, Abstract], these types of
indeterminacies pervade economics24. What the two players do, in absence of a deductively consistent and complete
theory of the market, is to rely on inductive reasoning. They form subjective expectations or hypotheses about how
the market operates. These expectations and hypothesis are constantly formulated and changed, in a world that forms
from others’ subjective expectations. What this means is that equity values will fluctuate as the expectations and
hypothesis concerning the future of equity values change25. The fluctuations created by these indeterminacies in the
equity market are represented by the term O � N � in Equation B.268, and since there are many such indeterminacies, we
would anticipate N � to have a Gaussian distribution. This is a rather interesting conclusion, since analyzing the actions
of aggregately many “agents,” each operating on subjective hypothesis in a market that is deductively indeterminate,
can result in a system that can not only be analyzed, but optimized.

Optimization

The only remaining derivation is to show that the optimal wagering strategy is, as cited above:

O A c Q Z A 2 u|m 1 (B.280)

where O is the fraction of a gambler’s capital wagered on each toss of a coin that has a Shannon probability, u , of
winning.

23Penrose, referencing Russell’s paradox, presents a very good example of logical contradiction in a self-referential system. Consider a library
of books. The librarian notes that some books in the library contain their titles, and some do not, and wants to add two index books to the library,
labeled “A” and “B,” respectively; the “A” book will contain the list of all of the titles of books in the library that contain their titles; and the “B”
book will contain the list of all of the titles of the books in the library that do not contain their titles. Now, clearly, all book titles will go into either
the “A” book, or the “B” book, respectively, depending on whether it contains its title, or not. Now, consider in which book, the “A” book or the “B”
book, the title of the “B” book is going to be placed—no matter which book the title is placed, it will be contradictory with the rules. And, if you
leave it out, the two books will be incomplete.)

24[Art95] cites the “El Farol Bar” problem as an example. Assume one hundred people must decide independently each week whether go to
the bar. The rule is that if a person predicts that more than, say, 60 will attend, it will be too crowded, and the person will stay home; if less than
60 is predicted, the person will go to the bar. As trivial as this seems, it destroys the possibility of long-run shared, rational expectations. If all
believe few will go, then all will go, thus invalidating the expectations. And, if all believe many will go, then none will go, likewise invalidating
those expectations. Predictions of how many will attend depend on others’ predictions, and others’ predictions of others’ predictions. Once again,
there is no rational means to arrive at deduced a-priori predictions. The important concept is that expectation formation is a self-referential process
in systems involving many agents with incomplete information about the future behavior of the other agents. The problem of logically forming
expectations then becomes ill-defined, and rational deduction, can not be consistent or complete. This indeterminacy of expectation-formation is by
no means an anomaly within the real economy. On the contrary, it pervades all of economics and game theory [Art95].

25Interestingly, the system described is a stable system, ie., if the players have a hypothesis that changing equity positions may be of benefit, then
the equity values will fluctuate—a self fulfilling prophecy. Not all such systems are stable, however. Suppose that one or both players suddenly
discover that equity values can be “timed,” ie., there are certain times when equities can be purchased, and chances are that the equity values will
increase in the very near future. This means that at certain times, the equites would have more value, which would soon be arbitrated away. Such a
scenario would not be stable.
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Following [Rez94, pp. 450], consider that the gambler has a private wire into the future who places wagers on the
outcomes of a game of chance. We assume that the side information which he receives has a probability, u , of being
true, and of 1 m®u , of being false. Let the original capital of gambler be k d 0 i , and k d g9i his capital after the g ’th
wager. Since the gambler is not certain that the side information is entirely reliable, he places only a fraction, O , of
his capital on each wager. Thus, subsequent to g many wagers, assuming the independence of successive tips from the
future, his capital is:

k ( g ) A (1 f O ) Ì (1 m O ) Í k (0) (B.281)

where Î is the number of times he won, and Y A g mÏÎ , the number of times he lost. These numbers are, in general,
values taken by two random variables, denoted by Ð and Ñ . According to the law of large numbers:

lim�	Ò�Ó 1g ÐÔARu (B.282)

and:

lim�	Ò�Ó 1g ÑÏA � A 1 mÂu (B.283)

The problem with which the gambler is faced is the determination of O leading to the maximum of the average
exponential rate of growth of his capital. That is, he wishes to maximize the value of:Õ A lim�	Ò�Ó 1g ln k ( g )k (0)

(B.284)

with respect to O , assuming a fixed original capital and specified u :Õ A lim�	Ò�Ó Ð g ln (1 f O ) f Ñ g ln (1 m O ) (B.285)

or: Õ Azu ln (1 f O ) f � ln (1 m O ) (B.286)

which, by taking the derivative with respect to O , and equating to zero, can be shown to have a maxima when:Ö ÕÖ O Azu (1 f O ) × � 1 (1 m O )1 � ×Ëm (1 mÂu ) (1 m O )1 � × � 1 (1 f O ) ×ØA 0 (B.287)

combining terms: u (1 f O ) × � 1 (1 m O )1 � × m (1 mÏu ) (1 m O ) × (1 f O ) × A 0 (B.288)

and splitting: u (1 f O ) × � 1 (1 m O )1 � ×ÙA (1 mÏu ) (1 m O ) × (1 f O ) × (B.289)

then taking the logarithm of both sides:

ln ( u ) f ( uxm 1) ln (1 f O ) f (1 mÏu ) ln (1 m O ) A ln (1 mÏu ) mÂu ln (1 m O ) f�u ln (1 f O ) (B.290)

and combining terms:

( uxm 1) ln (1 f O ) mÏu ln (1 f O ) f (1 mÂu ) ln (1 m O ) fÏu ln (1 m O ) A ln (1 mÂu ) m ln ( u ) (B.291)
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or:

ln (1 m O ) m ln (1 f O ) A ln (1 mÂu ) m ln ( u ) (B.292)

and performing the logarithmic operations:

ln p 1 m O
1 f O r A ln p 1 mÂuu r (B.293)

and exponentiating:

1 m O
1 f O A 1 mÏuu (B.294)

which reduces to: u (1 m O ) A (1 mÏu ) (1 f O ) (B.295)

and expanding: u|mÏu O A 1 mÂu O mÂu|f O (B.296)

or: uÅA 1 mÂu|f O (B.297)

and, finally:

O A 2 uxm 1 (B.298)

Fixed Increment Fractal

It was mentioned that it would be useful to model equity prices as a fixed increment fractal, ie., an unfair tossed coin
game.

As above, consider a gambler, wagering on the iterated outcomes of an unfair tossed coin game. A fraction, O , of
the gambler’s capital will be wagered on the outcome of each iteration of the unfair tossed coin, and if the coin comes
up heads, with a probability, u , then the gambler wins the iteration, (and an amount equal to the wager is added to the
gambler’s capital,) and if the coin comes up tails, with a probability of 1 mÏu , then the gambler looses the iteration,
(and an amount of the wager is subtracted from the gambler’s capital.)

If we let the outcome of the first coin toss, (ie., whether it came up as a win or a loss,) be S d 1 i and the outcome of
the second toss be S d 2 i , and so on, then the outcome of the g ’th toss, S d gÚi , would be:Û

( g ) AÝÜ Î V.gqÞ with a probability of PY_yjytZ\btÞ with a probability of 1 - P
(B.299)

for convenience, let a win to be represented by f 1, and a loss by m 1:Û
( g ) AÝÜ f 1 Þ with a probability of Pm 1 Þ with a probability of 1 - P

(B.300)

for the reason that when we multiply the wager, O , by S d gÚi , it will be a positive number, (ie., the wager will be added
to the capital,) and for a loss, it will be a negative number, (ie., the wager will be subtracted from the capital.) This is
convenient, since the increment, by with the gambler’s capital increased or decreased in the g ’th iteration of the game
is O¥L S d gÚi .
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If we let
Û d 0 i be the initial value of the gambler’s capital,

Û d 1 i be the value of the gambler’s capital after the first
iteration of the game, then: Û

(1) A Û (0) L (1 f S (1) L�O (1)) (B.301)

after the first iteration of the game, and:Û
(2) A Û (0) L ((1 f S (1) LjO (1)) L (1 f S (2) L	O (2))) (B.302)

after the second iteration of the game, and, in general, after the g ’th iteration of the game:

Û
( g ) A Û (0) L ((1 f S (1) L�O (1)) L (1 f S (2) LjO (2)) LßL�LELàL (1 f S ( g ) LjO ( g )) L (1 f S ( g f 1) LjO ( g f 1)))

(B.303)
For the normalized increments of the time series of the gambler’s capital, it would be convenient to rearrange these

formulas. For the first iteration of the game:Û
(1) m Û (0) A Û (0) L (1 f S (1) L�O (1)) m Û (0) (B.304)

or: Û
(1) m Û (0)Û

(0)
A Û

(0) L (1 f S (1) LjO (1)) m Û (0)Û
(0)

(B.305)

and after reducing, the first normalized increment of the gambler’s capital time series is:Û
(1) m Û (0)Û

(0)
A (1 f S (1) L	O (1)) m 1 A S (1) LjO (1) (B.306)

and for the second iteration of the game:Û
(2) A Û (0) L ((1 f S (1) LjO (1)) L (1 f S (2) L	O (2))) (B.307)

but
Û d 0 i LodGd 1 f S d 1 i L	O�d 1 iGi is simply

Û d 1 i :Û
(2) A Û (1) L (1 f S (2) L�O (2)) (B.308)

or: Û
(2) m Û (1) A Û (1) L (1 f S (2) L�O (2)) m Û (1) (B.309)

which is: Û
(2) m Û (1)Û

(1)
A Û

(1) L (1 f S (2) LjO (2)) m Û (1)Û
(1)

(B.310)

and after reducing, the second normalized increment of the gambler’s capital time series is:Û
(2) m Û (1)Û

(1)
A 1 f S (2) L	O (2) m 1 A S (2) LjO (2) (B.311)

and it should be obvious that the process can be repeated indefinitely, so, the g ’th normalized increment of the gambler’s
capital time series is: Û

( g ) m Û ( g m 1)Û
( g )

A S ( g ) L0O ( g ) (B.312)

which is Equation B.271.
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Data Set Requirements

One of the implications of considering equity prices to have fractal characteristics, ie., random walk or Brownian
motion, is that future prices can not be predicted from past equity price performance. The Shannon probability of a
equity price time series is the likelihood that a equities price will increase in the next time interval. It is typically 0 { 51,
on a day to day bases, (although, occasionally, it will be as high as 0 { 6) What this means, for a typical equity, is that
51% of the time, a equity’s price will increase, and 49% of the time it will decrease—and there is no possibility of
determining which will occur—only the probability.

However, another implication of considering equity prices to have fractal characteristics is that there are statistical
optimizations to maximize portfolio performance. The Shannon probability, u , is related to the volatility of a equity’s
price, (measured as the root mean square of the normalized increments of the equity’s price time series,) c Q Z , byc Q Z A 2 uÅm 1. Also, the average of the normalized increments is the growth in the equity’s price, and is equal to
the square of the c Q Z . Unfortunately, the measurements of Te}	~ and c Q Z must be made over a long period of time, to
construct a very large data set for analytical purposes do to the necessary accuracy requirements. Statistical estimation
techniques are usually employed to quantitatively determine the size of the data set for a given analytical accuracy.

The calculation of the Shannon probability, u , from the average and root mean square of the normalized increments,To}	~ and c Q Z , respectively, will require require specialized filtering, (to "weight" the most recent instantaneous Shannon
probability more than the least recent,) and statistical estimation (to determine the accuracy of the measurement of the
Shannon probability.)

This measurement would be based on the normalized increments, as derived in Equation B.271:

k�� m k���� 1k���� 1
(B.313)

which, when averaged over a “sufficiently large” number of increments, is the mean of the normalized increments,To}	~ . The term “sufficiently large” must be analyzed quantitatively. For example, the following table is the statistical
estimate for a Shannon probability, u , of a time series, vs, the number of records required, based on a mean of the
normalized increments A 0 { 04, as shown in table B.4.

Table B.4: Shannon Probability vs. Number of Records.� �t��� � � �
0 � 51 0 � 0004 0 � 0396 0 � 7000 27
0 � 52 0 � 0016 0 � 0384 0 � 7333 33
0 � 53 0 � 0036 0 � 0364 0 � 7667 42
0 � 54 0 � 0064 0 � 0336 0 � 8000 57
0 � 55 0 � 0100 0 � 0300 0 � 8333 84
0 � 56 0 � 0144 0 � 0256 0 � 8667 135
0 � 57 0 � 0196 0 � 0204 0 � 9000 255
0 � 58 0 � 0256 0 � 0144 0 � 9333 635
0 � 59 0 � 0324 0 � 0076 0 � 9667 3067
0 � 60 0 � 0400 0 � 0000 1 � 0000 inf

where Te}	~ is the average of the normalized increments, b is the error estimate in To}	~ , S is the confidence level of
the error estimate, and g is the number of records required for that confidence level in that error estimate. What this
table means is that if a step function, from zero to 0 { 04, (corresponding to a Shannon probability of 0 { 6,) is applied
to the system, then after 27 records, we would be 70% confident that the error level was not greater than 0 { 0396, orTo}	~ was not lower than 0 { 0004, which corresponds to an effective Shannon probability of 0 { 51. Note that if many
iterations of this example of 27 records were performed, then 30% of the time, the average of the time series, To}	~ ,
would be less than 0 { 0004, and 70% greater than 0 { 0004. This means that the the Shannon probability, 0 { 6, would have

Id: appb.tex,v 0.0 1996/04/10 04:38:13 john Exp 137



B.3. FRACTAL TIME SERIES SIMULATION UTILITIES

to be reduced by a factor of 0 { 85 to accommodate the error created by an insufficient data set size to get the effective
Shannon probability of 0 { 51. Since half the time the error would be greater than 0 { 0004, and half less, the confidence
level would be 1 m dGd 1 m 0 { 85 i L 2 i A 0 { 7, meaning that if we measured a Shannon probability of 0 { 6 on only 27
records, we would have to use an effective Shannon probability of 0 { 51, corresponding to an Te}	~ of 0 { 0004. For 33
records, we would use an To}"~ of 0 { 0016, corresponding to a Shannon probability of 0 { 52, and so on.

The table above was made by iterating the tsstatest program, and can be approximated by a single pole low pass
recursive discreet time filter [Con78, pp. 11], with the pole frequency at 0 { 00045 times the time series sampling
frequency. The accuracy of the approximation is about � 10% for the first 260 samples, with the approximation
accuracy prediction becoming optimistic thereafter, ie., about f 30%.

A pole frequency of 0 { 033 seems a good approximation for working with the root mean square of the normalized
increments, with a reasonable approximation to about 5 m�m�m 10 time units.

The “instantaneous,” weighted, and statistically estimated Shannon probability, u , can be determined by dividing
the filtered c Q Z by the filtered Te}	~ , adding unity, and dividing by two, as in Equation B.279.

The advantage of the discreet time recursive single pole filter approximation is that it requires only 3 lines of code
in the implementation—two for initialization, and one in the calculation construct.

The single pole low pass filter is implemented from the following discrete time equation:} ���
1 A|� L�� 2 f } � L0� 1 (B.314)

where � is the value of the current sample in the time series, } are the value of the output time series, and � 1 and � 2
are constants determined from the following equations:

� 1 A b � 2 � �"� � (B.315)

and

� 2 A 1 m � 1 (B.316)

where U is a constant that determines the frequency of the pole—a value of unity places the pole at the sample
frequency of the time series.

B.3.22 tstradesim

Source tstradesim.c is for generating a time series for the tstrade program. Generates a fractal time series, of many
stocks, concurrently.

The input file is organized, one stock per record, with each record having up to five fields, of which only the
Shannon probability need be specified. The fields are sequential, in any order, with field the type specified by a single
letter—P for Shannon probability, F for wager fraction, N for trading volume, and I for initial value. Any field that is
not one of these letters is assumed to be the stock’s name. For example:

ABC, P = 0.51, F = 0.01, N = 1000, I = 31
DEF, P = 0.52, F = 0.02, N = 500, I = 4
GHI, P = 0.53, F = 0.03, N = 300, I = 65

Naturally, single letter stock names should be avoided, (since P, F, N, and I, are reserved tokens.) Any punctuation
is for clarity, and ignored. Upper or lower case characters may be used. The fields are delimited by whitespace, or
punctuation. Comment records are are signified by a ’#’ character as the first non whitespace character in a record.
Blank records are ignored.
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The output file structure is a text file consisting of records, in temporal order, one record per time series sample.
Blank records are ignored, and comment records are signified by a ’#’ character as the first non white space character
in the record. Each data record represents an equity transaction, consisting of a minium of six fields, separated by
white space. The fields are ordered by time stamp, equity ticker identifier, maximum price in time unit, minimum price
in time unit, closing price in time unit, and trade volume. The existence of a record with more than 6 fields is used to
suspend transactions on the equity, concluding with the record, for example:

1 ABC 38.125 37.875 37.938 333.6
2 DEF 3.250 2.875 3.250 7.2
3 GHI 64.375 63.625 64.375 335.9

American markets, since 1950, can be emulated with 300 stocks, each having p = 0.505, and f = 0.03; p = 0.52, f
= 0.03 for 300 stocks seems to emulate recent markets.

Note: this program uses the following functions from other references:

ran1: which returns a uniform random deviate between 0.0 and 1.0. See [PFTV88, pp. 210], referencing Knuth.

gasdev: which returns a normally distributed deviate with zero mean and unit variance, using ran1 () as the source of
uniform deviates. See [PFTV88, pp. 217].

gammln: which returns the log of the results of the gamma function. See [PFTV88, pp. 168].

The general outline of this program is:

1. given the Shannon probability, compute the abscissa value that divides the area under the normal curve, into
two sections, such that the area to the left of the value, divided by the total area under the normal curve is the
Shannon probability—a Newton-Raphson iterated approach using Romberg integration to find the area is used
for this

2. for each record:

(a) compute a gaussian distributed random number

(b) add the computed abscissa value to the gaussian distributed number

(c) multiply this number by the fraction of cumulative sum to be wagered

(d) multiply this number by the cumulative sum

(e) add this number to the cumulative sum

This program will require finding the value of the normal function, given the standard deviation. The method used
is to use Romberg/trapezoid integration to numerically solve for the value.

This program will require finding the functional inverse of the normal, ie., Gaussian, function. The method used
is to use Romberg/trapezoid integration to numerically solve the equation:

N ( á ) ARâäã
0

1
2 å b'æ"ç 22

Ö X f 0 { 5 (B.317)

which has the derivative:

O ( á ) A 1
2 å b æ"è 2

2 (B.318)
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Since N d á i is known, and it is desired to find á ,

N ( á ) mÏâ ã
0

1
2 å b+æ"ç 22

Ö X f 0 { 5 Azu ( á ) A 0 (B.319)

and the Newton-Raphson method of finding roots would be:

u �0� 1 ARu � m u ( á )O ( á )
(B.320)

As a reference on Newton—Raphson Method of root finding, see [PFTV88, pp. 270].
As a reference on Romberg Integration, see [PFTV88, pp. 124].
As a reference on trapezoid iteration, see [PFTV88, pp. 120].
As a reference on polynomial interpolation, see [PFTV88, pp. 90].

B.3.23 tscauchy

Source tscauchy.c, Cauchy distributed noise generator—generates a time series. The idea is to produce a 1 / f power
spectrum distribution.

The particular method used is from [Sch91, pp. 159].
An example output from the tscauchy program appears in Figure B.56.
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Figure B.56: Example output of the tscauchy pro-
gram, using 1500 records. This is a plot of the fre-
quency histogram.
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Appendix C

Fractal Analysis of Various Market
Segments in the North American
Electronics Industry

This appendix presents a remedial analysis on the optimization of fiscal strategies in various market segments in the
North American electronics industry. It is offered in academic perspective, and under no circumstances would it be
appropriate to consider it financial advice. It can serve, however, as an illustrative method for comparative analysis
of various market segments. Rigorous and sophisticated approaches that address the issues of financial strategies in
industrial markets are contained in the bibliography. The analysis of the Dow Jones Average, United States Gross
Domestic Product, United States M2, United States Leading Economic Indicators, and United States Employment
Figures, and United States Treasury Bill Returns, are presented for comparative purposes1—although the optimum
fiscal strategies were derived, these optimums may have no real meaning, interpretation, or significance for other than
comparative purposes with the rather large research already done by others on these time series. The coin tossing games
are presented for “theoretical” comparison of the characteristics of Brownian motion, and regression testing, as are
the constructions using the program tsunfairbrownian, etc., and are useful in evaluating software system correctness.
Additionally, note that the fiscal strategies that are derived in each case, are the financial strategies that will do at
least as well as the rest of the industry, in the long run, and may not, necessarily, be the maximal strategy if the rest
of the industry is not maximally optimum—ie., it is commensurate with the industry as a whole. Additionally, it
should be noted that the amount of data, from various sources, that was analyzed in each market section was very
sparce, see [Fed88, pp. 179], [Pet91, pp. 83]. The reader is urged to use caution when judging the accuracy of these
presentations.

For the analysis, the data for the various market segments was in the directory ../market, the simulation programs
where in the directory ../simulation, and the utility programs in the directory ../utilities. A brief description of the
programs appears in Appendix B, and the methodology used is described in Chapter 3. To add a new market segment
to the analysis, make a new directory in ../market, and copy all of the files from any other directory into the new
directory. The file, named “data,” should contain the market time series, with a syntax that is consistent with the
program tsfraction, which is described briefly in appendix B. Several simulation files are created during the analysis,

1One of the reasons that these are included in the analysis is for reasons of scientific induction. The reasoning is as follows. Since the electronics
industry is one of the major industries in the United States, fluctuations in the rate of revenue returns of the industry should have correlations in the
total production of the United States, flow of money, which can be related by the GNP and M2, leading indicators, and employment figures. Of
course, bonds should have an anti-correlation. Additionally, it would seem that a company’s equity value, represented by its stock evaluation would
rise exponentially as the industry’s rate of revenue returns increased exponentially—and this should be reflected in the aggregate industry stock
index. The intent was to investigate the correlations in the normalized increments in the decomposition of the time series for each of the macro
economic entities. Whether such a correlation can be induced remains conjecture.
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for example “data.tsshannonmax-p.tsunfairbrownian-p,” which may be re-analyzed by the same method.
The data presented in this appendix is presented in in condensed tabular form in appendix D.

C.1 North American Integrated Circuit Market

For the analysis, the data was in the directory ../markets/ic.namerica2.
The data in this section is presented in tabular form in Section D.1.

C.1.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.1.1. Figure C.1 is a graph of the time series data for
the North American Integrated Circuit Market.

Figure C.2 is a graph of the normalized increments of the time series data presented in Figure C.1. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.3 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.2. The data presented was made by running the Unix utility sed(1) on the normalized increments time series
data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the absolute
value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous rate of
revenue returns3.

Figure C.4 is the normalized histogram of the normalized increments of the time series data shown in Figure C.2.
The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was produced by the
program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.4.

Figure C.5 is the statistical estimate for the data presented in Figure C.2, as derived by the program tsstatest, which
is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 641843, as derived in Section C.1.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.6 is the normalized histogram of the first derivative of the normalized increments of the time series data
shown in Figure C.2. In principle, if the distribution of the normalized increments presented in Figure C.4 is Gaussian
in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41. The data was
generated by the tsderivative program, which is briefly described in appendix B. Figure C.7 is the normalized histogram
of the second derivative of the normalized increments of the time series data shown in Figure C.2. In principle, if the
distribution of the normalized increments presented in Figure C.4 is an integrated Gaussian distribution in nature, this
distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.

Figure C.8 is the range of values of the time series shown in Figure C.1. The horizontal axis is time into the future.
In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.8 would be a

2Data from the Semiconductor Industry Association, 1979—1994, by quarters, in millions of dollars, US.
3The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.1: North American Integrated Circuit Mar-
ket, time series data.
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Figure C.2: North American Integrated Circuit Mar-
ket, normalized increments of the time series data
presented in Figure C.1. The mean is 0.045132 with
a standard deviation of 0.075442. The formula for the
least squares approximation is 0 { 042616 f 0 { 000081 X ,
and the root mean squared value is 0.087396. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000081, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

square root function4. Figure C.9 is the deterministic map of the normalized increments of the time series data shown in
Figure C.2. The deterministic map is useful for determining if a time series was created by a deterministic mechanism.

4Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.8 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.3: North American Integrated Circuit Mar-
ket, absolute value of the normalized increments of
the time series data presented in Figure C.2. The mean
is 0.070147 with a standard deviation of 0.052548.
The formula for the least squares approximation is
0 { 081978 fÅm 0 { 000382 X , and the root mean square
value, from Figure C.2, is 0.087396. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.2, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.4: North American Integrated Circuit Mar-
ket, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.2.
The data has a mean of 0.045132, with a standard de-
viation of 0.075442. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 6.219000, with a critical
value of 42.557000.

This, essentially, maps each element in the time series with the previous element in the time series. See, [PJS92, pp.
745].
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For a mean of 0.044427, with a confidence level of 0.900000
that the error did not exceed 0.004443, 1047 samples would be required.
(With 64 samples, the estimated error is 0.017969 = 40.446295 percent.)

For a standard deviation of 0.087396, with a confidence level of 0.900000
that the error did not exceed 0.008740, 136 samples would be required.
(With 64 samples, the estimated error is 0.012706 = 14.538589 percent.)

Figure C.5: North American Integrated Circuit Market, statistical estimates of the normalized increments of the time
series shown in Figure C.2. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.2.

Observations on the Time Series Increments Analysis

Figure C.4 would seem to indicate that the time series data for the North American Integrated Circuit Market represents
a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.1.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change5. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.10 is the instantaneous value of the root mean square of the normalized increments for the North American
Integrated Circuit Market, and Figure C.11 is the instantaneous Shannon probability for the normalized increments.

C.1.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.1.4. Figure C.12 is a graph of the logistic function
estimates of the time series data for the North American Integrated Circuit Market. The reader is cautioned that
these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies6. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.12 is a graph of the logistic function for the time series data presented in Figure C.1. The data presented
was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters extracted
from the time series data as suggested in Figure C.2. The program tslsq was used to derive the constant and the slope

5The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

6For example, in Figures C.12 and C.13, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See Section D.1.4
for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function of time
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Figure C.6: North American Integrated Circuit Mar-
ket, normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.2.
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Figure C.7: North American Integrated Circuit Mar-
ket, normalized histogram of second derivative of
the the normalized increments of the time series data
shown in Figure C.2.

of the normalized increments of the data presented in Figure C.2. Figure C.13 is the same graph, but with the time
scale expanded by a factor of two.

C.1.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.1.5. Figure C.14 is a graph of the Hurst coefficient
data time series data shown in Figure C.1. The slope of the graph is the Hurst coefficient. The data for this figure was
produced by the program tshurst, which is described briefly in Appendix B.

Figure C.15 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.2. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.14 implies that the variance of the rate of revenue returns,
(per quarter,) in the North American Integrated Circuit Market, k d X 2 m X 1 i , over a period of time is proportional to
the period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a
quantitative statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change
over a period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability
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Figure C.8: North American Integrated Circuit Mar-
ket, range of the time series data shown in Figure C.1.
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of the state of affairs repeating sometime in the future goes down with increasing time7, X , U d X�i A b�c O�d 1 ��ó 2 X�i which
is approximately 1 � ó X for Xõô 1 [Sch91, pp. 160]. Figures C.18, and, C.19 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the North American Integrated Circuit Market for the near term
and far term, respectively [Pet91, pp. 83-84]8. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per quarter.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.14, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.997635, so that:

7It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

8The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.10: North American Integrated Circuit Mar-
ket, instantaneous value of the root mean square of the
normalized increments, provided by running the pro-
gram tsinstant with the -r option on the data presented
in Figure C.1.
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program tsinstant with the -s option on the data pre-
sented in Figure C.1.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.1)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 997635 (C.2)ü ( X 2 m X 1)1 þ 995270 (C.3)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per quarter,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past9. A Hurst coefficient of 0.997635, (for the near future, and 0.720515 for the distant future.) implies

9Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
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Figure C.12: North American Integrated Circuit Mar-
ket, logistic function estimates, provided by running
the tslsq program on the normalized increments pre-
sented in Figure C.2 with the -p option. These pa-
rameters were used as arguments to the tsdlogistic
program.
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Figure C.13: North American Integrated Circuit Mar-
ket, logistic function estimates of Figure C.12 with the
time scale expanded by a factor of two.

that the likelihood of the rate of revenue returns, (per quarter,) for any two consecutive quarters being the same is
99.763500% [Pet91, pp. 66] for the near future, and 0.720515 for the distant future. Likewise, there is a 99.763500%
chance of the rate of revenue returns, (per quarter,) movements being the same in consecutive time periods—ie., if, in
a given quarter, the rate of revenue returns, (per quarter,) is increasing, there is a 99.763500% that the rate of revenue
returns, (per quarter,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per quarter,) for the North American Integrated Circuit
Market are over time, since the probability of having g many consecutive quarters of the same agenda is ÿ � where ÿ
is the Hurst coefficient, or, letting the short term probability of having g many quarters of the same market agenda, U B ,
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.1.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the North American Integrated Circuit Market. See
also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 150



C.1. NORTH AMERICAN INTEGRATED CIRCUIT MARKET

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

lo
g 

(R
 / 

S
)�

log (Time)

Hurst Coefficient Graphs

"data.tshurst"
-0.466400 + 0.720515 * t
-1.031750 + 0.997635 * t

Figure C.14: North American Integrated Circuit Mar-
ket, Hurst coefficient data for the normalized incre-
ments of the time series data shown in Figure C.2.
The slope of the graph is the Hurst coefficient.
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is:

U B ( g ) A ÿ � (C.4)A 0 { 997635
�

(C.5)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.2, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next quarter’s rate of revenue returns would be the same as the
current quarter’s revenue rate. Interestingly, it is 0 { 045132 L 100 percent, on the average, with a standard deviation of
0 { 075442 L 100 percent, and a root mean square error value of 0 { 087396 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per quarter,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.6)
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ü ( X 2 m X 1)0 þ 997635 (C.7)

where � is the range of values in the increments of the rate of revenue returns, (per quarter.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per quarter,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per quarter) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.7 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.8)ü � ( X 2 m X 1) (C.9)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per quarter,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.10)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per quarter,) are known, (and ÿ�� 1

2 ,) then the
expected change in � � , will increase with the square root of time10.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.11)

ü �
( cjX )c 0 þ 997635

(C.12)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.15, to provide a least squares
approximation to the H parameter for the North American Integrated Circuit Market. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.809622 for the near future, and 0.831476 for the distant future.

Figures C.14 and C.15 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.2. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.2, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.16 and C.17 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Many North American Integrated Circuit Market industry analyst speculate that there is “periodic” behavior in the
market place, at approximately 5 year intervals. Both the Hurst coefficient and H parameter graphs would tend to
support the intuition. Notice that the slope of the graphs, in figures C.14 and C.15, tend to decrease abruptly atX � ln d 3 i � 20 quarters, which is approximately 60 months, or 5 years [Pet91, pp. 96]. Whether this is “periodic”
behavior, or an indication of more complex system dynamics, perhaps “chaotic,” remains to be seen. If that is the case,
it could provide an exploitive venue.

10To be precise, it is actually asymptotically proportional to � 1
2
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C.1.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.1.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.3. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.2. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the North American Integrated Circuit Market, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the North American Integrated Circuit Market, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
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The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
Chapter B, and is presented in Figure C.2, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 045132 f 1)
ln (2)

A 0 { 063685 (C.13)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.2, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 042616 f 1)
ln (2)

A 0 { 060208 (C.14)

Note that if the mean is not constant in Figure C.2, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.1:

� V_X�Z A 0 { 046835 (C.15)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.1:

� V_X�Z A 0 { 058857 (C.16)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.1.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 058857 � (C.17)

therefore: Û
(U ) A 0 { 058857 (C.18)

and, tsshannon 0.058857 gives: Û
(0 { 641843) A 0 { 058857 (C.19)

therefore:

2 � (0 þ 641843) A 20 þ 058857 (C.20)A 1 { 041640 (C.21)A 4 { 164018% (C.22)

and:

2U m 1 A (2 L 0 { 641843) m 1 (C.23)A 0 { 283686 (C.24)A 28 { 368600% (C.25)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the North
American Integrated Circuit Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every quarter, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 28.368600% of its rate of revenue returns, (per quarter.) As a conceptual model, the remaining
71.631400% will be held in “reserve” with a 64.184300% chance of making twice the 28.368600% back, (and a
35.815700% chance of making 0.0,) in one quarter, on the average, for an average growth in its rate of revenue returns,
(per quarter,) of 4.164018%, or a doubling of its rate of revenue returns, (per quarter,) in 16.990333 quarters.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
28.368600% per quarter of the rate of revenue returns, (per quarter,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 4.164018%, per quarter, on average.

Note that the metrics presented in this section are representative of the North American Integrated Circuit Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 28.368600% of its rate of revenue returns, (per quarter,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some quarters, depending on the North
American Integrated Circuit Market’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other quarters, the company must default, and the bank seizes a portion
of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 4.164018% per quarter.

As another simple example, a company re-invests 28.368600% of its rate of revenue returns, (per quarter,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 28.368600% per quarter investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 4.164018% per quarter.

As an example of “product portfolio” management, suppose a company re-invests 28.368600% of its rate of
revenue returns, (per quarter,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 28 { 368600, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 28 { 368600 percent for the second product, implying that the company should diversify its
product line11. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 28 { 368600%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the North American Integrated Circuit Market, as a standard bench mark, then the optimal number will be 1

0 þ 283686 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.2, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex

11The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 28.368600% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 28.368600% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 28.368600 of the rate of revenue returns per quarter does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 28.368600% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 283686 products seems consistent with the industry, also.

C.1.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the North American Integrated Circuit
Market, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the North American Integrated Circuit Market time series is 0.045132, and
0.087396respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
5.908830.

If this value seems consistent number of companies in the North American Integrated Circuit Market, within the
assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence
that the companies participating in the North American Integrated Circuit Market are operating optimally, and the
“average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.606221, which
would be the value which should be used in Section C.1.5 for each participating company if market expansion was to
be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.1.5 is greater than
the average Shannon probability for the companies participating in the North American Integrated Circuit Market, as
derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.1.5.
The maximum exploitability for the North American Integrated Circuit Market is derived in Section C.1.10, but it is
probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the North American Integrated
Circuit Market is 0.606221, with several alternative solutions listed in the previous paragraph. However, these should
be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.758204 in the North American
Integrated Circuit Market. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.26)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the North American Integrated Circuit Market would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.1.7 Fixed Increment Approximation for Operational Strategy

.
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This section derives various values based on the “average” of the normalized increments presented in Figure C.3.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.2. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the North American Integrated
Circuit Market, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.1.5, is derived from the North American
Integrated Circuit Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which
may be exploitable, see Section C.1.10.

An additional exploitable strategy may be time itself. Equations C.3, C.7, and, C.5, are, essentially, metrics on how
fast a decision, which is based on information concerning the current status of the North American Integrated Circuit
Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.18, and, C.19 compare methods of
approximation of the “forecastability” of rate of revenue returns in the North American Integrated Circuit Market for
the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the North American
Integrated Circuit Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even
chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.12” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.18, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.5, 0 { 997635

� A 0 { 5 quarters of operations. Since the optimal amount of
inventory and, from Equation C.3, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.19, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community13. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

12For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

13For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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Figure C.18: North American Integrated Circuit Mar-
ket, “forecastability” of near term rate of revenue re-
turns. Although the error function is the most accu-
rate, for the near term, ÿ � A 0 { 997635 � may be used
as a reliable metric of “forecastability” of the rate of
revenue returns.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50 55 60

C
on

fid
en

ce
 in

 R
ev

en
ue

 R
at

e 
F

or
ec

as
t

"

Time into Future

Revenue Rate Forecastability

0.997635 ** t
erf (1 / sqrt (2 * t))

1 / sqrt (t)

Figure C.19: North American Integrated Circuit Mar-
ket, “forecastability” of far term rate of revenue re-
turns. Although the error function is the most accu-
rate, for the far term, 1! � may be used as a reliable
metric of “forecastability” of the rate of revenue re-
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1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.1.4, Equation C.5, and the preceeding section, approximately 3 times the value where

0 { 997635
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 997635 many quarters seems consistent with the author’s experience in
the industry.

For convenience of comparison, converting from quarters to months by dividing the logarithmic returns by 3:

C.1.8 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.1.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.3. These values are an approximation to a, probably,
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complex process with a distribution shown in Figure C.2. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the North American Integrated Circuit Market, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the North American Integrated Circuit Market, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.2, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 015044 f 1)
ln (2)

A 0 { 021542 (C.27)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.2, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 014205 f 1)
ln (2)

A 0 { 020350 (C.28)

Note that if the mean is not constant in Figure C.2, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.1:

� V_X�Z A 0 { 015612 (C.29)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.1:

� V_X�Z A 0 { 019619 (C.30)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.1.8 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 019619 � (C.31)

therefore: Û
(U ) A 0 { 019619 (C.32)

and, tsshannon 0.019619 gives: Û
(0 { 582271) A 0 { 019619 (C.33)

therefore:

2 � (0 þ 582271) A 20 þ 019619 (C.34)A 1 { 013692 (C.35)A 1 { 369174% (C.36)
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and:

2U m 1 A (2 L 0 { 582271) m 1 (C.37)A 0 { 164542 (C.38)A 16 { 454200% (C.39)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the North
American Integrated Circuit Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 16.454200% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
83.545800% will be held in “reserve” with a 58.227100% chance of making twice the 16.454200% back, (and a
41.772900% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 1.369174%, or a doubling of its rate of revenue returns, (per month,) in 50.970998 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
16.454200% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 1.369174%, per month, on average.

Note that the metrics presented in this section are representative of the North American Integrated Circuit Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 16.454200% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the North
American Integrated Circuit Market’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion
of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 1.369174% per month.

As another simple example, a company re-invests 16.454200% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 16.454200% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.369174% per month.

As an example of “product portfolio” management, suppose a company re-invests 16.454200% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 16 { 454200, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 16 { 454200 percent for the second product, implying that the company should diversify its
product line14. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated

14The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 16 { 454200%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the North American Integrated Circuit Market, as a standard bench mark, then the optimal number will be 1

0 þ 164542 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.2, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 16.454200% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 16.454200% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.1.9 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.1.9. Figure C.20 represents a constructional simulation
of the time series data presented in Figure C.1. The program tsunfairbrownian, which is briefly described in appendix B,
was used in the reconstruction. The reconstructed data is superimposed on the original time series data. The program,
tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—the value of
the fixed increment is derived from the root mean square average of the normalized increments presented in Figure C.2.
The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in all probability,
the normalized increments presented in Figure C.2 represent a relatively complex process, that may not be “modeled”
with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.21 presents
a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the normalized
histogram presented in Figure C.4.

C.1.10 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.1.3. One of the issues of analysis, as mentioned in
Section C.1.7, is to determine the maximum Shannon probability for the time series presented in Figure C.1. Potentially,
this could be exploited with an aggressive fiscal strategy. Figure C.22 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probability
for the time series data presented in Figure C.1. Figure C.23 was constructed using tsunfairbrownian program, which is
also described in appendix B, with the maximum Shannon probability, and the time series data presented in Figure C.1.
This represents a “what if” the investment strategy was changed from a Shannon probability of 0.641843, as derived in
Section C.1.5 to 0.750000. This process, essentially, extracts the random statistical data from the time series presented
in Figure C.1, and constructs a new time series, using the random statistical data, with a different investment strategy.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments.
The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in all probability,
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Figure C.20: North American Integrated Circuit Mar-
ket, Time series data, empirical and simulated, us-
ing the program tsunfairbrownian with f = 0.087396.
This data is superimposed on the data presented in
Figure C.1.
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Figure C.21: North American Integrated Circuit Mar-
ket, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.20,
empirical and simulated. The empirical data has
a mean of 0.045132, with a standard deviation of
0.075442. By comparison, the simulated data has
a mean of 0.042288 with a standard deviation of
0.077108. This data is superimposed on the data pre-
sented in Figure C.4. The area under the four curves
is identical.

the increments in the original data represent a relatively complex process, that may not be “modeled” with such a
simple methodology.

If it is assumed that the time series data set, presented in Figure C.1, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of quarters that the North American Integrated
Circuit Market movement was positive, and dividing by the total number of timescales represented in the time series.
This quotient is 0.746032, as compared with the predicted value from the program tsshannonmax of 0.750000.
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Figure C.23: North American Integrated Circuit Mar-
ket, maximum rate of revenue returns, per quarter, at
a Shannon probability, of 0.750000, corresponding to
a “wager” fraction of 0.500000.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.1.1, Fig-
ure C.4, it would appear that the North American Integrated Circuit Market’s normalized increments are characterized
by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence
of this is that a re-investment strategy that is to “wager” a fraction of 0.500000 of the rate of returns every quarter is
overly aggressive, since in the classical Brownian scenario, the maximum loss, in any quarter, was no more that what
was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O$# � �c Q Z A&% (C.40)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.2 of 0.087396, vs. an
“theoretical optimal” value of 0.500000 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
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deviation, or about 15.865% per quarter, which is unacceptably high. However, it is not clear why the North American
Integrated Circuit Market is running at a value of 0.087396, which seems very conservative. However, a re-investment
strategy of 0.087396 per quarter does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is
inferred that the North American Integrated Circuit Market is similar to, of about 50% in ten years, which corresponds
to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard
deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate should
be, approximately, 0 þ 500000

2 þ 5 , compared with an operational value, from Figure C.4 of 0.087396.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the North American Integrated Circuit Market are not running near the optimal re-investment
strategy. This seems enigmatic, since those companies that run, on a long term average, far below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run too close, or even above, the optimally maximal
value would be over extended, and become financially destitute during market down turns, which is inevitable in a
fractal time series as presented in Figure C.1. It would seem that the natural selection process of the competitive
environment would allow only those companies that run sufficiently near the optimally maximal value to survive, in
the long run. One possible explanation, foremost, is that the analytical methodology presented herein is inappropriate.
Another explanation is that the gross margins are less than the fraction 0.750000 of the rate of revenue returns, and thus
could not accommodate such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue.
If, in a capitalistic market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that
there will be many competitors, each making minimal gross margins, then how do the companies grow their markets?
Naturally, those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns
re-investment possible. Yet another interpretation is that the number of competitors would grow at an exponential
rate, but all of them would make minimal returns. However, an operational Shannon probability of 0.641843 is not
just marginally lower than the maximum Shannon probability of 0.750000. There is a significant disparity which is
difficult to explain. It would seem that the game-theoretic eventual outcome of a competitive market place would be
a solution that hinders growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory.
On the other hand, is there an optimum number of competitors in a market place, where the gross margins can be
higher, permitting wealth and job creation, and also a competitive situation? If this analysis is correct, and that should
be subject to scrutiny, then it would appear that this is the case. But this brings up another issue—that of taxation, and
other contributions to the social welfare function. If there is an optimum number of competitors in the market place,
that maximizes wealth and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and
other contributions to the social welfare function, that will permit maximal industrial growth, and thus maximal growth
in the tax base. But this would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility
Theorem, which states that such optimizations can not be determined because the ordering of priorities are intransitive.
All very perplexing, since the simulation of the maximum Shannon probability in the next section seems to indicate
that such an aggressive re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.1.11 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.3.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.2. These
values will be used in a fixed increment Brownian fractal analysis of the North American Integrated Circuit Market,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.1.6 and D.1.7. As a subjective evaluation of the
“quality” of the analysis of the North American Integrated Circuit Market, from Chapter 3, Equation 3.8, and using
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the mean and root mean square values of the normalized increments of the time series data presented in Figure C.1
from Figure C.2, and the Shannon probability as calculated by counting the total number of quarters that the North
American Integrated Circuit Market movement was positive, as presented in Section C.1.10:

u � BEDGFHGIKJ f 1

2
(C.41)

0 { 746032 � 0 þ 045132
0 þ 087396 f 1

2
(C.42)

0 { 746032 � 0 { 758204 (C.43)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 746032 � 0 { 758204 � 0 { 750000 (C.44)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.1.5, should be
compared. The four methods used were the mean of Figure C.2, the constant in the least squares approximation to
Figure C.2, the least squares exponential approximation to Figure C.1, and the logarithmic returns of Figure C.1,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 063685 � 0 { 060208 � 0 { 046835 � 0 { 058857 (C.45)

It is implied in Section C.1.5, Subsection C.1.5 and in Section C.1.9 that, a Brownian motion with fixed increments
fractal may “model” the North American Integrated Circuit Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.46)

0 { 087396 (2 L 0 { 746032 m 1) � 0 { 075442 (2 L 0 { 746032 m 1)

2 ó 0 { 746032 (1 m 0 { 746032)
(C.47)

0 { 087396 L 0 { 492063 � 0 { 075442 L 0 { 565227 (C.48)

0 { 043004 � 0 { 042642 (C.49)

and, equating to the mean:

0 { 045132 � 0 { 043004 � 0 { 042642 (C.50)

where, as in Equation C.43 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.1 from Figure C.2, and the Shannon probability as calculated
by counting the total number of quarters that the North American Integrated Circuit Market movement was positive,
as presented in Section C.1.10.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value15, where the absolute value is presented in Figure C.3, and the root mean square value is presented
in Figure C.2:

15The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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0 { 070147 � 0 { 087396 (C.51)

Note, that if the North American Integrated Circuit Market could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.1 from Figure C.2 should be zero. It is 0 { 052548.

C.2 World Semiconductor Market

For the analysis, the data was in the directory ../markets/semiconductors.world16.
The data in this section is presented in tabular form in Section D.2.

C.2.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.2.1. Figure C.24 is a graph of the time series data for
the World Semiconductor Market.

Figure C.25 is a graph of the normalized increments of the time series data presented in Figure C.24. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.26 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.25. The data presented was made by running the Unix utility sed(1) on the normalized increments time series
data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the absolute
value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous rate of
revenue returns17.

Figure C.27 is the normalized histogram of the normalized increments of the time series data shown in Figure C.25.
The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was produced by the
program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.27.

Figure C.28 is the statistical estimate for the data presented in Figure C.25, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 641794, as derived in Section C.2.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.29 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.25. In principle, if the distribution of the normalized increments presented in Figure C.27 is
Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41. The
data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.30 is the normalized
histogram of the second derivative of the normalized increments of the time series data shown in Figure C.25. In
principle, if the distribution of the normalized increments presented in Figure C.27 is an integrated Gaussian distribution
in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.

16Data from the Semiconductor Industry Association, 1982—1994, by quarters, in millions of dollars, US.
17The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.25: World Semiconductor Market, normal-
ized increments of the time series data presented in
Figure C.24. The mean is 0.044437 with a stan-
dard deviation of 0.064421. The formula for the
least squares approximation is 0 { 039513 f 0 { 000197 X ,
and the root mean squared value is 0.077739. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000197, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

Figure C.31 is the range of values of the time series shown in Figure C.24. The horizontal axis is time into the
future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.31 would
be a square root function18. Figure C.32 is the deterministic map of the normalized increments of the time series data

18Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.31 are a computational artifact—caused by not using the -m
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Figure C.26: World Semiconductor Market, absolute
value of the normalized increments of the time series
data presented in Figure C.25. The mean is 0.061981
with a standard deviation of 0.047389. The formula
for the least squares approximation is 0 { 078868 fm 0 { 000675 X , and the root mean square value, from
Figure C.25, is 0.077739. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
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superimposed here for convenience. This graph is the
absolute value of the fraction of change in the time
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Figure C.27: World Semiconductor Market, normal-
ized histogram of the normalized increments of the
time series data shown in Figure C.25. The data has
a mean of 0.044437, with a standard deviation of
0.064421. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 9.194000, with a critical value of
42.557000.

shown in Figure C.25. The deterministic map is useful for determining if a time series was created by a deterministic
mechanism. This, essentially, maps each element in the time series with the previous element in the time series.
See, [PJS92, pp. 745].

option to the program tshurst, which is computationally inefficient.
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For a mean of 0.043582, with a confidence level of 0.900000
that the error did not exceed 0.004358, 861 samples would be required.
(With 52 samples, the estimated error is 0.017732 = 40.686694 percent.)

For a standard deviation of 0.077739, with a confidence level of 0.900000
that the error did not exceed 0.007774, 136 samples would be required.
(With 52 samples, the estimated error is 0.012539 = 16.129117 percent.)

Figure C.28: World Semiconductor Market, statistical estimates of the normalized increments of the time series shown
in Figure C.25. The table was produced with the tsstatest program, and illustrates the size of the data set required for
a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.25.

Observations on the Time Series Increments Analysis

Figure C.27 would seem to indicate that the time series data for the World Semiconductor Market represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.2.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change19. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.33 is the instantaneous value of the root mean square of the normalized increments for the World
Semiconductor Market, and Figure C.34 is the instantaneous Shannon probability for the normalized increments.

C.2.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.2.4. Figure C.35 is a graph of the logistic function
estimates of the time series data for the World Semiconductor Market. The reader is cautioned that these graphs are
constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate
prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to
produce a practical fit to the data. In addition, there are numerical stability issues with logistic function methodologies20.
The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.35 is a graph of the logistic function for the time series data presented in Figure C.24. The data presented
was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters extracted
from the time series data as suggested in Figure C.25. The program tslsq was used to derive the constant and the slope

19The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

20For example, in Figures C.35 and C.36, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See Section D.2.4
for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function of time
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Figure C.29: World Semiconductor Market, normal-
ized histogram of the first derivative of the normal-
ized increments of the time series data shown in Fig-
ure C.25.
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Figure C.30: World Semiconductor Market, normal-
ized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.25.

of the normalized increments of the data presented in Figure C.25. Figure C.36 is the same graph, but with the time
scale expanded by a factor of two.

C.2.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.2.5. Figure C.37 is a graph of the Hurst coefficient
data time series data shown in Figure C.24. The slope of the graph is the Hurst coefficient. The data for this figure was
produced by the program tshurst, which is described briefly in Appendix B.

Figure C.38 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.25. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.37 implies that the variance of the rate of revenue returns,
(per quarter,) in the World Semiconductor Market, k d X 2 m X 1 i , over a period of time is proportional to the period of
time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative statement
concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a period of time.
An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the state of affairs
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repeating sometime in the future goes down with increasing time21, X , U d X�i A b0c O�d 1 ��ó 2 X�i which is approximately
1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.41, and, C.42 compare methods of approximation of the “forecastability”
of the rate of revenue returns in the World Semiconductor Market for the near term and far term, respectively [Pet91,
pp. 83-84]22. This seems to be a quantitative statement concerning “windows of opportunity” in the rate of revenue
returns, (per quarter.) The program tslsq was used on the Hurst coefficient data, presented in Figure C.37, to provide a
least squares approximation to the Hurst coefficient. The superimposed least squares approximation with on original
Hurst coefficient data is presented. The time series data has a Hurst coefficient of 1.025249, so that:

21It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

22The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.34: World Semiconductor Market, instan-
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malized increments, provided by running the program
tsinstant with the -s option on the data presented in
Figure C.24.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.52)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 1 þ 025249 (C.53)ü ( X 2 m X 1)2 þ 050498 (C.54)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per quarter,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past23. A Hurst coefficient of 1.025249, (for the near future, and 0.725956 for the distant future.) implies

23Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
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Figure C.35: World Semiconductor Market, logis-
tic function estimates, provided by running the tslsq
program on the normalized increments presented in
Figure C.25 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.36: World Semiconductor Market, logistic
function estimates of Figure C.35 with the time scale
expanded by a factor of two.

that the likelihood of the rate of revenue returns, (per quarter,) for any two consecutive quarters being the same is
102.524900% [Pet91, pp. 66] for the near future, and 0.725956 for the distant future. Likewise, there is a 102.524900%
chance of the rate of revenue returns, (per quarter,) movements being the same in consecutive time periods—ie., if, in
a given quarter, the rate of revenue returns, (per quarter,) is increasing, there is a 102.524900% that the rate of revenue
returns, (per quarter,) will increase in the following period, also. In some sense, this is a quantitative statement on
how “predictable,” or “forecastable” the rate of revenue returns, (per quarter,) for the World Semiconductor Market
are over time, since the probability of having g many consecutive quarters of the same agenda is ÿ � where ÿ is the
Hurst coefficient, or, letting the short term probability of having g many quarters of the same market agenda, U B , is:

the “long term,”
� ì 0 � 5, or a standard root mean square summation process should be used. If

�
is 0 � 5 then the market is termed a Brownian

motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.2.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the World Semiconductor Market. See also [Pet91, pp.
67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.37: World Semiconductor Market, Hurst
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U B ( g ) A ÿ � (C.55)A 1 { 025249
�

(C.56)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.25, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next quarter’s rate of revenue returns would be the same as the
current quarter’s revenue rate. Interestingly, it is 0 { 044437 L 100 percent, on the average, with a standard deviation of
0 { 064421 L 100 percent, and a root mean square error value of 0 { 077739 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per quarter,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.57)
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ü ( X 2 m X 1)1 þ 025249 (C.58)

where � is the range of values in the increments of the rate of revenue returns, (per quarter.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per quarter,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per quarter) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.58 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.59)ü � ( X 2 m X 1) (C.60)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per quarter,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.61)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per quarter,) are known, (and ÿ�� 1

2 ,) then the
expected change in � � , will increase with the square root of time24.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.62)

ü �
( cjX )c 1 þ 025249

(C.63)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.38, to provide a least squares
approximation to the H parameter for the World Semiconductor Market. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.739148 for the near future, and 0.781920 for the distant future.

Figures C.37 and C.38 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.25. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.25, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.39 and C.40 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Many World Semiconductor Market industry analyst speculate that there is “periodic” behavior in the market place, at
approximately 5 year intervals. Both the Hurst coefficient and H parameter graphs would tend to support the intuition.
Notice that the slope of the graphs, in figures C.37 and C.38, tend to decrease abruptly at X � ln d 3 i � 20 quarters,
which is approximately 60 months, or 5 years [Pet91, pp. 96]. Whether this is “periodic” behavior, or an indication
of more complex system dynamics, perhaps “chaotic,” remains to be seen. If that is the case, it could provide an
exploitive venue.

24To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.39: World Semiconductor Market, tradi-
tional Hurst coefficient data for the time series data
shown in Figure C.24. The slope of the graph is the
Hurst coefficient, and is 1.028920 for the near term,
and 0.644727 for the far term.
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Figure C.40: World Semiconductor Market, tradi-
tional H parameter data for the time series data shown
in Figure C.24 The slope of the graph is the H param-
eter, and is 0.749932 for the near term, and 0.492932
for the far term.

C.2.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.2.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.26. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.25. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the World Semiconductor Market, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the World Semiconductor Market, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
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Chapter B, and is presented in Figure C.25, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 044437 f 1)
ln (2)

A 0 { 062725 (C.64)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.25, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 039513 f 1)
ln (2)

A 0 { 055908 (C.65)

Note that if the mean is not constant in Figure C.25, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.24:

� V_X�Z A 0 { 053777 (C.66)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.24:

� V_X�Z A 0 { 058816 (C.67)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.2.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 058816 � (C.68)

therefore: Û
(U ) A 0 { 058816 (C.69)

and, tsshannon 0.058816 gives: Û
(0 { 641794) A 0 { 058816 (C.70)

therefore:

2 � (0 þ 641794) A 20 þ 058816 (C.71)A 1 { 041611 (C.72)A 4 { 161057% (C.73)

and:

2U m 1 A (2 L 0 { 641794) m 1 (C.74)A 0 { 283588 (C.75)A 28 { 358800% (C.76)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the World
Semiconductor Market executes a long term fiscal strategy, commensurate with the aggregate environment, that is to
invest, every quarter, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 28.358800% of its rate of revenue returns, (per quarter.) As a conceptual model, the remaining 71.641200%
will be held in “reserve” with a 64.179400% chance of making twice the 28.358800% back, (and a 35.820600% chance
of making 0.0,) in one quarter, on the average, for an average growth in its rate of revenue returns, (per quarter,) of
4.161057%, or a doubling of its rate of revenue returns, (per quarter,) in 17.002176 quarters.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
28.358800% per quarter of the rate of revenue returns, (per quarter,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 4.161057%, per quarter, on average.

Note that the metrics presented in this section are representative of the World Semiconductor Market as an aggregate
whole, and may or may not be accurate representations for any particular participant in the environment. Of interest to
the participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 28.358800% of its rate of revenue returns, (per quarter,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some quarters, depending on the World
Semiconductor Market’s environment, the company’s rate of revenue returns exceeds what was borrowed from the
bank, and the loan is repaid in full. Other quarters, the company must default, and the bank seizes a portion of the
company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 4.161057% per quarter.

As another simple example, a company re-invests 28.358800% of its rate of revenue returns, (per quarter,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 28.358800% per quarter investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 4.161057% per quarter.

As an example of “product portfolio” management, suppose a company re-invests 28.358800% of its rate of
revenue returns, (per quarter,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 28 { 358800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 28 { 358800 percent for the second product, implying that the company should diversify its
product line25. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 28 { 358800%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the World Semiconductor Market, as a standard bench mark, then the optimal number will be 1

0 þ 283588 . Note that
this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.25, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of

25The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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“product portfolio” management, consider the issue of product mix. In this interpretation, 28.358800% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 28.358800% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 28.358800 of the rate of revenue returns per quarter does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 28.358800% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 283588 products seems consistent with the industry, also.

C.2.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the World Semiconductor Market, and
uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square, c Q Z � ��� , of
the normalized increments of the World Semiconductor Market time series is 0.044437, and 0.077739respectively, the
number of companies participating in the market can be calculated by Equation 2.109 to be 7.353038.

If this value seems consistent number of companies in the World Semiconductor Market, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that
the companies participating in the World Semiconductor Market are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.605400, which would be the value
which should be used in Section C.2.5 for each participating company if market expansion was to be consistent with the
rest of the industry. However, if the Shannon probability derived in Section C.2.5 is greater than the average Shannon
probability for the companies participating in the World Semiconductor Market, as derived in this section, then the
market would, possibly, be exploitable with the fiscal strategy outlined in Section C.2.5. The maximum exploitability
for the World Semiconductor Market is derived in Section C.2.10, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the World Semiconductor Market
is 0.605400, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.785809 in the World Semiconductor Market. In
all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.77)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the World Semiconductor Market would tend to indicate that the companies participating in
the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.2.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.26.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.25. These
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values will be used in a fixed increment Brownian fractal analysis and simulation of the World Semiconductor Market,
and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.2.5, is derived from the World
Semiconductor Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.2.10.

An additional exploitable strategy may be time itself. Equations C.54, C.58, and, C.56, are, essentially, metrics on
how fast a decision, which is based on information concerning the current status of the World Semiconductor Market,
becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational
necessity in strategic planning and project management. Figures C.41, and, C.42 compare methods of approximation of
the “forecastability” of rate of revenue returns in the World Semiconductor Market for the near term and far term [Pet91,
pp. 83-84], respectively. As a general rule, caution must be exercised when making decisions that will span a time
interval larger than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond
this time interval, the chances increase that the competitive and market forces will alter the market environment in a
possibly detrimental unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development,
manufacturing, and distribution of products and services that are consistent with this temporal agenda. Automation of
these processes, if executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the World Semiconductor
Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate
of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.26” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.41, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.56, 1 { 025249

� A 0 { 5 quarters of operations. Since the optimal amount of
inventory and, from Equation C.54, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.42, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community27. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.2.4, Equation C.56, and the preceeding section, approximately 3 times the value where

1 { 025249
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

26For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

27For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 1 þ 025249 many quarters seems consistent with the author’s experience in
the industry.

For convenience of comparison, converting from quarters to months by dividing the logarithmic returns by 3:

C.2.8 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.2.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.26. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.25. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the World Semiconductor Market, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the World Semiconductor Market, the fiscal strategy, commensurate with the
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aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.25, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 014812 f 1)
ln (2)

A 0 { 021213 (C.78)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.25, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 013171 f 1)
ln (2)

A 0 { 018878 (C.79)

Note that if the mean is not constant in Figure C.25, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.24:

� V_X�Z A 0 { 017926 (C.80)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.24:

� V_X�Z A 0 { 019605 (C.81)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.2.8 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 019605 � (C.82)

therefore: Û
(U ) A 0 { 019605 (C.83)

and, tsshannon 0.019605 gives: Û
(0 { 582242) A 0 { 019605 (C.84)

therefore:

2 � (0 þ 582242) A 20 þ 019605 (C.85)A 1 { 013682 (C.86)A 1 { 368190% (C.87)

and:

2U m 1 A (2 L 0 { 582242) m 1 (C.88)A 0 { 164484 (C.89)A 16 { 448400% (C.90)
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Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the World
Semiconductor Market executes a long term fiscal strategy, commensurate with the aggregate environment, that is to
invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 16.448400% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 83.551600%
will be held in “reserve” with a 58.224200% chance of making twice the 16.448400% back, (and a 41.775800% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
1.368190%, or a doubling of its rate of revenue returns, (per month,) in 51.007396 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
16.448400% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 1.368190%, per month, on average.

Note that the metrics presented in this section are representative of the World Semiconductor Market as an aggregate
whole, and may or may not be accurate representations for any particular participant in the environment. Of interest to
the participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 16.448400% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the World
Semiconductor Market’s environment, the company’s rate of revenue returns exceeds what was borrowed from the
bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the
company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 1.368190% per month.

As another simple example, a company re-invests 16.448400% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 16.448400% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.368190% per month.

As an example of “product portfolio” management, suppose a company re-invests 16.448400% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 16 { 448400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 16 { 448400 percent for the second product, implying that the company should diversify its
product line28. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 16 { 448400%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the World Semiconductor Market, as a standard bench mark, then the optimal number will be 1

0 þ 164484 . Note that
this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue

28The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.25, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 16.448400% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 16.448400% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.2.9 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.2.9. Figure C.43 represents a constructional
simulation of the time series data presented in Figure C.24. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.25. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.25 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.44 presents
a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the normalized
histogram presented in Figure C.27.

C.2.10 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.2.3. One of the issues of analysis, as mentioned
in Section C.2.7, is to determine the maximum Shannon probability for the time series presented in Figure C.24.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.45 is a graph of the output of the tsshan-
nonmax program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon
probability for the time series data presented in Figure C.24. Figure C.46 was constructed using tsunfairbrownian
program, which is also described in appendix B, with the maximum Shannon probability, and the time series data
presented in Figure C.24. This represents a “what if” the investment strategy was changed from a Shannon probability
of 0.641794, as derived in Section C.2.5 to 0.826923. This process, essentially, extracts the random statistical data
from the time series presented in Figure C.24, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.24, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of quarters that the World Semiconductor
Market movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.823529, as compared with the predicted value from the program tsshannonmax of 0.826923.
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Figure C.43: World Semiconductor Market, Time se-
ries data, empirical and simulated, using the program
tsunfairbrownian with f = 0.077739. This data is
superimposed on the data presented in Figure C.24.
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Figure C.44: World Semiconductor Market, normal-
ized histogram of the normalized increments of the
time series data shown in Figure C.43, empirical
and simulated. The empirical data has a mean of
0.044437, with a standard deviation of 0.064421.
By comparison, the simulated data has a mean of
0.049753 with a standard deviation of 0.060339. This
data is superimposed on the data presented in Fig-
ure C.27. The area under the four curves is identical.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.2.1,
Figure C.27, it would appear that the World Semiconductor Market’s normalized increments are characterized by
fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence of
this is that a re-investment strategy that is to “wager” a fraction of 0.653846 of the rate of returns every quarter is
overly aggressive, since in the classical Brownian scenario, the maximum loss, in any quarter, was no more that what
was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O # � �c Q Z A&% (C.91)
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Figure C.46: World Semiconductor Market, maxi-
mum rate of revenue returns, per quarter, at a Shannon
probability, of 0.826923, corresponding to a “wager”
fraction of 0.653846.

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.25 of 0.077739, vs. an
“theoretical optimal” value of 0.653846 seems overly conservative. Additionally, notice that, at least in principle, the
chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard deviation,
or about 15.865% per quarter, which is unacceptably high. However, it is not clear why the World Semiconductor
Market is running at a value of 0.077739, which seems very conservative. However, a re-investment strategy of
0.077739 per quarter does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is inferred that
the World Semiconductor Market is similar to, of about 50% in ten years, which corresponds to d 1 m U M i 120 � 0 { 5,
or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard deviations, meaning that to
be consistent with the large companies in the Fortune 500, the re-investment rate should be, approximately, 0 þ 653846

2 þ 5 ,
compared with an operational value, from Figure C.27 of 0.077739.

An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation
as to why the companies in the World Semiconductor Market are not running an optimal re-investment strategy. This
seems enigmatic, since those companies that run, on a long term average, below the optimally maximal value would
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seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would be over extended,
and become financially destitute during market down turns, which is inevitable in a fractal time series as presented in
Figure C.24. It would seem that the natural selection process of the competitive environment would allow only those
companies that run near the optimally maximal value to survive, in the long run. One possible explanation, foremost,
is that the analytical methodology presented herein is inappropriate. Another explanation is that the gross margins
are less than the fraction 0.826923 of the rate of revenue returns, and thus could not accommodate such an aggressive
re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic market, the natural
outcome of the competitive situation, according to game-theoretic analysis, is that there will be many competitors,
each making minimal gross margins, then how do the companies grow their markets? Naturally, those that run the
most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment possible. Yet
another interpretation is that the number of competitors would grow at an exponential rate, but all of them would
make minimal returns. However, an operational Shannon probability of 0.641794 is not just marginally lower than
the maximum Shannon probability of 0.826923. There is a significant disparity which is difficult to explain. It would
seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders growth,
wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is there
an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth and
job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny, then
it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to the
social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth and
job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.2.11 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.26.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.25. These
values will be used in a fixed increment Brownian fractal analysis of the World Semiconductor Market, and may, or
may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.2.6 and D.2.7. As a subjective evaluation
of the “quality” of the analysis of the World Semiconductor Market, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.24
from Figure C.25, and the Shannon probability as calculated by counting the total number of quarters that the World
Semiconductor Market movement was positive, as presented in Section C.2.10:

u � BEDGFHGIKJ f 1

2
(C.92)

0 { 823529 � 0 þ 044437
0 þ 077739 f 1

2
(C.93)

0 { 823529 � 0 { 785809 (C.94)
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and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 823529 � 0 { 785809 � 0 { 826923 (C.95)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.2.5, should be
compared. The four methods used were the mean of Figure C.25, the constant in the least squares approximation to
Figure C.25, the least squares exponential approximation to Figure C.24, and the logarithmic returns of Figure C.24,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 062725 � 0 { 055908 � 0 { 053777 � 0 { 058816 (C.96)

It is implied in Section C.2.5, Subsection C.2.5 and in Section C.2.9 that, a Brownian motion with fixed increments
fractal may “model” the World Semiconductor Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.97)

0 { 077739 (2 L 0 { 823529 m 1) � 0 { 064421 (2 L 0 { 823529 m 1)

2 ó 0 { 823529 (1 m 0 { 823529)
(C.98)

0 { 077739 L 0 { 647059 � 0 { 064421 L 0 { 848668 (C.99)

0 { 050302 � 0 { 054672 (C.100)

and, equating to the mean:

0 { 044437 � 0 { 050302 � 0 { 054672 (C.101)

where, as in Equation C.94 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.24 from Figure C.25, and the Shannon probability as
calculated by counting the total number of quarters that the World Semiconductor Market movement was positive, as
presented in Section C.2.10.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value29, where the absolute value is presented in Figure C.26, and the root mean square value is presented
in Figure C.25:

0 { 061981 � 0 { 077739 (C.102)

Note, that if the World Semiconductor Market could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.24 from Figure C.25 should be zero. It is 0 { 047389.

C.3 North American Semiconductor Market

For the analysis, the data was in the directory ../markets/semiconductors.namerica30.
The data in this section is presented in tabular form in Section D.3.

29The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

30Data from the Semiconductor Industry Association, 1979—1994, by quarters, in millions of dollars, US.
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C.3.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.3.1. Figure C.47 is a graph of the time series data for
the North American Semiconductor Market.

Figure C.48 is a graph of the normalized increments of the time series data presented in Figure C.47. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.49 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.48. The data presented was made by running the Unix utility sed(1) on the normalized increments time series
data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the absolute
value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous rate of
revenue returns31.

Figure C.50 is the normalized histogram of the normalized increments of the time series data shown in Figure C.48.
The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was produced by the
program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.50.

Figure C.51 is the statistical estimate for the data presented in Figure C.48, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 634320, as derived in Section C.3.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.52 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.48. In principle, if the distribution of the normalized increments presented in Figure C.50 is
Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41. The
data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.53 is the normalized
histogram of the second derivative of the normalized increments of the time series data shown in Figure C.48. In
principle, if the distribution of the normalized increments presented in Figure C.50 is an integrated Gaussian distribution
in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.

Figure C.54 is the range of values of the time series shown in Figure C.47. The horizontal axis is time into the
future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.54 would
be a square root function32. Figure C.55 is the deterministic map of the normalized increments of the time series data
shown in Figure C.48. The deterministic map is useful for determining if a time series was created by a deterministic
mechanism. This, essentially, maps each element in the time series with the previous element in the time series.
See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.50 would seem to indicate that the time series data for the North American Semiconductor Market represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments

31The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

32Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.54 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.47: North American Semiconductor Mar-
ket, time series data.
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Figure C.48: North American Semiconductor Mar-
ket, normalized increments of the time series data
presented in Figure C.47. The mean is 0.040216 with
a standard deviation of 0.069677. The formula for the
least squares approximation is 0 { 032989 f 0 { 000233 X ,
and the root mean squared value is 0.079970. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000233, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.
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Figure C.49: North American Semiconductor Mar-
ket, absolute value of the normalized increments
of the time series data presented in Figure C.48.
The mean is 0.064520 with a standard deviation of
0.047627. The formula for the least squares approxi-
mation is 0 { 072161 f m 0 { 000246 X , and the root mean
square value, from Figure C.48, is 0.079970. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.48, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.50: North American Semiconductor Mar-
ket, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.48.
The data has a mean of 0.040216, with a standard de-
viation of 0.069677. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 7.163000, with a critical
value of 42.557000.

C.3.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
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For a mean of 0.039587, with a confidence level of 0.900000
that the error did not exceed 0.003959, 1105 samples would be required.
(With 64 samples, the estimated error is 0.016442 = 41.534296 percent.)

For a standard deviation of 0.079970, with a confidence level of 0.900000
that the error did not exceed 0.007997, 136 samples would be required.
(With 64 samples, the estimated error is 0.011626 = 14.538589 percent.)

Figure C.51: North American Semiconductor Market, statistical estimates of the normalized increments of the time
series shown in Figure C.48. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.48.

mean square of the instantaneous fraction of change33. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.56 is the instantaneous value of the root mean square of the normalized increments for the North American
Semiconductor Market, and Figure C.57 is the instantaneous Shannon probability for the normalized increments.

C.3.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.3.4. Figure C.58 is a graph of the logistic function
estimates of the time series data for the North American Semiconductor Market. The reader is cautioned that these
graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies34. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.58 is a graph of the logistic function for the time series data presented in Figure C.47. The data presented
was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters extracted
from the time series data as suggested in Figure C.48. The program tslsq was used to derive the constant and the slope
of the normalized increments of the data presented in Figure C.48. Figure C.59 is the same graph, but with the time
scale expanded by a factor of two.

C.3.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.3.5. Figure C.60 is a graph of the Hurst coefficient
data time series data shown in Figure C.47. The slope of the graph is the Hurst coefficient. The data for this figure was
produced by the program tshurst, which is described briefly in Appendix B.

Figure C.61 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.48. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.60 implies that the variance of the rate of revenue returns,
(per quarter,) in the North American Semiconductor Market, k d X 2 m X 1 i , over a period of time is proportional to the

33The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

34For example, in Figures C.58 and C.59, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See Section D.3.4
for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function of time
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Figure C.52: North American Semiconductor Mar-
ket, normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.48.
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Figure C.53: North American Semiconductor Mar-
ket, normalized histogram of second derivative of
the the normalized increments of the time series data
shown in Figure C.48.

period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time35, X , U d X�i A b�c Oqd 1 � ó 2 X�i which
is approximately 1 � ó X for Xõô 1 [Sch91, pp. 160]. Figures C.64, and, C.65 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the North American Semiconductor Market for the near term
and far term, respectively [Pet91, pp. 83-84]36. This seems to be a quantitative statement concerning “windows of

35It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

36The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.54: North American Semiconductor Mar-
ket, range of the time series data shown in Figure C.47.
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Figure C.55: North American Semiconductor Mar-
ket, deterministic map of the normalized increments
of the time series data shown in Figure C.48.

opportunity” in the rate of revenue returns, (per quarter.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.60, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.998014, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.103)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 998014 (C.104)ü ( X 2 m X 1)1 þ 996028 (C.105)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per quarter,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past37. A Hurst coefficient of 0.998014, (for the near future, and 0.714241 for the distant future.) implies

37Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,
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Figure C.56: North American Semiconductor Mar-
ket, instantaneous value of the root mean square of
the normalized increments, provided by running the
program tsinstant with the -r option on the data pre-
sented in Figure C.47.
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Figure C.57: North American Semiconductor Mar-
ket, instantaneous value of the Shannon probability
of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.47.

that the likelihood of the rate of revenue returns, (per quarter,) for any two consecutive quarters being the same is
99.801400% [Pet91, pp. 66] for the near future, and 0.714241 for the distant future. Likewise, there is a 99.801400%
chance of the rate of revenue returns, (per quarter,) movements being the same in consecutive time periods—ie., if, in
a given quarter, the rate of revenue returns, (per quarter,) is increasing, there is a 99.801400% that the rate of revenue
returns, (per quarter,) will increase in the following period, also. In some sense, this is a quantitative statement on
how “predictable,” or “forecastable” the rate of revenue returns, (per quarter,) for the North American Semiconductor
Market are over time, since the probability of having g many consecutive quarters of the same agenda is ÿ � where ÿ
is the Hurst coefficient, or, letting the short term probability of having g many quarters of the same market agenda, U B ,�

, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient
is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For the
“long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian motion,
or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term” and
“far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
W� 0 � 5 © ln 	���
 , or when ln 	 ��
9� 2, or �W� 7 � 389 ����� See
Section C.3.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the North American Semiconductor Market. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.58: North American Semiconductor Mar-
ket, logistic function estimates, provided by running
the tslsq program on the normalized increments pre-
sented in Figure C.48 with the -p option. These pa-
rameters were used as arguments to the tsdlogistic
program.
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Figure C.59: North American Semiconductor Mar-
ket, logistic function estimates of Figure C.58 with
the time scale expanded by a factor of two.

is:

U B ( g ) A ÿ � (C.106)A 0 { 998014
�

(C.107)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.48, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next quarter’s rate of revenue returns would be the same as the
current quarter’s revenue rate. Interestingly, it is 0 { 040216 L 100 percent, on the average, with a standard deviation of
0 { 069677 L 100 percent, and a root mean square error value of 0 { 079970 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per quarter,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:
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Figure C.60: North American Semiconductor Mar-
ket, Hurst coefficient data for the normalized incre-
ments of the time series data shown in Figure C.48.
The slope of the graph is the Hurst coefficient.
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Figure C.61: North American Semiconductor Mar-
ket, H parameter data for the normalized increments
of the time series data shown in Figure C.48 The slope
of the graph is the H parameter.

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.108)ü ( X 2 m X 1)0 þ 998014 (C.109)

where � is the range of values in the increments of the rate of revenue returns, (per quarter.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per quarter,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per quarter) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.109 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.110)ü � ( X 2 m X 1) (C.111)
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In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per quarter,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.112)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per quarter,) are known, (and ÿ�� 1

2 ,) then the
expected change in � � , will increase with the square root of time38.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.113)

ü �
( cjX )c 0 þ 998014

(C.114)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.61, to provide a least squares
approximation to the H parameter for the North American Semiconductor Market. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.808008 for the near future, and 0.815409 for the distant future.

Figures C.60 and C.61 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.48. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.48, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.62 and C.63 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Many North American Semiconductor Market industry analyst speculate that there is “periodic” behavior in the market
place, at approximately 5 year intervals. Both the Hurst coefficient and H parameter graphs would tend to support the
intuition. Notice that the slope of the graphs, in figures C.60 and C.61, tend to decrease abruptly at X � ln d 3 i � 20
quarters, which is approximately 60 months, or 5 years [Pet91, pp. 96]. Whether this is “periodic” behavior, or an
indication of more complex system dynamics, perhaps “chaotic,” remains to be seen. If that is the case, it could provide
an exploitive venue.

C.3.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.3.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.49. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.48. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the North American Semiconductor Market, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the North American Semiconductor Market, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

38To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.62: North American Semiconductor Mar-
ket, traditional Hurst coefficient data for the time se-
ries data shown in Figure C.47. The slope of the graph
is the Hurst coefficient, and is 0.991765 for the near
term, and 0.694731 for the far term.
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Figure C.63: North American Semiconductor Mar-
ket, traditional H parameter data for the time series
data shown in Figure C.47 The slope of the graph is
the H parameter, and is 0.766148 for the near term,
and 0.571832 for the far term.

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.48, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 040216 f 1)
ln (2)

A 0 { 056883 (C.115)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.48, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 032989 f 1)
ln (2)

A 0 { 046825 (C.116)

Note that if the mean is not constant in Figure C.48, this method will not provide accurate results.
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And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.47:

� V_X�Z A 0 { 042107 (C.117)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.47:

� V_X�Z A 0 { 052703 (C.118)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.3.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 052703 � (C.119)

therefore: Û
(U ) A 0 { 052703 (C.120)

and, tsshannon 0.052703 gives: Û
(0 { 634320) A 0 { 052703 (C.121)

therefore:

2 � (0 þ 634320) A 20 þ 052703 (C.122)A 1 { 037206 (C.123)A 3 { 720639% (C.124)

and:

2U m 1 A (2 L 0 { 634320) m 1 (C.125)A 0 { 268640 (C.126)A 26 { 864000% (C.127)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the North
American Semiconductor Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every quarter, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 26.864000% of its rate of revenue returns, (per quarter.) As a conceptual model, the remaining
73.136000% will be held in “reserve” with a 63.432000% chance of making twice the 26.864000% back, (and a
36.568000% chance of making 0.0,) in one quarter, on the average, for an average growth in its rate of revenue returns,
(per quarter,) of 3.720639%, or a doubling of its rate of revenue returns, (per quarter,) in 18.974252 quarters.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
26.864000% per quarter of the rate of revenue returns, (per quarter,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 3.720639%, per quarter, on average.

Note that the metrics presented in this section are representative of the North American Semiconductor Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.
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As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 26.864000% of its rate of revenue returns, (per quarter,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some quarters, depending on the North
American Semiconductor Market’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other quarters, the company must default, and the bank seizes a portion
of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 3.720639% per quarter.

As another simple example, a company re-invests 26.864000% of its rate of revenue returns, (per quarter,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 26.864000% per quarter investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 3.720639% per quarter.

As an example of “product portfolio” management, suppose a company re-invests 26.864000% of its rate of
revenue returns, (per quarter,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 26 { 864000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 26 { 864000 percent for the second product, implying that the company should diversify its
product line39. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 26 { 864000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
North American Semiconductor Market, as a standard bench mark, then the optimal number will be 1

0 þ 268640 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.48, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 26.864000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 26.864000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

39The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 26.864000 of the rate of revenue returns per quarter does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 26.864000% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 268640 products seems consistent with the industry, also.

C.3.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the North American Semiconductor
Market, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~ � ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the North American Semiconductor Market time series is 0.040216, and
0.079970respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
6.288465.

If this value seems consistent number of companies in the North American Semiconductor Market, within the
assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the North American Semiconductor Market are operating optimally, and
the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.600270, which
would be the value which should be used in Section C.3.5 for each participating company if market expansion was to be
consistent with the rest of the industry. However, if the Shannon probability derived in Section C.3.5 is greater than the
average Shannon probability for the companies participating in the North American Semiconductor Market, as derived
in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.3.5. The
maximum exploitability for the North American Semiconductor Market is derived in Section C.3.10, but it is probably
of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the North American Semiconductor
Market is 0.600270, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.751444 in the North American
Semiconductor Market. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.128)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the mea-
sured Shannon probability of the North American Semiconductor Market would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.3.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.49.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.48. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the North American Semiconductor
Market, and may, or may not, provide adequate accuracy for projections.
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It should be noted that the analysis of fiscal strategy, presented in Section C.3.5, is derived from the North American
Semiconductor Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.3.10.

An additional exploitable strategy may be time itself. Equations C.105, C.109, and, C.107, are, essentially,
metrics on how fast a decision, which is based on information concerning the current status of the North American
Semiconductor Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be
addressed as an operational necessity in strategic planning and project management. Figures C.64, and, C.65 compare
methods of approximation of the “forecastability” of rate of revenue returns in the North American Semiconductor
Market for the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised
when making decisions that will span a time interval larger than the time interval where the “forecastability” of
rate of revenue returns drops below 50%. Beyond this time interval, the chances increase that the competitive and
market forces will alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is
significant advantage in “timeliness” of development, manufacturing, and distribution of products and services that are
consistent with this temporal agenda. Automation of these processes, if executed consistently with this agenda, should
be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the North American
Semiconductor Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even
chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.40” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.64, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.107, 0 { 998014

� A 0 { 5 quarters of operations. Since the optimal amount of
inventory and, from Equation C.105, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.65, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community41. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.3.4, Equation C.107, and the preceeding section, approximately 3 times the value where

0 { 998014
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

40For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

41For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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Figure C.64: North American Semiconductor Mar-
ket, “forecastability” of near term rate of revenue re-
turns. Although the error function is the most accu-
rate, for the near term, ÿ � A 0 { 998014 � may be used
as a reliable metric of “forecastability” of the rate of
revenue returns.
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Figure C.65: North American Semiconductor Mar-
ket, “forecastability” of far term rate of revenue re-
turns. Although the error function is the most accu-
rate, for the far term, 1! � may be used as a reliable
metric of “forecastability” of the rate of revenue re-
turns.

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 998014 many quarters seems consistent with the author’s experience in
the industry.

For convenience of comparison, converting from quarters to months by dividing the logarithmic returns by 3:

C.3.8 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.3.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.49. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.48. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the North American Semiconductor Market, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the North American Semiconductor Market, the fiscal strategy, commensurate
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with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.48, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 013405 f 1)
ln (2)

A 0 { 019211 (C.129)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.48, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 010996 f 1)
ln (2)

A 0 { 015778 (C.130)

Note that if the mean is not constant in Figure C.48, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.47:

� V_X�Z A 0 { 014036 (C.131)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.47:

� V_X�Z A 0 { 017568 (C.132)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.3.8 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 017568 � (C.133)

therefore: Û
(U ) A 0 { 017568 (C.134)

and, tsshannon 0.017568 gives: Û
(0 { 577871) A 0 { 017568 (C.135)

therefore:

2 � (0 þ 577871) A 20 þ 017568 (C.136)A 1 { 012252 (C.137)A 1 { 225165% (C.138)

and:

2U m 1 A (2 L 0 { 577871) m 1 (C.139)A 0 { 155742 (C.140)A 15 { 574200% (C.141)
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Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the North
American Semiconductor Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 15.574200% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
84.425800% will be held in “reserve” with a 57.787100% chance of making twice the 15.574200% back, (and a
42.212900% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 1.225165%, or a doubling of its rate of revenue returns, (per month,) in 56.921676 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
15.574200% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 1.225165%, per month, on average.

Note that the metrics presented in this section are representative of the North American Semiconductor Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 15.574200% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the North
American Semiconductor Market’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion
of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 1.225165% per month.

As another simple example, a company re-invests 15.574200% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 15.574200% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.225165% per month.

As an example of “product portfolio” management, suppose a company re-invests 15.574200% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 15 { 574200, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 15 { 574200 percent for the second product, implying that the company should diversify its
product line42. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 15 { 574200%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
North American Semiconductor Market, as a standard bench mark, then the optimal number will be 1

0 þ 155742 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example

42The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.48, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 15.574200% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 15.574200% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.3.9 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.3.9. Figure C.66 represents a constructional
simulation of the time series data presented in Figure C.47. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.48. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.48 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.67 presents
a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the normalized
histogram presented in Figure C.50.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.3.1,
Figure C.50, it would appear that the North American Semiconductor Market’s normalized increments are characterized
by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence
of this is that a re-investment strategy that is to “wager” a fraction of 0.500000 of the rate of returns every quarter is
overly aggressive, since in the classical Brownian scenario, the maximum loss, in any quarter, was no more that what
was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O$# � �c Q Z A&% (C.142)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.48 of 0.079970, vs. an
“theoretical optimal” value of 0.500000 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
deviation, or about 15.865% per quarter, which is unacceptably high. However, it is not clear why the North American
Semiconductor Market is running at a value of 0.079970, which seems very conservative. However, a re-investment
strategy of 0.079970 per quarter does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is
inferred that the North American Semiconductor Market is similar to, of about 50% in ten years, which corresponds
to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard
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Figure C.66: North American Semiconductor Mar-
ket, Time series data, empirical and simulated, us-
ing the program tsunfairbrownian with f = 0.079970.
This data is superimposed on the data presented in
Figure C.47.
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Figure C.67: North American Semiconductor Mar-
ket, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.66,
empirical and simulated. The empirical data has
a mean of 0.040216, with a standard deviation of
0.069677. By comparison, the simulated data has
a mean of 0.038695 with a standard deviation of
0.070556. This data is superimposed on the data
presented in Figure C.50. The area under the four
curves is identical.

deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate should
be, approximately, 0 þ 500000

2 þ 5 , compared with an operational value, from Figure C.50 of 0.079970.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the North American Semiconductor Market are not running an optimal re-investment
strategy. This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would
be over extended, and become financially destitute during market down turns, which is inevitable in a fractal time
series as presented in Figure C.47. It would seem that the natural selection process of the competitive environment
would allow only those companies that run near the optimally maximal value to survive, in the long run. One possible
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explanation, foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that
the gross margins are less than the fraction 0.750000 of the rate of revenue returns, and thus could not accommodate
such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic
market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be
many competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally,
those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. But an operational Shannon probability of 0.634320 is not just marginally lower than the maximum Shannon
probability of 0.750000. There is a significant disparity. It would seem that the game-theoretic eventual outcome of
a competitive market place would be a solution that hinders growth, wealth and jobs creation, etc., which does not
seem consistent with capitalistic theory. On the other hand, is there an optimum number of competitors in a market
place, where the gross margins can be higher, permitting wealth and job creation, and also a competitive situation?
If this analysis is correct, and that should be subject to scrutiny, then it would appear that this is the case. But this
brings up another issue—that of taxation, and other contributions to the social welfare function. If there is an optimum
number of competitors in the market place, that maximizes wealth and job creation, then, perhaps by lemma, there is
also an optimal value of taxation rate, and other contributions to the social welfare function, that will permit maximal
industrial growth, and thus maximal growth in the tax base. But this would seem to be inconsistent with the work of
Kenneth Arrow and the so called Impossibility Theorem, which states that such optimizations can not be optimized
because the ordering of priorities is intransitive. All very perplexing, since the simulation of the maximum Shannon
probability in the next section seems to indicate that such an aggressive re-investment strategy is, indeed, feasible.

C.3.10 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.3.3. One of the issues of analysis, as mentioned
in Section C.3.7, is to determine the maximum Shannon probability for the time series presented in Figure C.47.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.68 is a graph of the output of the tsshan-
nonmax program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon
probability for the time series data presented in Figure C.47. Figure C.69 was constructed using tsunfairbrownian
program, which is also described in appendix B, with the maximum Shannon probability, and the time series data
presented in Figure C.47. This represents a “what if” the investment strategy was changed from a Shannon probability
of 0.634320, as derived in Section C.3.5 to 0.750000. This process, essentially, extracts the random statistical data
from the time series presented in Figure C.47, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.47, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of quarters that the North American
Semiconductor Market movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.746032, as compared with the predicted value from the program tsshannonmax of 0.750000.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.3.1,
Figure C.50, it would appear that the North American Semiconductor Market’s normalized increments are characterized
by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence
of this is that a re-investment strategy that is to “wager” a fraction of 0.500000 of the rate of returns every quarter is
overly aggressive, since in the classical Brownian scenario, the maximum loss, in any quarter, was no more that what
was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,

Id: maximum.tex,v 0.0 1995/11/20 04:38:13 john Exp 209



C.3. NORTH AMERICAN SEMICONDUCTOR MARKET

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ax

im
um

 R
ev

en
ue

 R
at

e

"

Shannon Probability

Shannon Probability vs. Maximum Revenue Rate

"data.tsshannonmax"

Figure C.68: North American Semiconductor Mar-
ket, maximum rate of revenue returns, per quarter, vs.
Shannon probability. The maximum rate of revenue
returns, per quarter, occurs at a Shannon probability
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Figure C.69: North American Semiconductor Mar-
ket, maximum rate of revenue returns, per quarter, at
a Shannon probability, of 0.750000, corresponding to
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To}	~c Q Z 2
A O$# � �c Q Z A&% (C.143)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.48 of 0.079970, vs. an
“theoretical optimal” value of 0.500000 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
deviation, or about 15.865% per quarter, which is unacceptably high. However, it is not clear why the North American
Semiconductor Market is running at a value of 0.079970, which seems very conservative. However, a re-investment
strategy of 0.079970 per quarter does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is
inferred that the North American Semiconductor Market is similar to, of about 50% in ten years, which corresponds
to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard
deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate should
be, approximately, 0 þ 500000

2 þ 5 , compared with an operational value, from Figure C.50 of 0.079970.
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An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation
as to why the companies in the North American Semiconductor Market are not running an optimal re-investment
strategy. This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would
be over extended, and become financially destitute during market down turns, which is inevitable in a fractal time
series as presented in Figure C.47. It would seem that the natural selection process of the competitive environment
would allow only those companies that run near the optimally maximal value to survive, in the long run. One possible
explanation, foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that
the gross margins are less than the fraction 0.750000 of the rate of revenue returns, and thus could not accommodate
such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic
market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be
many competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally,
those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.634320 is not just marginally lower
than the maximum Shannon probability of 0.750000. There is a significant disparity which is difficult to explain. It
would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.3.11 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.49.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.48. These
values will be used in a fixed increment Brownian fractal analysis of the North American Semiconductor Market, and
may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.3.6 and D.3.7. As a subjective evaluation of
the “quality” of the analysis of the North American Semiconductor Market, from Chapter 3, Equation 3.8, and using
the mean and root mean square values of the normalized increments of the time series data presented in Figure C.47
from Figure C.48, and the Shannon probability as calculated by counting the total number of quarters that the North
American Semiconductor Market movement was positive, as presented in Section C.3.10:

u � BEDGFHGIKJ f 1

2
(C.144)
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0 { 746032 � 0 þ 040216
0 þ 079970 f 1

2
(C.145)

0 { 746032 � 0 { 751444 (C.146)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 746032 � 0 { 751444 � 0 { 750000 (C.147)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.3.5, should be
compared. The four methods used were the mean of Figure C.48, the constant in the least squares approximation to
Figure C.48, the least squares exponential approximation to Figure C.47, and the logarithmic returns of Figure C.47,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 056883 � 0 { 046825 � 0 { 042107 � 0 { 052703 (C.148)

It is implied in Section C.3.5, Subsection C.3.5 and in Section C.3.9 that, a Brownian motion with fixed increments
fractal may “model” the North American Semiconductor Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.149)

0 { 079970 (2 L 0 { 746032 m 1) � 0 { 069677 (2 L 0 { 746032 m 1)

2 ó 0 { 746032 (1 m 0 { 746032)
(C.150)

0 { 079970 L 0 { 492063 � 0 { 069677 L 0 { 565227 (C.151)

0 { 039350 � 0 { 039383 (C.152)

and, equating to the mean:

0 { 040216 � 0 { 039350 � 0 { 039383 (C.153)

where, as in Equation C.146 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.47 from Figure C.48, and the Shannon probability as
calculated by counting the total number of quarters that the North American Semiconductor Market movement was
positive, as presented in Section C.3.10.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value43, where the absolute value is presented in Figure C.49, and the root mean square value is presented
in Figure C.48:

0 { 064520 � 0 { 079970 (C.154)

Note, that if the North American Semiconductor Market could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.47 from Figure C.48 should be zero. It is 0 { 047627.

43The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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C.4 United States Electronic Component Shipments

For the analysis, the data was in the directory ../markets/electronic.components.shipments44.
The data in this section is presented in tabular form in Section D.4.

C.4.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.4.1. Figure C.70 is a graph of the time series data for
the United States Electronic Component Shipments.

Figure C.71 is a graph of the normalized increments of the time series data presented in Figure C.70. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.72 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.71. The data presented was made by running the Unix utility sed(1) on the normalized increments time series
data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the absolute
value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous rate of
revenue returns45.

Figure C.73 is the normalized histogram of the normalized increments of the time series data shown in Figure C.71.
The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was produced by the
program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.73.

Figure C.74 is the statistical estimate for the data presented in Figure C.71, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 566532, as derived in Section C.4.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.75 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.71. In principle, if the distribution of the normalized increments presented in Figure C.73 is
Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41. The
data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.76 is the normalized
histogram of the second derivative of the normalized increments of the time series data shown in Figure C.71. In
principle, if the distribution of the normalized increments presented in Figure C.73 is an integrated Gaussian distribution
in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.

Figure C.77 is the range of values of the time series shown in Figure C.70. The horizontal axis is time into the
future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.77 would
be a square root function46. Figure C.78 is the deterministic map of the normalized increments of the time series data
shown in Figure C.71. The deterministic map is useful for determining if a time series was created by a deterministic

44Data from the United States Department of Commerce, 1979—1994, by months, in millions of dollars, US.
45The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

46Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.77 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.70: United States Electronic Component
Shipments, time series data.
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Figure C.71: United States Electronic Component
Shipments, normalized increments of the time series
data presented in Figure C.70. The mean is 0.009362
with a standard deviation of 0.028297. The formula
for the least squares approximation is 0 { 010583 fm 0 { 000013 X , and the root mean squared value is
0.029736. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000013, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

mechanism. This, essentially, maps each element in the time series with the previous element in the time series.
See, [PJS92, pp. 745].
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Figure C.72: United States Electronic Component
Shipments, absolute value of the normalized incre-
ments of the time series data presented in Figure C.71.
The mean is 0.022871 with a standard deviation of
0.019053. The formula for the least squares approx-
imation is 0 { 022658 f 0 { 000002 X , and the root mean
square value, from Figure C.71, is 0.029736. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.71, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.73: United States Electronic Component
Shipments, normalized histogram of the normalized
increments of the time series data shown in Fig-
ure C.71. The data has a mean of 0.009362, with
a standard deviation of 0.028297. The area under the
two curves is identical. The ê 2 value of the observed
and expected values of the two curves is 4.711000,
with a critical value of 42.557000.

Observations on the Time Series Increments Analysis

Figure C.73 would seem to indicate that the time series data for the United States Electronic Component Shipments
represents a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian
increments property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time
series data represents fractional Brownian motion.
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For a mean of 0.009314, with a confidence level of 0.900000
that the error did not exceed 0.000931, 2758 samples would be required.
(With 193 samples, the estimated error is 0.003521 = 37.801077 percent.)

For a standard deviation of 0.029736, with a confidence level of 0.900000
that the error did not exceed 0.002974, 136 samples would be required.
(With 193 samples, the estimated error is 0.002490 = 8.372085 percent.)

Figure C.74: United States Electronic Component Shipments, statistical estimates of the normalized increments of the
time series shown in Figure C.71. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.71.

C.4.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change47. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.79 is the instantaneous value of the root mean square of the normalized increments for the United
States Electronic Component Shipments, and Figure C.80 is the instantaneous Shannon probability for the normalized
increments.

C.4.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.4.4. Figure C.81 is a graph of the logistic function
estimates of the time series data for the United States Electronic Component Shipments. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies48. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.81 is a graph of the logistic function for the time series data presented in Figure C.70. The data presented
was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters extracted
from the time series data as suggested in Figure C.71. The program tslsq was used to derive the constant and the slope
of the normalized increments of the data presented in Figure C.71. Figure C.82 is the same graph, but with the time
scale expanded by a factor of two.

47The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

48For example, in Figures C.81 and C.82, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See Section D.4.4
for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function of time
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Figure C.75: United States Electronic Component
Shipments, normalized histogram of the first deriva-
tive of the normalized increments of the time series
data shown in Figure C.71.
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Figure C.76: United States Electronic Component
Shipments, normalized histogram of second deriva-
tive of the the normalized increments of the time series
data shown in Figure C.71.

C.4.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.4.5. Figure C.83 is a graph of the Hurst coefficient
data time series data shown in Figure C.70. The slope of the graph is the Hurst coefficient. The data for this figure was
produced by the program tshurst, which is described briefly in Appendix B.

Figure C.84 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.71. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.83 implies that the variance of the rate of revenue returns,
(per month,) in the United States Electronic Component Shipments, k d X 2 m X 1 i , over a period of time is proportional
to the period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a
quantitative statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change
over a period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability
of the state of affairs repeating sometime in the future goes down with increasing time49, X , U d X�i A b�c O�d 1 � ó 2 X5i which

49It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
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Figure C.77: United States Electronic Component
Shipments, range of the time series data shown in
Figure C.70.
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Figure C.78: United States Electronic Component
Shipments, deterministic map of the normalized in-
crements of the time series data shown in Figure C.71.

is approximately 1 � ó X for Xõô 1 [Sch91, pp. 160]. Figures C.87, and, C.88 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the United States Electronic Component Shipments for the near
term and far term, respectively [Pet91, pp. 83-84]50. This seems to be a quantitative statement concerning “windows
of opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.83, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.755693, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.155)

to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

50The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.79: United States Electronic Component
Shipments, instantaneous value of the root mean
square of the normalized increments,provided by run-
ning the program tsinstant with the -r option on the
data presented in Figure C.70.
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Figure C.80: United States Electronic Component
Shipments, instantaneous value of the Shannon prob-
ability of the normalized increments, provided by run-
ning the program tsinstant with the -s option on the
data presented in Figure C.70.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 755693 (C.156)ü ( X 2 m X 1)1 þ 511386 (C.157)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past51. A Hurst coefficient of 0.755693, (for the near future, and 0.621033 for the distant future.) implies

51Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.4.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Electronic Component Shipments. See
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Figure C.81: United States Electronic Component
Shipments, logistic function estimates, provided by
running the tslsq program on the normalized incre-
ments presented in Figure C.71 with the -p option.
These parameters were used as arguments to the tsd-
logistic program.
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Figure C.82: United States Electronic Component
Shipments, logistic function estimates of Figure C.81
with the time scale expanded by a factor of two.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
75.569300% [Pet91, pp. 66] for the near future, and 0.621033 for the distant future. Likewise, there is a 75.569300%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 75.569300% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Electronic Component
Shipments are over time, since the probability of having g many consecutive months of the same agenda is ÿ � whereÿ is the Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda,U B , is:

U B ( g ) A ÿ � (C.158)

also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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Figure C.83: United States Electronic Component
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A 0 { 755693
�

(C.159)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.71, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 009362 L 100 percent, on the average, with a standard deviation of
0 { 028297 L 100 percent, and a root mean square error value of 0 { 029736 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.160)ü ( X 2 m X 1)0 þ 755693 (C.161)

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 221



C.4. UNITED STATES ELECTRONIC COMPONENT SHIPMENTS

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.161 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.162)ü � ( X 2 m X 1) (C.163)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.164)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time52.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.165)

ü �
( cjX )c 0 þ 755693

(C.166)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.84, to provide a least squares
approximation to the H parameter for the United States Electronic Component Shipments. The superimposed least
squares approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.211156 for the near future, and 0.520759 for the distant future.

Figures C.83 and C.84 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.71. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.71, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.85 and C.86 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Note that the H parameter data is not linear, and the long term predictability is better than the short term predictability,
indicating that the least squares approximation is low.

52To be precise, it is actually asymptotically proportional to � 1
2
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C.4.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.4.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.72. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.71. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Electronic Component Shipments, and may, or may not, provide
adequate accuracy for projections.

For an organization operating in the United States Electronic Component Shipments, the fiscal strategy, commen-
surate with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80,
pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
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The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
Chapter B, and is presented in Figure C.71, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 009362 f 1)
ln (2)

A 0 { 013444 (C.167)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.71, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 010583 f 1)
ln (2)

A 0 { 015188 (C.168)

Note that if the mean is not constant in Figure C.71, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.70:

� V_X�Z A 0 { 010340 (C.169)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.70:

� V_X�Z A 0 { 012810 (C.170)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.4.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 012810 � (C.171)

therefore: Û
(U ) A 0 { 012810 (C.172)

and, tsshannon 0.012810 gives: Û
(0 { 566532) A 0 { 012810 (C.173)

therefore:

2 � (0 þ 566532) A 20 þ 012810 (C.174)A 1 { 008919 (C.175)A 0 { 891875% (C.176)

and:

2U m 1 A (2 L 0 { 566532) m 1 (C.177)A 0 { 133064 (C.178)A 13 { 306400% (C.179)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Electronic Component Shipments executes a long term fiscal strategy, commensurate with the aggregate environ-
ment, that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing
of goods and services by 13.306400% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
86.693600% will be held in “reserve” with a 56.653200% chance of making twice the 13.306400% back, (and a
43.346800% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 0.891875%, or a doubling of its rate of revenue returns, (per month,) in 78.064012 months.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
13.306400% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.891875%, per month, on average.

Note that the metrics presented in this section are representative of the United States Electronic Component
Shipments as an aggregate whole, and may or may not be accurate representations for any particular participant in the
environment. Of interest to the participants in the environment would be a similar analysis of each product or service
rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 13.306400% of its rate of revenue returns, (per month,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the
United States Electronic Component Shipments’s environment, the company’s rate of revenue returns exceeds what
was borrowed from the bank, and the loan is repaid in full. Other months, the company must default, and the bank
seizes a portion of the company’s revenue base to pay the delinquent loan. However, on the average, the company will
expand its rate of revenue returns at 0.891875% per month.

As another simple example, a company re-invests 13.306400% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 13.306400% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.891875% per month.

As an example of “product portfolio” management, suppose a company re-invests 13.306400% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 13 { 306400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 13 { 306400 percent for the second product, implying that the company should diversify its
product line53. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 13 { 306400%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
United States Electronic Component Shipments, as a standard bench mark, then the optimal number will be 1

0 þ 133064 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.71, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex

53The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 13.306400% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 13.306400% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 13.306400 of the rate of revenue returns per month does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 13.306400% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 133064 products seems consistent with the industry, also.

C.4.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Electronic Component
Shipments, and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the United States Electronic Component Shipments time series is 0.009362,
and 0.029736respectively, the number of companies participating in the market can be calculated by Equation 2.109
to be 10.587747.

If this value seems consistent number of companies in the United States Electronic Component Shipments, within
the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the United States Electronic Component Shipments are operating optimally,
and the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.548379,
which would be the value which should be used in Section C.4.5 for each participating company if market expansion
was to be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.4.5 is
greater than the average Shannon probability for the companies participating in the United States Electronic Component
Shipments, as derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined
in Section C.4.5. The maximum exploitability for the United States Electronic Component Shipments is derived in
Section C.4.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Electronic
Component Shipments is 0.548379, with several alternative solutions listed in the previous paragraph. However, these
should be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.657419 in the United
States Electronic Component Shipments. In all cases, the fraction of the P&L that should be “wagered” on the future,O , should be:

O A 2 uxm 1 (C.180)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Electronic Component Shipments would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”
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C.4.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.72.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.71. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Electronic
Component Shipments, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.4.5, is derived from the United States
Electronic Component Shipments metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.4.9.

An additional exploitable strategy may be time itself. Equations C.157, C.161, and, C.159, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Electronic
Component Shipments, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be
addressed as an operational necessity in strategic planning and project management. Figures C.87, and, C.88 compare
methods of approximation of the “forecastability” of rate of revenue returns in the United States Electronic Component
Shipments for the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised
when making decisions that will span a time interval larger than the time interval where the “forecastability” of
rate of revenue returns drops below 50%. Beyond this time interval, the chances increase that the competitive and
market forces will alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is
significant advantage in “timeliness” of development, manufacturing, and distribution of products and services that are
consistent with this temporal agenda. Automation of these processes, if executed consistently with this agenda, should
be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Electronic Component Shipments. When the “forecastability” of rate of revenue returns drops below 50%, there is
an even chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it
is assumed that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then,
if all three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval
where the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction
of product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.54” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.87, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.159, 0 { 755693

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.157, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.88, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with

54For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.87: United States Electronic Component
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numbers from the venture community55. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.4.4, Equation C.159, and the preceeding section, approximately 3 times the value where

0 { 755693
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 755693 many months seems consistent with the author’s experience in the
industry.

55For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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C.4.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.4.9. Figure C.89 represents a constructional
simulation of the time series data presented in Figure C.70. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.71. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.71 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.90 presents
a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the normalized
histogram presented in Figure C.73.

C.4.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.4.3. One of the issues of analysis, as mentioned
in Section C.4.7, is to determine the maximum Shannon probability for the time series presented in Figure C.70.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.91 is a graph of the output of the tsshan-
nonmax program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon
probability for the time series data presented in Figure C.70. Figure C.92 was constructed using tsunfairbrownian
program, which is also described in appendix B, with the maximum Shannon probability, and the time series data
presented in Figure C.70. This represents a “what if” the investment strategy was changed from a Shannon probability
of 0.566532, as derived in Section C.4.5 to 0.658031. This process, essentially, extracts the random statistical data
from the time series presented in Figure C.70, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.70, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Electronic
Component Shipments movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.656250, as compared with the predicted value from the program tsshannonmax of 0.658031.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.4.1,
Figure C.73, it would appear that the United States Electronic Component Shipments’s normalized increments are
characterized by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One
consequence of this is that a re-investment strategy that is to “wager” a fraction of 0.316062 of the rate of returns every
month is overly aggressive, since in the classical Brownian scenario, the maximum loss, in any month, was no more
that what was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O$# � �c Q Z A&% (C.181)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.71 of 0.029736, vs. an
“theoretical optimal” value of 0.316062 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
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Figure C.89: United States Electronic Component
Shipments, Time series data, empirical and simu-
lated, using the program tsunfairbrownian with f =
0.029736. This data is superimposed on the data pre-
sented in Figure C.70.
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Figure C.90: United States Electronic Component
Shipments, normalized histogram of the normalized
increments of the time series data shown in Fig-
ure C.89, empirical and simulated. The empirical
data has a mean of 0.009362, with a standard devia-
tion of 0.028297. By comparison, the simulated data
has a mean of 0.009185 with a standard deviation of
0.028356. This data is superimposed on the data pre-
sented in Figure C.73. The area under the four curves
is identical.

deviation, or about 15.865% per month, which is unacceptably high. However, it is not clear why the United States
Electronic Component Shipments is running at a value of 0.029736, which seems very conservative. However, a
re-investment strategy of 0.029736 per month does not seem inconsistent with a failure rate, on the Fortune 500 list,
which it is inferred that the United States Electronic Component Shipments is similar to, of about 50% in ten years,
which corresponds to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5
standard deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate
should be, approximately, 0 þ 316062

2 þ 5 , compared with an operational value, from Figure C.73 of 0.029736.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the United States Electronic Component Shipments are not running an optimal re-investment
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Figure C.91: United States Electronic Component
Shipments, maximum rate of revenue returns, per
month, vs. Shannon probability. The maximum rate
of revenue returns, per month, occurs at a Shannon
probability of 0.658031.
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Figure C.92: United States Electronic Component
Shipments, maximum rate of revenue returns, per
month, at a Shannon probability, of 0.658031, cor-
responding to a “wager” fraction of 0.316062.

strategy. This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would
be over extended, and become financially destitute during market down turns, which is inevitable in a fractal time
series as presented in Figure C.70. It would seem that the natural selection process of the competitive environment
would allow only those companies that run near the optimally maximal value to survive, in the long run. One possible
explanation, foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that
the gross margins are less than the fraction 0.658031 of the rate of revenue returns, and thus could not accommodate
such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic
market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be
many competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally,
those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.566532 is not just marginally lower
than the maximum Shannon probability of 0.658031. There is a significant disparity which is difficult to explain. It
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would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.4.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.72.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.71. These
values will be used in a fixed increment Brownian fractal analysis of the United States Electronic Component Shipments,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.4.6 and D.4.7. As a subjective evaluation of
the “quality” of the analysis of the United States Electronic Component Shipments, from Chapter 3, Equation 3.8,
and using the mean and root mean square values of the normalized increments of the time series data presented in
Figure C.70 from Figure C.71, and the Shannon probability as calculated by counting the total number of months that
the United States Electronic Component Shipments movement was positive, as presented in Section C.4.9:

u � BEDGFHGIKJ f 1

2
(C.182)

0 { 656250 � 0 þ 009362
0 þ 029736 f 1

2
(C.183)

0 { 656250 � 0 { 657419 (C.184)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 656250 � 0 { 657419 � 0 { 658031 (C.185)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.4.5, should be
compared. The four methods used were the mean of Figure C.71, the constant in the least squares approximation to
Figure C.71, the least squares exponential approximation to Figure C.70, and the logarithmic returns of Figure C.70,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 013444 � 0 { 015188 � 0 { 010340 � 0 { 012810 (C.186)
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It is implied in Section C.4.5, Subsection C.4.5 and in Section C.4.8 that, a Brownian motion with fixed increments
fractal may “model” the United States Electronic Component Shipments. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.187)

0 { 029736 (2 L 0 { 656250 m 1) � 0 { 028297 (2 L 0 { 656250 m 1)

2 ó 0 { 656250 (1 m 0 { 656250)
(C.188)

0 { 029736 L 0 { 312500 � 0 { 028297 L 0 { 328976 (C.189)

0 { 009292 � 0 { 009309 (C.190)

and, equating to the mean:

0 { 009362 � 0 { 009292 � 0 { 009309 (C.191)

where, as in Equation C.184 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.70 from Figure C.71, and the Shannon probability as
calculated by counting the total number of months that the United States Electronic Component Shipments movement
was positive, as presented in Section C.4.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value56, where the absolute value is presented in Figure C.72, and the root mean square value is presented
in Figure C.71:

0 { 022871 � 0 { 029736 (C.192)

Note, that if the United States Electronic Component Shipments could be “modeled” as a Brownian motion with
fixed increments fractal, then the standard deviation of the absolute value of the normalized increments of the time
series data presented in Figure C.70 from Figure C.71 should be zero. It is 0 { 019053.

C.5 United States Electronic Component Production

For the analysis, the data was in the directory ../markets/electronic.components.production57.
The data in this section is presented in tabular form in Section D.5.

C.5.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.5.1. Figure C.93 is a graph of the time series data for
the United States Electronic Component Production.

Figure C.94 is a graph of the normalized increments of the time series data presented in Figure C.93. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.95 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.94. The data presented was made by running the Unix utility sed(1) on the normalized increments time series

56The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

57Data from the United States Department of Commerce, 1980—1994, by months, as an index, 1987 = 100.
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Figure C.93: United States Electronic Component
Production, time series data.
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Figure C.94: United States Electronic Component
Production, normalized increments of the time se-
ries data presented in Figure C.93. The mean is
0.008198 with a standard deviation of 0.015216.
The formula for the least squares approximation is
0 { 003048 f 0 { 000058 X , and the root mean squared
value is 0.017247. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
and “data.tsfraction.tsavg” is the running average of
the normalized increments. This graph is the fraction
of change in the time series, as a function of time.
Note that the slope of the mean, 0.000058, is the co-
efficient of the nonlinearity term in the normalized
increments. See Chapter 2, Section 2.8 for a possible
application of the logistic function to this data set.

data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the absolute
value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous rate of
revenue returns58.

58The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
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Figure C.96 is the normalized histogram of the normalized increments of the time series data shown in Figure C.94.
The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was produced by the
program tsnormal, which is described briefly in Appendix B.
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Figure C.95: United States Electronic Component
Production, absolute value of the normalized incre-
ments of the time series data presented in Figure C.94.
The mean is 0.013756 with a standard deviation of
0.010433. The formula for the least squares approxi-
mation is 0 { 013871 f m 0 { 000001 X , and the root mean
square value, from Figure C.94, is 0.017247. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.94, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.96: United States Electronic Component
Production, normalized histogram of the normalized
increments of the time series data shown in Fig-
ure C.94. The data has a mean of 0.008198, with
a standard deviation of 0.015216. The area under the
two curves is identical. The ê 2 value of the observed
and expected values of the two curves is 6.808000,
with a critical value of 42.557000.

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.96.

Figure C.97 is the statistical estimate for the data presented in Figure C.94, as derived by the program tsstatest,
which is briefly described in appendix B.

For a mean of 0.008153, with a confidence level of 0.900000
that the error did not exceed 0.000815, 1211 samples would be required.
(With 180 samples, the estimated error is 0.002114 = 25.935125 percent.)

For a standard deviation of 0.017247, with a confidence level of 0.900000
that the error did not exceed 0.001725, 136 samples would be required.
(With 180 samples, the estimated error is 0.001495 = 8.669140 percent.)

Figure C.97: United States Electronic Component Production, statistical estimates of the normalized increments of
the time series shown in Figure C.94. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.94.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 563187, as derived in Section C.5.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.98 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.94. In principle, if the distribution of the normalized increments presented in Figure C.96 is
Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41. The
data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.99 is the normalized
histogram of the second derivative of the normalized increments of the time series data shown in Figure C.94. In
principle, if the distribution of the normalized increments presented in Figure C.96 is an integrated Gaussian distribution
in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.

Figure C.100 is the range of values of the time series shown in Figure C.93. The horizontal axis is time into the
future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.100
would be a square root function59. Figure C.101 is the deterministic map of the normalized increments of the time
series data shown in Figure C.94. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.96 would seem to indicate that the time series data for the United States Electronic Component Production
represents a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian
increments property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time
series data represents fractional Brownian motion.

59Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.100 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.98: United States Electronic Component
Production, normalized histogram of the first deriva-
tive of the normalized increments of the time series
data shown in Figure C.94.
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Figure C.99: United States Electronic Component
Production, normalized histogram of second deriva-
tive of the the normalized increments of the time series
data shown in Figure C.94.

C.5.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change60. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.102 is the instantaneous value of the root mean square of the normalized increments for the United States
Electronic Component Production, and Figure C.103 is the instantaneous Shannon probability for the normalized
increments.

60The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.100: United States Electronic Component
Production, range of the time series data shown in
Figure C.93.
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Figure C.101: United States Electronic Component
Production, deterministic map of the normalized in-
crements of the time series data shown in Figure C.94.

C.5.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.5.4. Figure C.104 is a graph of the logistic function
estimates of the time series data for the United States Electronic Component Production. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies61. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.104 is a graph of the logistic function for the time series data presented in Figure C.93. The data presented
was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters extracted
from the time series data as suggested in Figure C.94. The program tslsq was used to derive the constant and the slope
of the normalized increments of the data presented in Figure C.94. Figure C.105 is the same graph, but with the time
scale expanded by a factor of two.

61For example, in Figures C.104 and C.105, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.5.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.102: United States Electronic Component
Production, instantaneous value of the root mean
square of the normalized increments,provided by run-
ning the program tsinstant with the -r option on the
data presented in Figure C.93.
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Figure C.103: United States Electronic Component
Production, instantaneous value of the Shannon prob-
ability of the normalized increments, provided by run-
ning the program tsinstant with the -s option on the
data presented in Figure C.93.

C.5.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.5.5. Figure C.106 is a graph of the Hurst coefficient
data time series data shown in Figure C.93. The slope of the graph is the Hurst coefficient. The data for this figure was
produced by the program tshurst, which is described briefly in Appendix B.

Figure C.107 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.94. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.106 implies that the variance of the rate of revenue returns,
(per month,) in the United States Electronic Component Production, k d X 2 m X 1 i , over a period of time is proportional
to the period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a
quantitative statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change
over a period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability
of the state of affairs repeating sometime in the future goes down with increasing time62, X , U d X�i A b�c O�d 1 � ó 2 X5i which

62It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 239



C.5. UNITED STATES ELECTRONIC COMPONENT PRODUCTION

40

60

80

100

120

140

160

180

200

220

240

260

0 20 40 60 80 100 120 140 160 180

R
ev

en
ue

 R
at

eí

Time

Discreet Logistic Function Time Series Data

"data"
"data.tsfraction.tslsq-p.tsdlogistic"

Figure C.104: United States Electronic Component
Production, logistic function estimates, provided by
running the tslsq program on the normalized incre-
ments presented in Figure C.94 with the -p option.
These parameters were used as arguments to the tsd-
logistic program.
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Figure C.105: United States Electronic Compo-
nent Production, logistic function estimates of Fig-
ure C.104 with the time scale expanded by a factor of
two.

is approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.110, and, C.111 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the United States Electronic Component Production for the near
term and far term, respectively [Pet91, pp. 83-84]63. This seems to be a quantitative statement concerning “windows
of opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.106, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient

that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

63The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.106: United States Electronic Component
Production, Hurst coefficient data for the normalized
increments of the time series data shown in Fig-
ure C.94. The slope of the graph is the Hurst co-
efficient.
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Figure C.107: United States Electronic Component
Production, H parameter data for the normalized in-
crements of the time series data shown in Figure C.94
The slope of the graph is the H parameter.

of 0.866652, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.193)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 866652 (C.194)ü ( X 2 m X 1)1 þ 733304 (C.195)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past64. A Hurst coefficient of 0.866652, (for the near future, and 0.776445 for the distant future.) implies

64Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient
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that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
86.665200% [Pet91, pp. 66] for the near future, and 0.776445 for the distant future. Likewise, there is a 86.665200%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 86.665200% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Electronic Component
Production are over time, since the probability of having g many consecutive months of the same agenda is ÿ � whereÿ is the Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda,U B , is:

U B ( g ) A ÿ � (C.196)A 0 { 866652
�

(C.197)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.94, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 008198 L 100 percent, on the average, with a standard deviation of
0 { 015216 L 100 percent, and a root mean square error value of 0 { 017247 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.198)ü ( X 2 m X 1)0 þ 866652 (C.199)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.199 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.200)ü � ( X 2 m X 1) (C.201)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.5.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Electronic Component Production. See
also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.202)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time65.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.203)

ü �
( cjX )c 0 þ 866652

(C.204)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.107, to provide a least squares
approximation to the H parameter for the United States Electronic Component Production. The superimposed least
squares approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.840517 for the near future, and 0.906252 for the distant future.

Figures C.106 and C.107 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.94. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.94, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.108 and C.109 was made using the -d option.

C.5.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.5.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.95. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.94. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Electronic Component Production, and may, or may not, provide
adequate accuracy for projections.

For an organization operating in the United States Electronic Component Production, the fiscal strategy, commen-
surate with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80,
pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.94, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 008198 f 1)
ln (2)

A 0 { 011779 (C.205)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.94, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

65To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.108: United States Electronic Component
Production, traditional Hurst coefficient data for the
time series data shown in Figure C.93. The slope of
the graph is the Hurst coefficient, and is 0.869086 for
the near term, and 0.736363 for the far term.
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Figure C.109: United States Electronic Component
Production, traditional H parameter data for the time
series data shown in Figure C.93 The slope of the
graph is the H parameter, and is 0.757204 for the near
term, and 0.798198 for the far term.

� V_X�Z A ln (0 { 003048 f 1)
ln (2)

A 0 { 004391 (C.206)

Note that if the mean is not constant in Figure C.94, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.93:

� V_X�Z A 0 { 009588 (C.207)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.93:

� V_X�Z A 0 { 011551 (C.208)
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Calculation of Shannon Probability

Ideally, all of the values presented in Section C.5.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 011551 � (C.209)

therefore: Û
(U ) A 0 { 011551 (C.210)

and, tsshannon 0.011551 gives: Û
(0 { 563187) A 0 { 011551 (C.211)

therefore:

2 � (0 þ 563187) A 20 þ 011551 (C.212)A 1 { 008039 (C.213)A 0 { 803868% (C.214)

and:

2U m 1 A (2 L 0 { 563187) m 1 (C.215)A 0 { 126374 (C.216)A 12 { 637400% (C.217)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Electronic Component Production executes a long term fiscal strategy, commensurate with the aggregate
environment, that is to invest, every month, in sufficient additional resources and infrastructure, to increase the
manufacturing of goods and services by 12.637400% of its rate of revenue returns, (per month.) As a conceptual
model, the remaining 87.362600% will be held in “reserve” with a 56.318700% chance of making twice the 12.637400%
back, (and a 43.681300% chance of making 0.0,) in one month, on the average, for an average growth in its rate of
revenue returns, (per month,) of 0.803868%, or a doubling of its rate of revenue returns, (per month,) in 86.572591
months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
12.637400% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.803868%, per month, on average.

Note that the metrics presented in this section are representative of the United States Electronic Component
Production as an aggregate whole, and may or may not be accurate representations for any particular participant in the
environment. Of interest to the participants in the environment would be a similar analysis of each product or service
rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 12.637400% of its rate of revenue returns, (per month,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the
United States Electronic Component Production’s environment, the company’s rate of revenue returns exceeds what
was borrowed from the bank, and the loan is repaid in full. Other months, the company must default, and the bank
seizes a portion of the company’s revenue base to pay the delinquent loan. However, on the average, the company will
expand its rate of revenue returns at 0.803868% per month.
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As another simple example, a company re-invests 12.637400% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 12.637400% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.803868% per month.

As an example of “product portfolio” management, suppose a company re-invests 12.637400% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 12 { 637400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 12 { 637400 percent for the second product, implying that the company should diversify its
product line66. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 12 { 637400%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
United States Electronic Component Production, as a standard bench mark, then the optimal number will be 1

0 þ 126374 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.94, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 12.637400% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 12.637400% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 12.637400 of the rate of revenue returns per month does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 12.637400% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 126374 products seems consistent with the industry, also.

66The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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C.5.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Electronic Component
Production, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean
square, c Q Z � ��� , of the normalized increments of the United States Electronic Component Production time series
is 0.008198, and 0.017247respectively, the number of companies participating in the market can be calculated by
Equation 2.109 to be 27.560100.

If this value seems consistent number of companies in the United States Electronic Component Production,
within the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or
indirect evidence that the companies participating in the United States Electronic Component Production are operating
optimally, and the “average” Shannon probability, u for each participating company would be, using Equation 2.110,
0.545271, which would be the value which should be used in Section C.5.5 for each participating company if
market expansion was to be consistent with the rest of the industry. However, if the Shannon probability derived in
Section C.5.5 is greater than the average Shannon probability for the companies participating in the United States
Electronic Component Production, as derived in this section, then the market would, possibly, be exploitable with the
fiscal strategy outlined in Section C.5.5. The maximum exploitability for the United States Electronic Component
Production is derived in Section C.5.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Electronic
Component Production is 0.545271, with several alternative solutions listed in the previous paragraph. However, these
should be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.737665 in the United
States Electronic Component Production. In all cases, the fraction of the P&L that should be “wagered” on the future,O , should be:

O A 2 uxm 1 (C.218)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Electronic Component Production would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.5.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.95.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.94. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Electronic
Component Production, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.5.5, is derived from the United States
Electronic Component Production metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.5.9.

An additional exploitable strategy may be time itself. Equations C.195, C.199, and, C.197, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Electronic
Component Production, becomes obsolete. Obviously, how long a decision is expected to remain relevant should
be addressed as an operational necessity in strategic planning and project management. Figures C.110, and, C.111
compare methods of approximation of the “forecastability” of rate of revenue returns in the United States Electronic
Component Production for the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution
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must be exercised when making decisions that will span a time interval larger than the time interval where the
“forecastability” of rate of revenue returns drops below 50%. Beyond this time interval, the chances increase that
the competitive and market forces will alter the market environment in a possibly detrimental unanticipated fashion.
Obviously, there is significant advantage in “timeliness” of development, manufacturing, and distribution of products
and services that are consistent with this temporal agenda. Automation of these processes, if executed consistently
with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Electronic Component Production. When the “forecastability” of rate of revenue returns drops below 50%, there is
an even chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it
is assumed that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then,
if all three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval
where the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction
of product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.67” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.110, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.197, 0 { 866652

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.195, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.111, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community68. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.5.4, Equation C.197, and the preceeding section, approximately 3 times the value where

0 { 866652
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 866652 many months seems consistent with the author’s experience in the
industry.

C.5.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.5.9. Figure C.112 represents a constructional
simulation of the time series data presented in Figure C.93. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.

67For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

68For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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Figure C.110: United States Electronic Component
Production, “forecastability” of near term rate of rev-
enue returns. Although the error function is the most
accurate, for the near term, ÿ � A 0 { 866652 � may be
used as a reliable metric of “forecastability” of the
rate of revenue returns.
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Figure C.111: United States Electronic Component
Production, “forecastability” of far term rate of rev-
enue returns. Although the error function is the most
accurate, for the far term, 1! � may be used as a reli-
able metric of “forecastability” of the rate of revenue
returns.

The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.94. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.94 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.113
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.96.

C.5.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.5.3. One of the issues of analysis, as mentioned in Sec-
tion C.5.7, is to determine the maximum Shannon probability for the time series presented in Figure C.93. Potentially,
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Production, Time series data, empirical and simu-
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Figure C.113: United States Electronic Component
Production, normalized histogram of the normalized
increments of the time series data shown in Fig-
ure C.112, empirical and simulated. The empirical
data has a mean of 0.008198, with a standard devia-
tion of 0.015216. By comparison, the simulated data
has a mean of 0.008720 with a standard deviation of
0.014922. This data is superimposed on the data pre-
sented in Figure C.96. The area under the four curves
is identical.

this could be exploited with an aggressive fiscal strategy. Figure C.114 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probabil-
ity for the time series data presented in Figure C.93. Figure C.115 was constructed using tsunfairbrownian program,
which is also described in appendix B, with the maximum Shannon probability, and the time series data presented in
Figure C.93. This represents a “what if” the investment strategy was changed from a Shannon probability of 0.563187,
as derived in Section C.5.5 to 0.755556. This process, essentially, extracts the random statistical data from the time
series presented in Figure C.93, and constructs a new time series, using the random statistical data, with a different
investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal
with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny
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since, in all probability, the increments in the original data represent a relatively complex process, that may not be
“modeled” with such a simple methodology.
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Figure C.114: United States Electronic Component
Production, maximum rate of revenue returns, per
month, vs. Shannon probability. The maximum rate
of revenue returns, per month, occurs at a Shannon
probability of 0.755556.
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Figure C.115: United States Electronic Component
Production, maximum rate of revenue returns, per
month, at a Shannon probability, of 0.755556, corre-
sponding to a “wager” fraction of 0.511112.

If it is assumed that the time series data set, presented in Figure C.93, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Electronic
Component Production movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.754190, as compared with the predicted value from the program tsshannonmax of 0.755556.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.5.1,
Figure C.96, it would appear that the United States Electronic Component Production’s normalized increments are
characterized by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One
consequence of this is that a re-investment strategy that is to “wager” a fraction of 0.511112 of the rate of returns every
month is overly aggressive, since in the classical Brownian scenario, the maximum loss, in any month, was no more
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that what was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2
A O$# � �c Q Z A&% (C.219)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.94 of 0.017247, vs. an
“theoretical optimal” value of 0.511112 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
deviation, or about 15.865% per month, which is unacceptably high. However, it is not clear why the United States
Electronic Component Production is running at a value of 0.017247, which seems very conservative. However, a
re-investment strategy of 0.017247 per month does not seem inconsistent with a failure rate, on the Fortune 500 list,
which it is inferred that the United States Electronic Component Production is similar to, of about 50% in ten years,
which corresponds to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5
standard deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate
should be, approximately, 0 þ 511112

2 þ 5 , compared with an operational value, from Figure C.96 of 0.017247.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the United States Electronic Component Production are not running an optimal re-investment
strategy. This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would
be over extended, and become financially destitute during market down turns, which is inevitable in a fractal time
series as presented in Figure C.93. It would seem that the natural selection process of the competitive environment
would allow only those companies that run near the optimally maximal value to survive, in the long run. One possible
explanation, foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that
the gross margins are less than the fraction 0.755556 of the rate of revenue returns, and thus could not accommodate
such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic
market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be
many competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally,
those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.563187 is not just marginally lower
than the maximum Shannon probability of 0.755556. There is a significant disparity which is difficult to explain. It
would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.
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C.5.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.95.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.94. These
values will be used in a fixed increment Brownian fractal analysis of the United States Electronic Component Production,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.5.6 and D.5.7. As a subjective evaluation of
the “quality” of the analysis of the United States Electronic Component Production, from Chapter 3, Equation 3.8,
and using the mean and root mean square values of the normalized increments of the time series data presented in
Figure C.93 from Figure C.94, and the Shannon probability as calculated by counting the total number of months that
the United States Electronic Component Production movement was positive, as presented in Section C.5.9:

u � BEDGFHGIKJ f 1

2
(C.220)

0 { 754190 � 0 þ 008198
0 þ 017247 f 1

2
(C.221)

0 { 754190 � 0 { 737665 (C.222)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 754190 � 0 { 737665 � 0 { 755556 (C.223)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.5.5, should be
compared. The four methods used were the mean of Figure C.94, the constant in the least squares approximation to
Figure C.94, the least squares exponential approximation to Figure C.93, and the logarithmic returns of Figure C.93,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 011779 � 0 { 004391 � 0 { 009588 � 0 { 011551 (C.224)

It is implied in Section C.5.5, Subsection C.5.5 and in Section C.5.8 that, a Brownian motion with fixed increments
fractal may “model” the United States Electronic Component Production. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.225)

0 { 017247 (2 L 0 { 754190 m 1) � 0 { 015216 (2 L 0 { 754190 m 1)

2 ó 0 { 754190 (1 m 0 { 754190)
(C.226)

0 { 017247 L 0 { 508380 � 0 { 015216 L 0 { 590362 (C.227)

0 { 008768 � 0 { 008983 (C.228)

and, equating to the mean:

0 { 008198 � 0 { 008768 � 0 { 008983 (C.229)

where, as in Equation C.222 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.93 from Figure C.94, and the Shannon probability as
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calculated by counting the total number of months that the United States Electronic Component Production movement
was positive, as presented in Section C.5.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value69, where the absolute value is presented in Figure C.95, and the root mean square value is presented
in Figure C.94:

0 { 013756 � 0 { 017247 (C.230)

Note, that if the United States Electronic Component Production could be “modeled” as a Brownian motion with
fixed increments fractal, then the standard deviation of the absolute value of the normalized increments of the time
series data presented in Figure C.93 from Figure C.94 should be zero. It is 0 { 010433.

C.6 United States Electronics Market

For the analysis, the data was in the directory ../markets/electronics70.
The data in this section is presented in tabular form in Section D.6.

C.6.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.6.1. Figure C.116 is a graph of the time series data
for the United States Electronics Market.

Figure C.117 is a graph of the normalized increments of the time series data presented in Figure C.116. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.118 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.117. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns71.

Figure C.119 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.117. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.119.

Figure C.120 is the statistical estimate for the data presented in Figure C.117, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 554410, as derived in Section C.6.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set

69The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

70Data from the United States Department of Commerce, 1980—1994, by months, in millions of dollars, US.
71The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.116: United States Electronics Market, time
series data.
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Figure C.117: United States Electronics Market, nor-
malized increments of the time series data presented
in Figure C.116. The mean is 0.007862 with a stan-
dard deviation of 0.062079. The formula for the least
squares approximation is 0 { 008318 f m 0 { 000005 X ,
and the root mean squared value is 0.062404. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000005, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.121 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.117. In principle, if the distribution of the normalized increments presented in Figure C.119
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Figure C.118: United States Electronics Market, ab-
solute value of the normalized increments of the time
series data presented in Figure C.117. The mean
is 0.048513 with a standard deviation of 0.039361.
The formula for the least squares approximation is
0 { 061949 fÅm 0 { 000150 X , and the root mean square
value, from Figure C.117, is 0.062404. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.117, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.119: United States Electronics Market, nor-
malized histogram of the normalized increments of
the time series data shown in Figure C.117. The data
has a mean of 0.007862, with a standard deviation of
0.062079. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 2.817000, with a critical value of
42.557000.

is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.122 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.117. In principle, if the distribution of the normalized increments presented in Figure C.119 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.
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For a mean of 0.007819, with a confidence level of 0.900000
that the error did not exceed 0.000782, 17235 samples would be required.
(With 181 samples, the estimated error is 0.007630 = 97.580043 percent.)

For a standard deviation of 0.062404, with a confidence level of 0.900000
that the error did not exceed 0.006240, 136 samples would be required.
(With 181 samples, the estimated error is 0.005395 = 8.645159 percent.)

Figure C.120: United States Electronics Market, statistical estimates of the normalized increments of the time series
shown in Figure C.117. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.117.

Figure C.123 is the range of values of the time series shown in Figure C.116. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.123
would be a square root function72. Figure C.124 is the deterministic map of the normalized increments of the time
series data shown in Figure C.117. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.119 would seem to indicate that the time series data for the United States Electronics Market represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.6.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change73. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.125 is the instantaneous value of the root mean square of the normalized increments for the United States
Electronics Market, and Figure C.126 is the instantaneous Shannon probability for the normalized increments.

C.6.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.6.4. Figure C.127 is a graph of the logistic
function estimates of the time series data for the United States Electronics Market. The reader is cautioned that these

72Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.123 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

73The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.121: United States Electronics Market, nor-
malized histogram of the first derivative of the nor-
malized increments of the time series data shown in
Figure C.117.
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Figure C.122: United States Electronics Market, nor-
malized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.117.

graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies74. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.127 is a graph of the logistic function for the time series data presented in Figure C.116. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.117. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.117. Figure C.128 is the same graph, but
with the time scale expanded by a factor of two.

74For example, in Figures C.127 and C.128, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.6.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.123: United States Electronics Market,
range of the time series data shown in Figure C.116.
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C.6.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.6.5. Figure C.129 is a graph of the Hurst coefficient
data time series data shown in Figure C.116. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.130 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.117. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.129 implies that the variance of the rate of revenue returns,
(per month,) in the United States Electronics Market, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time75, X , U d X�i A b�c Oqd 1 � ó 2 X�i which is

75It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
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Figure C.125: United States Electronics Market, in-
stantaneous value of the root mean square of the nor-
malized increments, provided by running the program
tsinstant with the -r option on the data presented in
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Figure C.126: United States Electronics Market, in-
stantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.116.

approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.133, and, C.134 compare methods of approximation of the
“forecastability” of the rate of revenue returns in the United States Electronics Market for the near term and far term,
respectively [Pet91, pp. 83-84]76. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data, presented
in Figure C.129, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.684410, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.231)

153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

76The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.127: United States Electronics Market, lo-
gistic function estimates, provided by running the
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k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 684410 (C.232)ü ( X 2 m X 1)1 þ 368820 (C.233)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past77. A Hurst coefficient of 0.684410, (for the near future, and 0.399911 for the distant future.) implies

77Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.6.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Electronics Market. See also [Pet91,
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that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
68.441000% [Pet91, pp. 66] for the near future, and 0.399911 for the distant future. Likewise, there is a 68.441000%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 68.441000% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Electronics Market are
over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.234)A 0 { 684410
�

(C.235)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.117, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would

pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 007862 L 100 percent, on the average, with a standard deviation of
0 { 062079 L 100 percent, and a root mean square error value of 0 { 062404 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.236)ü ( X 2 m X 1)0 þ 684410 (C.237)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.237 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.238)ü � ( X 2 m X 1) (C.239)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.240)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time78.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.241)

ü �
( cjX )c 0 þ 684410

(C.242)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.130, to provide a least squares approx-
imation to the H parameter for the United States Electronics Market. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is -0.009123 for the near future, and 0.143328 for the distant future.

Figures C.129 and C.130 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.117. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.117, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.131 and C.132 was made using the -d option.

78To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.131: United States Electronics Market, tra-
ditional Hurst coefficient data for the time series data
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Observations on the Hurst Coefficient Analysis

Note that the H parameter data is not linear, and both the short term and long term predictability are better than the
mid term predictability. This is also indicated by a Hurst coefficient of 0.399911, which is less than 0.5, and would
tend to indicate that there is a predisposition to antipersistence, or ergodic, market behavior. What this means is that
the system is mean reverting, and that a month where rate of revenue returns increased, will have a predisposition to
be followed by a month where the rate of revenue returns decrease, and vice versa. See [Pet91, pp. 64], [Fed88, pp.
170], [PJS92, pp. 496] [Sch91, pp. 130], [Ç93, pp. 172].

C.6.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.6.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.118. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.117. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Electronics Market, and may, or may not, provide adequate accuracy
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for projections.
For an organization operating in the United States Electronics Market, the fiscal strategy, commensurate with the

aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.117, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 007862 f 1)
ln (2)

A 0 { 011298 (C.243)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.117, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 008318 f 1)
ln (2)

A 0 { 011951 (C.244)

Note that if the mean is not constant in Figure C.117, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.116:

� V_X�Z A 0 { 007056 (C.245)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.116:

� V_X�Z A 0 { 008559 (C.246)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.6.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 008559 � (C.247)

therefore: Û
(U ) A 0 { 008559 (C.248)

and, tsshannon 0.008559 gives: Û
(0 { 554410) A 0 { 008559 (C.249)

therefore:

2 � (0 þ 554410) A 20 þ 008559 (C.250)A 1 { 005950 (C.251)A 0 { 595028% (C.252)
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and:

2U m 1 A (2 L 0 { 554410) m 1 (C.253)A 0 { 108820 (C.254)A 10 { 882000% (C.255)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Electronics Market executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 10.882000% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 89.118000%
will be held in “reserve” with a 55.441000% chance of making twice the 10.882000% back, (and a 44.559000% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
0.595028%, or a doubling of its rate of revenue returns, (per month,) in 116.836079 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
10.882000% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.595028%, per month, on average.

Note that the metrics presented in this section are representative of the United States Electronics Market as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 10.882000% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Electronics Market’s environment, the company’s rate of revenue returns exceeds what was borrowed from the
bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the
company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.595028% per month.

As another simple example, a company re-invests 10.882000% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 10.882000% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.595028% per month.

As an example of “product portfolio” management, suppose a company re-invests 10.882000% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 10 { 882000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 10 { 882000 percent for the second product, implying that the company should diversify its
product line79. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated

79The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 10 { 882000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the United States Electronics Market, as a standard bench mark, then the optimal number will be 1

0 þ 108820 . Note that
this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.117, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 10.882000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 10.882000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 10.882000 of the rate of revenue returns per month does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 10.882000% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 108820 products seems consistent with the industry, also.

C.6.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Electronics Market,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the United States Electronics Market time series is 0.007862, and 0.062404respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 2.018869.

If this value seems consistent number of companies in the United States Electronics Market, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the
companies participating in the United States Electronics Market are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.544334, which would be the value
which should be used in Section C.6.5 for each participating company if market expansion was to be consistent with the
rest of the industry. However, if the Shannon probability derived in Section C.6.5 is greater than the average Shannon
probability for the companies participating in the United States Electronics Market, as derived in this section, then the
market would, possibly, be exploitable with the fiscal strategy outlined in Section C.6.5. The maximum exploitability
for the United States Electronics Market is derived in Section C.6.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Electronics Market
is 0.544334, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.562993 in the United States Electronics Market.
In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:
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O A 2 uxm 1 (C.256)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Electronics Market would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.6.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.118.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.117. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Electronics
Market, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.6.5, is derived from the United States
Electronics Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be
exploitable, see Section C.6.9.

An additional exploitable strategy may be time itself. Equations C.233, C.237, and, C.235, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Electronics
Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as
an operational necessity in strategic planning and project management. Figures C.133, and, C.134 compare methods
of approximation of the “forecastability” of rate of revenue returns in the United States Electronics Market for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Electronics Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance
that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.80” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.133, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.235, 0 { 684410

� A 0 { 5 months of operations. Since the optimal amount of

80For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.134: United States Electronics Market,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

inventory and, from Equation C.233, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.134, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community81. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

81For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.6.4, Equation C.235, and the preceeding section, approximately 3 times the value where

0 { 684410
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 684410 many months seems consistent with the author’s experience in the
industry.

C.6.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.6.9. Figure C.135 represents a constructional
simulation of the time series data presented in Figure C.116. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.117. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.117 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.136
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.119.

C.6.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.6.3. One of the issues of analysis, as mentioned in Sec-
tion C.6.7, is to determine the maximum Shannon probability for the time series presented in Figure C.116. Potentially,
this could be exploited with an aggressive fiscal strategy. Figure C.137 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probability
for the time series data presented in Figure C.116. Figure C.138 was constructed using tsunfairbrownian program,
which is also described in appendix B, with the maximum Shannon probability, and the time series data presented
in Figure C.116. This represents a “what if” the investment strategy was changed from a Shannon probability of
0.554410, as derived in Section C.6.5 to 0.524862. This process, essentially, extracts the random statistical data from
the time series presented in Figure C.116, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.116, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Electronics
Market movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.522222, as compared with the predicted value from the program tsshannonmax of 0.524862.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.6.1,
Figure C.119, it would appear that the United States Electronics Market’s normalized increments are characterized by
fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence of
this is that a re-investment strategy that is to “wager” a fraction of 0.049724 of the rate of returns every month is overly
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Figure C.135: United States Electronics Market,
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Figure C.136: United States Electronics Market, nor-
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By comparison, the simulated data has a mean of
0.003138 with a standard deviation of 0.062500. This
data is superimposed on the data presented in Fig-
ure C.119. The area under the four curves is identical.

aggressive, since in the classical Brownian scenario, the maximum loss, in any month, was no more that what was
“wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O # � �c Q Z A&% (C.257)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.117 of 0.062404, vs. an
“theoretical optimal” value of 0.049724 seems overly conservative. Additionally, notice that, at least in principle, the
chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard deviation,
or about 15.865% per month, which is unacceptably high. However, it is not clear why the United States Electronics
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Figure C.138: United States Electronics Market,
maximum rate of revenue returns, per month, at a
Shannon probability, of 0.524862, corresponding to a
“wager” fraction of 0.049724.

Market is running at a value of 0.062404, which seems very conservative. However, a re-investment strategy of
0.062404 per month does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is inferred that the
United States Electronics Market is similar to, of about 50% in ten years, which corresponds to d 1 m U M i 120 � 0 { 5,
or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard deviations, meaning that to
be consistent with the large companies in the Fortune 500, the re-investment rate should be, approximately, 0 þ 049724

2 þ 5 ,
compared with an operational value, from Figure C.119 of 0.062404.

An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation
as to why the companies in the United States Electronics Market are not running an optimal re-investment strategy.
This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal value
would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would be over
extended, and become financially destitute during market down turns, which is inevitable in a fractal time series as
presented in Figure C.116. It would seem that the natural selection process of the competitive environment would allow
only those companies that run near the optimally maximal value to survive, in the long run. One possible explanation,
foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that the gross
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margins are less than the fraction 0.524862 of the rate of revenue returns, and thus could not accommodate such an
aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic market,
the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be many
competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally, those
that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.554410 is not just marginally lower
than the maximum Shannon probability of 0.524862. There is a significant disparity which is difficult to explain. It
would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.6.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.118.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.117. These
values will be used in a fixed increment Brownian fractal analysis of the United States Electronics Market, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.6.6 and D.6.7. As a subjective evaluation of the
“quality” of the analysis of the United States Electronics Market, from Chapter 3, Equation 3.8, and using the mean
and root mean square values of the normalized increments of the time series data presented in Figure C.116 from
Figure C.117, and the Shannon probability as calculated by counting the total number of months that the United States
Electronics Market movement was positive, as presented in Section C.6.9:

u � BEDGFHGIKJ f 1

2
(C.258)

0 { 522222 � 0 þ 007862
0 þ 062404 f 1

2
(C.259)

0 { 522222 � 0 { 562993 (C.260)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 522222 � 0 { 562993 � 0 { 524862 (C.261)
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In addition, the different methods of calculating the logarithmic returns, presented in Section C.6.5, should be
compared. The four methods used were the mean of Figure C.117, the constant in the least squares approximation to
Figure C.117, the least squares exponential approximation to Figure C.116, and the logarithmic returns of Figure C.116,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 011298 � 0 { 011951 � 0 { 007056 � 0 { 008559 (C.262)

It is implied in Section C.6.5, Subsection C.6.5 and in Section C.6.8 that, a Brownian motion with fixed increments
fractal may “model” the United States Electronics Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)
2 ó u (1 mÏu )

(C.263)

0 { 062404 (2 L 0 { 522222 m 1) � 0 { 062079 (2 L 0 { 522222 m 1)

2 ó 0 { 522222 (1 m 0 { 522222)
(C.264)

0 { 062404 L 0 { 044444 � 0 { 062079 L 0 { 044488 (C.265)

0 { 002774 � 0 { 002762 (C.266)

and, equating to the mean:

0 { 007862 � 0 { 002774 � 0 { 002762 (C.267)

where, as in Equation C.260 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.116 from Figure C.117, and the Shannon probability as
calculated by counting the total number of months that the United States Electronics Market movement was positive,
as presented in Section C.6.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value82, where the absolute value is presented in Figure C.118, and the root mean square value is presented
in Figure C.117:

0 { 048513 � 0 { 062404 (C.268)

Note, that if the United States Electronics Market could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.116 from Figure C.117 should be zero. It is 0 { 039361.

Observations on the Qualitative Verification of Fixed Increment Approximation Analysis

In the equation:

0 { 007862 � 0 { 002774 � 0 { 002762 (C.269)

Note that the mean is unusually large, in relation to values for c Q Z d 2 uvm 1 i and ) � 2 × � 1 �
2 ó × � 1 � × � , respectively-in

principle, they should all be equal. Also note that the standard deviation of the increments, 0.062079, is much larger
than the mean. These issues, coupled with a Hurst coefficient of 0.399911, probably prohibit “modeling” the United
States Electronics Market with the methodologies presented in this manuscript. Note, however, the poor accuracy
performance of the methodology was estimated by the equation, above, so was anticipated. As an aside, it is not

82The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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clear what market mechanisms create the numbers in the equation above, or a Hurst coefficient that is indicative of an
antipersistent rate of revenue returns. Investigation of the metric methodologies for this market place, perhaps, may
be interesting and provide some insight.

C.7 United States Office Computer Market

For the analysis, the data was in the directory ../markets/computer.office83.
The data in this section is presented in tabular form in Section D.7.

C.7.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.7.1. Figure C.139 is a graph of the time series data
for the United States Office Computer Market.

Figure C.140 is a graph of the normalized increments of the time series data presented in Figure C.139. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.141 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.140. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns84.

Figure C.142 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.140. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.142.

Figure C.143 is the statistical estimate for the data presented in Figure C.140, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 589554, as derived in Section C.7.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.144 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.140. In principle, if the distribution of the normalized increments presented in Figure C.142
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.145 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.140. In principle, if the distribution of the normalized increments presented in Figure C.142 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

83Data from the United States Department of Commerce, 1982—1994, by months, as an index, 1987 = 100.
84The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.139: United States Office Computer Market,
time series data.
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Figure C.140: United States Office Computer Mar-
ket, normalized increments of the time series data
presented in Figure C.139. The mean is 0.016771
with a standard deviation of 0.028983. The formula
for the least squares approximation is 0 { 023041 fm 0 { 000081 X , and the root mean squared value is
0.033404. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000081, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

Figure C.146 is the range of values of the time series shown in Figure C.139. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.146
would be a square root function85. Figure C.147 is the deterministic map of the normalized increments of the time

85Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.146 are a computational artifact—caused by not using the -m
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Figure C.141: United States Office Computer Market,
absolute value of the normalized increments of the
time series data presented in Figure C.140. The mean
is 0.024562 with a standard deviation of 0.022713.
The formula for the least squares approximation is
0 { 038289 fÅm 0 { 000178 X , and the root mean square
value, from Figure C.140, is 0.033404. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.140, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.142: United States Office Computer Market,
normalized histogram of the normalized increments
of the time series data shown in Figure C.140. The
data has a mean of 0.016771, with a standard devia-
tion of 0.028983. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 8.722000, with a critical
value of 42.557000.

series data shown in Figure C.140. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

option to the program tshurst, which is computationally inefficient.
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For a mean of 0.016663, with a confidence level of 0.900000
that the error did not exceed 0.001666, 1088 samples would be required.
(With 156 samples, the estimated error is 0.004399 = 26.400221 percent.)

For a standard deviation of 0.033404, with a confidence level of 0.900000
that the error did not exceed 0.003340, 136 samples would be required.
(With 156 samples, the estimated error is 0.003111 = 9.312150 percent.)

Figure C.143: United States Office Computer Market, statistical estimates of the normalized increments of the time
series shown in Figure C.140. The table was produced with the tsstatest program, and illustrates the size of the data
set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the
time series shown in Figure C.140.

Observations on the Time Series Increments Analysis

Figure C.142 would seem to indicate that the time series data for the United States Office Computer Market represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.7.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change86. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.148 is the instantaneous value of the root mean square of the normalized increments for the United States
Office Computer Market, and Figure C.149 is the instantaneous Shannon probability for the normalized increments.

C.7.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.7.4. Figure C.150 is a graph of the logistic
function estimates of the time series data for the United States Office Computer Market. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies87. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.150 is a graph of the logistic function for the time series data presented in Figure C.139. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters

86The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

87For example, in Figures C.150 and C.151, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.7.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.144: United States Office Computer Market,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.140.
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Figure C.145: United States Office Computer Market,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.140.

extracted from the time series data as suggested in Figure C.140. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.140. Figure C.151 is the same graph, but
with the time scale expanded by a factor of two.

C.7.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.7.5. Figure C.152 is a graph of the Hurst coefficient
data time series data shown in Figure C.139. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.153 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.140. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.152 implies that the variance of the rate of revenue returns,
(per month,) in the United States Office Computer Market, k d X 2 m X 1 i , over a period of time is proportional to the
period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
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Figure C.146: United States Office Computer Market,
range of the time series data shown in Figure C.139.
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Figure C.147: United States Office Computer Market,
deterministic map of the normalized increments of the
time series data shown in Figure C.140.

period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time88, X , U d X�i A b�c Oqd 1 �[ó 2 X�i which
is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.156, and, C.157 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the United States Office Computer Market for the near term
and far term, respectively [Pet91, pp. 83-84]89. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.152, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient

88It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

89The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.148: United States Office Computer Mar-
ket, instantaneous value of the root mean square of the
normalized increments, provided by running the pro-
gram tsinstant with the -r option on the data presented
in Figure C.139.
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Figure C.149: United States Office Computer Mar-
ket, instantaneous value of the Shannon probability
of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.139.

of 0.888451, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.270)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 888451 (C.271)ü ( X 2 m X 1)1 þ 776902 (C.272)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past90. A Hurst coefficient of 0.888451, (for the near future, and 0.723276 for the distant future.) implies

90Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient
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Figure C.150: United States Office Computer Market,
logistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.140 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.151: United States Office Computer Market,
logistic function estimates of Figure C.150 with the
time scale expanded by a factor of two.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
88.845100% [Pet91, pp. 66] for the near future, and 0.723276 for the distant future. Likewise, there is a 88.845100%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 88.845100% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Office Computer Market
are over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the
Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For the
“long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian motion,
or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term” and
“far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
W� 0 � 5 © ln 	���
 , or when ln 	 ��
9� 2, or �W� 7 � 389 ����� See
Section C.7.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Office Computer Market. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.152: United States Office Computer Market,
Hurst coefficient data for the normalized increments
of the time series data shown in Figure C.140. The
slope of the graph is the Hurst coefficient.
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Figure C.153: United States Office Computer Market,
H parameter data for the normalized increments of the
time series data shown in Figure C.140 The slope of
the graph is the H parameter.

U B ( g ) A ÿ � (C.273)A 0 { 888451
�

(C.274)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.140, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 016771 L 100 percent, on the average, with a standard deviation of
0 { 028983 L 100 percent, and a root mean square error value of 0 { 033404 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.275)
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ü ( X 2 m X 1)0 þ 888451 (C.276)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.276 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.277)ü � ( X 2 m X 1) (C.278)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.279)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time91.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.280)

ü �
( cjX )c 0 þ 888451

(C.281)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.153, to provide a least squares
approximation to the H parameter for the United States Office Computer Market. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.720944 for the near future, and 0.774674 for the distant future.

Figures C.152 and C.153 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.140. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.140, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.154 and C.155 was made using the -d option.

C.7.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.7.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.141. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.140. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Office Computer Market, and may, or may not, provide adequate
accuracy for projections.

91To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.154: United States Office Computer Market,
traditional Hurst coefficient data for the time series
data shown in Figure C.139. The slope of the graph
is the Hurst coefficient, and is 0.881397 for the near
term, and 0.760996 for the far term.
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Figure C.155: United States Office Computer Market,
traditional H parameter data for the time series data
shown in Figure C.139 The slope of the graph is the
H parameter, and is 0.458834 for the near term, and
0.557545 for the far term.

For an organization operating in the United States Office Computer Market, the fiscal strategy, commensurate with
the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.140, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 016771 f 1)
ln (2)

A 0 { 023995 (C.282)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.140, and Equation 2.17 from
Section 2.3.2 in Chapter 2:
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� V_X�Z A ln (0 { 023041 f 1)
ln (2)

A 0 { 032864 (C.283)

Note that if the mean is not constant in Figure C.140, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.139:

� V_X�Z A 0 { 019653 (C.284)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.139:

� V_X�Z A 0 { 023266 (C.285)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.7.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 023266 � (C.286)

therefore: Û
(U ) A 0 { 023266 (C.287)

and, tsshannon 0.023266 gives: Û
(0 { 589554) A 0 { 023266 (C.288)

therefore:

2 � (0 þ 589554) A 20 þ 023266 (C.289)A 1 { 016258 (C.290)A 1 { 625750% (C.291)

and:

2U m 1 A (2 L 0 { 589554) m 1 (C.292)A 0 { 179108 (C.293)A 17 { 910800% (C.294)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Office Computer Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 17.910800% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
82.089200% will be held in “reserve” with a 58.955400% chance of making twice the 17.910800% back, (and a
41.044600% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 1.625750%, or a doubling of its rate of revenue returns, (per month,) in 42.981174 months.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
17.910800% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 1.625750%, per month, on average.

Note that the metrics presented in this section are representative of the United States Office Computer Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 17.910800% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Office Computer Market’s environment, the company’s rate of revenue returns exceeds what was borrowed from
the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 1.625750% per month.

As another simple example, a company re-invests 17.910800% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 17.910800% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.625750% per month.

As an example of “product portfolio” management, suppose a company re-invests 17.910800% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 17 { 910800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 17 { 910800 percent for the second product, implying that the company should diversify its
product line92. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 17 { 910800%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
United States Office Computer Market, as a standard bench mark, then the optimal number will be 1

0 þ 179108 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.140, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex

92The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 17.910800% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 17.910800% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 17.910800 of the rate of revenue returns per month does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 17.910800% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 179108 products seems consistent with the industry, also.

C.7.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Office Computer
Market, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the United States Office Computer Market time series is 0.016771, and
0.033404respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
15.030105.

If this value seems consistent number of companies in the United States Office Computer Market, within the
assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the United States Office Computer Market are operating optimally, and the
“average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.564751, which
would be the value which should be used in Section C.7.5 for each participating company if market expansion was to be
consistent with the rest of the industry. However, if the Shannon probability derived in Section C.7.5 is greater than the
average Shannon probability for the companies participating in the United States Office Computer Market, as derived
in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.7.5. The
maximum exploitability for the United States Office Computer Market is derived in Section C.7.9, but it is probably of
doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Office Computer
Market is 0.564751, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.751033 in the United States Office
Computer Market. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.295)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the mea-
sured Shannon probability of the United States Office Computer Market would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.7.7 Fixed Increment Approximation for Operational Strategy

.
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This section derives various values based on the “average” of the normalized increments presented in Figure C.141.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.140. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Office Computer
Market, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.7.5, is derived from the United States
Office Computer Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which
may be exploitable, see Section C.7.9.

An additional exploitable strategy may be time itself. Equations C.272, C.276, and, C.274, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Office Computer
Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.156, and, C.157 compare methods of
approximation of the “forecastability” of rate of revenue returns in the United States Office Computer Market for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States Office
Computer Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that
the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product
or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.93” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.156, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.274, 0 { 888451

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.272, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.157, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community94. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

93For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

94For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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Figure C.156: United States Office Computer Market,
“forecastability” of near term rate of revenue returns.
Although the error function is the most accurate, for
the near term, ÿ � A 0 { 888451 � may be used as a reli-
able metric of “forecastability” of the rate of revenue
returns.
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Figure C.157: United States Office Computer Market,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.7.4, Equation C.274, and the preceeding section, approximately 3 times the value where

0 { 888451
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 888451 many months seems consistent with the author’s experience in the
industry.

C.7.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.7.9. Figure C.158 represents a constructional
simulation of the time series data presented in Figure C.139. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
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The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.140. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.140 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.159
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.142.
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Time series data, empirical and simulated, using the
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data is superimposed on the data presented in Fig-
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Figure C.159: United States Office Computer Market,
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C.7.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.7.3. One of the issues of analysis, as mentioned in Sec-
tion C.7.7, is to determine the maximum Shannon probability for the time series presented in Figure C.139. Potentially,
this could be exploited with an aggressive fiscal strategy. Figure C.160 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probability
for the time series data presented in Figure C.139. Figure C.161 was constructed using tsunfairbrownian program,
which is also described in appendix B, with the maximum Shannon probability, and the time series data presented
in Figure C.139. This represents a “what if” the investment strategy was changed from a Shannon probability of
0.589554, as derived in Section C.7.5 to 0.782051. This process, essentially, extracts the random statistical data from
the time series presented in Figure C.139, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.
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If it is assumed that the time series data set, presented in Figure C.139, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of months that the United States Office
Computer Market movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.780645, as compared with the predicted value from the program tsshannonmax of 0.782051.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.7.1,
Figure C.142, it would appear that the United States Office Computer Market’s normalized increments are characterized
by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One consequence
of this is that a re-investment strategy that is to “wager” a fraction of 0.564102 of the rate of returns every month is
overly aggressive, since in the classical Brownian scenario, the maximum loss, in any month, was no more that what
was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2

A O # � �c Q Z A&% (C.296)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.140 of 0.033404, vs. an
“theoretical optimal” value of 0.564102 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
deviation, or about 15.865% per month, which is unacceptably high. However, it is not clear why the United States
Office Computer Market is running at a value of 0.033404, which seems very conservative. However, a re-investment
strategy of 0.033404 per month does not seem inconsistent with a failure rate, on the Fortune 500 list, which it is
inferred that the United States Office Computer Market is similar to, of about 50% in ten years, which corresponds
to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5 standard
deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate should
be, approximately, 0 þ 564102

2 þ 5 , compared with an operational value, from Figure C.142 of 0.033404.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the United States Office Computer Market are not running an optimal re-investment strategy.
This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal value
would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would be over
extended, and become financially destitute during market down turns, which is inevitable in a fractal time series as
presented in Figure C.139. It would seem that the natural selection process of the competitive environment would allow
only those companies that run near the optimally maximal value to survive, in the long run. One possible explanation,
foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that the gross
margins are less than the fraction 0.782051 of the rate of revenue returns, and thus could not accommodate such an
aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic market,
the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be many
competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally, those
that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.589554 is not just marginally lower
than the maximum Shannon probability of 0.782051. There is a significant disparity which is difficult to explain. It
would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
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and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.

C.7.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.141.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.140. These
values will be used in a fixed increment Brownian fractal analysis of the United States Office Computer Market, and
may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.7.6 and D.7.7. As a subjective evaluation of the
“quality” of the analysis of the United States Office Computer Market, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.139 from
Figure C.140, and the Shannon probability as calculated by counting the total number of months that the United States
Office Computer Market movement was positive, as presented in Section C.7.9:

u � BEDGFHGIKJ f 1

2
(C.297)

0 { 780645 � 0 þ 016771
0 þ 033404 f 1

2
(C.298)

0 { 780645 � 0 { 751033 (C.299)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 780645 � 0 { 751033 � 0 { 782051 (C.300)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.7.5, should be
compared. The four methods used were the mean of Figure C.140, the constant in the least squares approximation to
Figure C.140, the least squares exponential approximation to Figure C.139, and the logarithmic returns of Figure C.139,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 023995 � 0 { 032864 � 0 { 019653 � 0 { 023266 (C.301)

It is implied in Section C.7.5, Subsection C.7.5 and in Section C.7.8 that, a Brownian motion with fixed increments
fractal may “model” the United States Office Computer Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.302)
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0 { 033404 (2 L 0 { 780645 m 1) � 0 { 028983 (2 L 0 { 780645 m 1)

2 ó 0 { 780645 (1 m 0 { 780645)
(C.303)

0 { 033404 L 0 { 561290 � 0 { 028983 L 0 { 678199 (C.304)

0 { 018749 � 0 { 019656 (C.305)

and, equating to the mean:

0 { 016771 � 0 { 018749 � 0 { 019656 (C.306)

where, as in Equation C.299 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.139 from Figure C.140, and the Shannon probability as
calculated by counting the total number of months that the United States Office Computer Market movement was
positive, as presented in Section C.7.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the root
mean square value95, where the absolute value is presented in Figure C.141, and the root mean square value is presented
in Figure C.140:

0 { 024562 � 0 { 033404 (C.307)

Note, that if the United States Office Computer Market could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.139 from Figure C.140 should be zero. It is 0 { 022713.

C.8 United States Information Systems Market

For the analysis, the data was in the directory ../markets/information.systems96.
The data in this section is presented in tabular form in Section D.8.

C.8.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.8.1. Figure C.162 is a graph of the time series data
for the United States Information Systems Market.

Figure C.163 is a graph of the normalized increments of the time series data presented in Figure C.162. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.164 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.163. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns97.

95The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

96Data from the United States Department of Commerce, 1979—1994, by months, in millions of dollars, US.
97The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.162: United States Information Systems
Market, time series data.
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Figure C.163: United States Information Systems
Market, normalized increments of the time series data
presented in Figure C.162. The mean is 0.008052
with a standard deviation of 0.038579. The formula
for the least squares approximation is 0 { 010041 fm 0 { 000021 X , and the root mean squared value is
0.039311. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000021, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

Figure C.165 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.163. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
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Figure C.164: United States Information Systems
Market, absolute value of the normalized increments
of the time series data presented in Figure C.163.
The mean is 0.029745 with a standard deviation of
0.025769. The formula for the least squares approxi-
mation is 0 { 035145 f m 0 { 000057 X , and the root mean
square value, from Figure C.163, is 0.039311. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.163, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.165: United States Information Systems
Market, normalized histogram of the normalized
increments of the time series data shown in Fig-
ure C.163. The data has a mean of 0.008052, with a
standard deviation of 0.038579. The area under the
two curves is identical. The ê 2 value of the observed
and expected values of the two curves is 2.862000,
with a critical value of 42.557000.

presented in Figure C.165.
Figure C.166 is the statistical estimate for the data presented in Figure C.163, as derived by the program tsstatest,

which is briefly described in appendix B.
Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,

depending on the magnitude of the Shannon probability, uëA 0 { 560125, as derived in Section C.8.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set

Id: fraction.tex,v 0.0 1995/11/20 04:38:13 john Exp 297



C.8. UNITED STATES INFORMATION SYSTEMS MARKET

For a mean of 0.008010, with a confidence level of 0.900000
that the error did not exceed 0.000801, 6518 samples would be required.
(With 192 samples, the estimated error is 0.004667 = 58.261979 percent.)

For a standard deviation of 0.039311, with a confidence level of 0.900000
that the error did not exceed 0.003931, 136 samples would be required.
(With 192 samples, the estimated error is 0.003300 = 8.393859 percent.)

Figure C.166: United States Information Systems Market, statistical estimates of the normalized increments of the
time series shown in Figure C.163. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.163.

sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.167 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.163. In principle, if the distribution of the normalized increments presented in Figure C.165
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.168 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.163. In principle, if the distribution of the normalized increments presented in Figure C.165 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.169 is the range of values of the time series shown in Figure C.162. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.169
would be a square root function98. Figure C.170 is the deterministic map of the normalized increments of the time
series data shown in Figure C.163. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.165 would seem to indicate that the time series data for the United States Information Systems Market
represents a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the
Gaussian increments property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that
the time series data represents fractional Brownian motion.

C.8.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root

98Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.169 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.167: United States Information Systems
Market, normalized histogram of the first derivative
of the normalized increments of the time series data
shown in Figure C.163.
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Figure C.168: United States Information Systems
Market, normalized histogram of second derivative
of the the normalized increments of the time series
data shown in Figure C.163.

mean square of the instantaneous fraction of change99. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.171 is the instantaneous value of the root mean square of the normalized increments for the United
States Information Systems Market, and Figure C.172 is the instantaneous Shannon probability for the normalized
increments.

C.8.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.8.4. Figure C.173 is a graph of the logistic
function estimates of the time series data for the United States Information Systems Market. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is

99The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.169: United States Information Systems
Market, range of the time series data shown in Fig-
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Figure C.170: United States Information Systems
Market, deterministic map of the normalized incre-
ments of the time series data shown in Figure C.163.

required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies100. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.173 is a graph of the logistic function for the time series data presented in Figure C.162. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.163. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.163. Figure C.174 is the same graph, but
with the time scale expanded by a factor of two.

C.8.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.8.5. Figure C.175 is a graph of the Hurst coefficient
data time series data shown in Figure C.162. The slope of the graph is the Hurst coefficient. The data for this figure

100For example, in Figures C.173 and C.174, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.8.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.171: United States Information Systems
Market, instantaneous value of the root mean square
of the normalized increments, provided by running
the program tsinstant with the -r option on the data
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Figure C.172: United States Information Systems
Market, instantaneous value of the Shannon probabil-
ity of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.162.

was produced by the program tshurst, which is described briefly in Appendix B.
Figure C.176 is a graph of the H parameter data for the normalized increments of the time series data shown in

Figure C.163. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.
The approximately linear slope of the graph in Figure C.175 implies that the variance of the rate of revenue returns,

(per month,) in the United States Information Systems Market, k d X 2 m X 1 i , over a period of time is proportional to the
period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time101, X , U d X�i A b0c O�d 1 � ó 2 X�i which is

101It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)
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Figure C.173: United States Information Systems
Market, logistic function estimates, provided by run-
ning the tslsq program on the normalized increments
presented in Figure C.163 with the -p option. These
parameters were used as arguments to the tsdlogistic
program.
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Figure C.174: United States Information Systems
Market, logistic function estimates of Figure C.173
with the time scale expanded by a factor of two.

approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.179, and, C.180 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the United States Information Systems Market for the near term
and far term, respectively [Pet91, pp. 83-84]102. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.175, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.710108, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.308)

102The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 710108 (C.309)ü ( X 2 m X 1)1 þ 420216 (C.310)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past103. A Hurst coefficient of 0.710108, (for the near future, and 0.633980 for the distant future.) implies

103Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.8.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Information Systems Market. See
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that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
71.010800% [Pet91, pp. 66] for the near future, and 0.633980 for the distant future. Likewise, there is a 71.010800%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 71.010800% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Information Systems
Market are over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ
is the Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda, U B ,
is:

U B ( g ) A ÿ � (C.311)A 0 { 710108
�

(C.312)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.163, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 008052 L 100 percent, on the average, with a standard deviation of
0 { 038579 L 100 percent, and a root mean square error value of 0 { 039311 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.313)ü ( X 2 m X 1)0 þ 710108 (C.314)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.314 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.315)ü � ( X 2 m X 1) (C.316)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.317)

also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 304



C.8. UNITED STATES INFORMATION SYSTEMS MARKET

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time104.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.318)

ü �
( cjX )c 0 þ 710108

(C.319)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.176, to provide a least squares
approximation to the H parameter for the United States Information Systems Market. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.138822 for the near future, and 0.419126 for the distant future.

Figures C.175 and C.176 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.163. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.163, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.177 and C.178 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Note that the H parameter data is not linear, and the long term predictability is better than the short term predictability,
indicating that the least squares approximation is low.

C.8.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.8.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.164. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.163. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Information Systems Market, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the United States Information Systems Market, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.163, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 008052 f 1)
ln (2)

A 0 { 011570 (C.320)

104To be precise, it is actually asymptotically proportional to � 1
2
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graph is the Hurst coefficient, and is 0.707509 for the
near term, and 0.659558 for the far term.
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ries data shown in Figure C.162 The slope of the graph
is the H parameter, and is 0.095368 for the near term,
and 0.365324 for the far term.

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.163, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 010041 f 1)
ln (2)

A 0 { 014414 (C.321)

Note that if the mean is not constant in Figure C.163, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.162:

� V_X�Z A 0 { 007623 (C.322)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.162:
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� V_X�Z A 0 { 010456 (C.323)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.8.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 010456 � (C.324)

therefore: Û
(U ) A 0 { 010456 (C.325)

and, tsshannon 0.010456 gives: Û
(0 { 560125) A 0 { 010456 (C.326)

therefore:

2 � (0 þ 560125) A 20 þ 010456 (C.327)A 1 { 007274 (C.328)A 0 { 727387% (C.329)

and:

2U m 1 A (2 L 0 { 560125) m 1 (C.330)A 0 { 120250 (C.331)A 12 { 025000% (C.332)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Information Systems Market executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 12.025000% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
87.975000% will be held in “reserve” with a 56.012500% chance of making twice the 12.025000% back, (and a
43.987500% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 0.727387%, or a doubling of its rate of revenue returns, (per month,) in 95.638868 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
12.025000% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.727387%, per month, on average.

Note that the metrics presented in this section are representative of the United States Information Systems Market as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 12.025000% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Information Systems Market’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion
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of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 0.727387% per month.

As another simple example, a company re-invests 12.025000% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 12.025000% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.727387% per month.

As an example of “product portfolio” management, suppose a company re-invests 12.025000% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 12 { 025000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 12 { 025000 percent for the second product, implying that the company should diversify its
product line105. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 12 { 025000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the United States Information Systems Market, as a standard bench mark, then the optimal number will be 1

0 þ 120250 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.163, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 12.025000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 12.025000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

Observations on the Fixed Increment Approximation for Fiscal Strategy

A re-investment of 12.025000 of the rate of revenue returns per month does not seem inconsistent with the industry
averages, since it includes investments in research and development, additional manufacturing infrastructure, adver-
tising, etc. Additionally, a product mix of 12.025000% “proprietary” and the remainder “industry standard” products
seems consistent with the industry analyst “20/80” rule. The value of one standard deviation, 84 { 13%, of the revenue
return rate being generated by 1

0 þ 120250 products seems consistent with the industry, also.

105The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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C.8.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Information Systems
Market, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the United States Information Systems Market time series is 0.008052, and
0.039311respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
5.210454.

If this value seems consistent number of companies in the United States Information Systems Market, within the
assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence
that the companies participating in the United States Information Systems Market are operating optimally, and the
“average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.544866, which
would be the value which should be used in Section C.8.5 for each participating company if market expansion was to
be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.8.5 is greater than
the average Shannon probability for the companies participating in the United States Information Systems Market, as
derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.8.5.
The maximum exploitability for the United States Information Systems Market is derived in Section C.8.9, but it is
probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Information
Systems Market is 0.544866, with several alternative solutions listed in the previous paragraph. However, these should
be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.602414 in the United States
Information Systems Market. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should
be:

O A 2 uxm 1 (C.333)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Information Systems Market would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.8.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.164.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.163. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Information
Systems Market, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.8.5, is derived from the United States
Information Systems Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.8.9.

An additional exploitable strategy may be time itself. Equations C.310, C.314, and, C.312, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Information
Systems Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed
as an operational necessity in strategic planning and project management. Figures C.179, and, C.180 compare methods
of approximation of the “forecastability” of rate of revenue returns in the United States Information Systems Market for
the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
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decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Information Systems Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an
even chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is
assumed that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if
all three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.106” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.179, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.312, 0 { 710108

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.310, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

Observations on the Fixed Increment Approximation for Operational Strategy

As an interesting interpretation of Figure C.180, and evaluating the approximation 1! � at 60 months gives a probability
that the market will still have the same agenda of about 0 { 12909945, or about 1 in 8. This is commensurate with
numbers from the venture community107. Of course new venture backed companies fail for many reasons, but market
appropriateness to product portfolio 60 months in the future may be a major contributor. Additionally, the success rate
of development projects of 8 month duration, which have a market success rate of about 1 in 3, seems consistent with

1!
3
A 0 { 353553391. Naturally, projects fail in the market for many reasons, but market appropriateness, in a dynamic

market environment may be a major contributor to failure.
As mentioned in Section C.8.4, Equation C.312, and the preceeding section, approximately 3 times the value where

0 { 710108
� A 0 { 5 could be interpreted as an approximation to the “average” product life cycle. This seems consistent

with the 6 to 12 month life cycles quoted by many industry analyst. In addition, maintaining inventory levels that do
not exceed the anticipated requirements of ln 0 þ 5

ln 0 þ 710108 many months seems consistent with the author’s experience in the
industry.

C.8.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.8.9. Figure C.181 represents a constructional
simulation of the time series data presented in Figure C.162. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.

106For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

107For example, see “IEEE Engineering Management Review,” Volume 23 Number 3, Fall 1995, pp. 83
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Figure C.179: United States Information Systems
Market, “forecastability” of near term rate of rev-
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used as a reliable metric of “forecastability” of the
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Figure C.180: United States Information Systems
Market, “forecastability” of far term rate of revenue
returns. Although the error function is the most ac-
curate, for the far term, 1! � may be used as a reliable
metric of “forecastability” of the rate of revenue re-
turns.

The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.163. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.163 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.182
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.165.

C.8.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.8.3. One of the issues of analysis, as mentioned in Sec-
tion C.8.7, is to determine the maximum Shannon probability for the time series presented in Figure C.162. Potentially,
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Figure C.182: United States Information Systems
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presented in Figure C.165. The area under the four
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this could be exploited with an aggressive fiscal strategy. Figure C.183 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probability
for the time series data presented in Figure C.162. Figure C.184 was constructed using tsunfairbrownian program,
which is also described in appendix B, with the maximum Shannon probability, and the time series data presented
in Figure C.162. This represents a “what if” the investment strategy was changed from a Shannon probability of
0.560125, as derived in Section C.8.5 to 0.604167. This process, essentially, extracts the random statistical data from
the time series presented in Figure C.162, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and

Id: maximum.tex,v 0.0 1995/11/20 04:38:13 john Exp 312



C.8. UNITED STATES INFORMATION SYSTEMS MARKET

scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.
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Figure C.183: United States Information Systems
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enue returns, per month, occurs at a Shannon proba-
bility of 0.604167.
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Figure C.184: United States Information Systems
Market, maximum rate of revenue returns, per month,
at a Shannon probability, of 0.604167, corresponding
to a “wager” fraction of 0.208334.

If it is assumed that the time series data set, presented in Figure C.162, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Information
Systems Market movement was positive, and dividing by the total number of timescales represented in the time series.
This quotient is 0.602094, as compared with the predicted value from the program tsshannonmax of 0.604167.

Observations on the Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

Note that these simulations are base on a very, perhaps overly, simplified model. For example, from Section C.8.1,
Figure C.165, it would appear that the United States Information Systems Market’s normalized increments are char-
acterized by fractional Brownian motion—but the simulations used classical Brownian motion as the model. One
consequence of this is that a re-investment strategy that is to “wager” a fraction of 0.208334 of the rate of returns every
month is overly aggressive, since in the classical Brownian scenario, the maximum loss, in any month, was no more
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that what was “wagered.” However, in the fractional Brownian scenario, much more can be lost. From Equation 2.60,To}	~c Q Z 2
A O$# � �c Q Z A&% (C.334)

where, under the optimum classical Brownian scenario, % is unity, or Te}	~ A c Q Z 2. Notice that, since O A c Q Z ,
whether the scenario is optimal or not, that the operational “wager” fraction, from Figure C.163 of 0.039311, vs. an
“theoretical optimal” value of 0.208334 seems overly conservative. Additionally, notice that, at least in principle,
the chance of failure in the fractional Brownian scenario, which is more accurate, would correspond to 1 standard
deviation, or about 15.865% per month, which is unacceptably high. However, it is not clear why the United States
Information Systems Market is running at a value of 0.039311, which seems very conservative. However, a re-
investment strategy of 0.039311 per month does not seem inconsistent with a failure rate, on the Fortune 500 list,
which it is inferred that the United States Information Systems Market is similar to, of about 50% in ten years, which
corresponds to d 1 m U M i 120 � 0 { 5, or U M , the probability of failure, is 0 { 005759576, which is, approximately, 2.5
standard deviations, meaning that to be consistent with the large companies in the Fortune 500, the re-investment rate
should be, approximately, 0 þ 208334

2 þ 5 , compared with an operational value, from Figure C.165 of 0.039311.
An interesting, and intriguing, interpretation and discussion of the maximum Shannon probability, is an explanation

as to why the companies in the United States Information Systems Market are not running an optimal re-investment
strategy. This seems enigmatic, since those companies that run, on a long term average, below the optimally maximal
value would seem to be eclipsed by those that didn’t. And those that run above the optimally maximal value would
be over extended, and become financially destitute during market down turns, which is inevitable in a fractal time
series as presented in Figure C.162. It would seem that the natural selection process of the competitive environment
would allow only those companies that run near the optimally maximal value to survive, in the long run. One possible
explanation, foremost, is that the analytical methodology presented herein is inappropriate. Another explanation is that
the gross margins are less than the fraction 0.604167 of the rate of revenue returns, and thus could not accommodate
such an aggressive re-investment strategy. If this is the case, then it presents an intriguing issue. If, in a capitalistic
market, the natural outcome of the competitive situation, according to game-theoretic analysis, is that there will be
many competitors, each making minimal gross margins, then how do the companies grow their markets? Naturally,
those that run the most efficient will have lower costs, making larger percentage of rate of revenue returns re-investment
possible. Yet another interpretation is that the number of competitors would grow at an exponential rate, but all of them
would make minimal returns. However, an operational Shannon probability of 0.560125 is not just marginally lower
than the maximum Shannon probability of 0.604167. There is a significant disparity which is difficult to explain. It
would seem that the game-theoretic eventual outcome of a competitive market place would be a solution that hinders
growth, wealth and jobs creation, etc., which does not seem consistent with capitalistic theory. On the other hand, is
there an optimum number of competitors in a market place, where the gross margins can be higher, permitting wealth
and job creation, and also a competitive situation? If this analysis is correct, and that should be subject to scrutiny,
then it would appear that this is the case. But this brings up another issue—that of taxation, and other contributions to
the social welfare function. If there is an optimum number of competitors in the market place, that maximizes wealth
and job creation, then, perhaps by lemma, there is also an optimal value of taxation rate, and other contributions to the
social welfare function, that will permit maximal industrial growth, and thus maximal growth in the tax base. But this
would seem to be inconsistent with the work of Kenneth Arrow and the so called Impossibility Theorem, which states
that such optimizations can not be determined because the ordering of priorities are intransitive. All very perplexing,
since the simulation of the maximum Shannon probability in the next section seems to indicate that such an aggressive
re-investment strategy is, indeed, feasible.

Yet another possibility for the industry not running at maximum Shannon probability is the high cost of expansion
of operations. Some of these industries require very sophisticated manufacturing processes, which have high barrier
costs.

Additionally, as mentioned in both [BdL95, pp. 29], and [Art88, pp. 8], optimal efficiency may not be attainable
in increasing-return economic scenarios.
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C.8.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.164.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.163. These
values will be used in a fixed increment Brownian fractal analysis of the United States Information Systems Market,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.8.6 and D.8.7. As a subjective evaluation of the
“quality” of the analysis of the United States Information Systems Market, from Chapter 3, Equation 3.8, and using
the mean and root mean square values of the normalized increments of the time series data presented in Figure C.162
from Figure C.163, and the Shannon probability as calculated by counting the total number of months that the United
States Information Systems Market movement was positive, as presented in Section C.8.9:

u � BEDGFHGIKJ f 1

2
(C.335)

0 { 602094 � 0 þ 008052
0 þ 039311 f 1

2
(C.336)

0 { 602094 � 0 { 602414 (C.337)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 602094 � 0 { 602414 � 0 { 604167 (C.338)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.8.5, should be
compared. The four methods used were the mean of Figure C.163, the constant in the least squares approximation to
Figure C.163, the least squares exponential approximation to Figure C.162, and the logarithmic returns of Figure C.162,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 011570 � 0 { 014414 � 0 { 007623 � 0 { 010456 (C.339)

It is implied in Section C.8.5, Subsection C.8.5 and in Section C.8.8 that, a Brownian motion with fixed increments
fractal may “model” the United States Information Systems Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.340)

0 { 039311 (2 L 0 { 602094 m 1) � 0 { 038579 (2 L 0 { 602094 m 1)

2 ó 0 { 602094 (1 m 0 { 602094)
(C.341)

0 { 039311 L 0 { 204188 � 0 { 038579 L 0 { 208583 (C.342)

0 { 008027 � 0 { 008047 (C.343)

and, equating to the mean:

0 { 008052 � 0 { 008027 � 0 { 008047 (C.344)

where, as in Equation C.337 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.162 from Figure C.163, and the Shannon probability as
calculated by counting the total number of months that the United States Information Systems Market movement was
positive, as presented in Section C.8.9.
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As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value108, where the absolute value is presented in Figure C.164, and the root mean square value is
presented in Figure C.163:

0 { 029745 � 0 { 039311 (C.345)

Note, that if the United States Information Systems Market could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.162 from Figure C.163 should be zero. It is 0 { 025769.

C.9 Dow Jones Average

For the analysis, the data was in the directory ../markets/dj109.
The data in this section is presented in tabular form in Section D.9. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the value, or price, of the stocks in the Dow Jones Average, and not stock
yield, or dividends. This is included for comparative purposes.

C.9.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.9.1. Figure C.185 is a graph of the time series data
for the Dow Jones Average.

Figure C.186 is a graph of the normalized increments of the time series data presented in Figure C.185. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.187 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.186. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns110.

Figure C.188 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.186. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.188.

Figure C.189 is the statistical estimate for the data presented in Figure C.186, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, uëA 0 { 563735, as derived in Section C.9.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set

108The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

109Data from Dow Jones News Information Retrieval Service, 1981—1994, by months, as an index.
110The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.185: Dow Jones Average, time series data.
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Figure C.186: Dow Jones Average, normalized in-
crements of the time series data presented in Fig-
ure C.185. The mean is 0.008836 with a standard
deviation of 0.034803. The formula for the least
squares approximation is 0 { 009746 f m 0 { 000011 X ,
and the root mean squared value is 0.035806. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000011, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.190 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.186. In principle, if the distribution of the normalized increments presented in Figure C.188
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Figure C.187: Dow Jones Average, absolute value
of the normalized increments of the time series data
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with a standard deviation of 0.024985. The formula
for the least squares approximation is 0 { 032502 fm 0 { 000082 X , and the root mean square value, from
Figure C.186, is 0.035806. The graph, labeled “data-
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and “data.tsfraction.tsavg” is the running average of
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superimposed here for convenience. This graph is the
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Figure C.188: Dow Jones Average, normalized his-
togram of the normalized increments of the time series
data shown in Figure C.186. The data has a mean of
0.008836, with a standard deviation of 0.034803. The
area under the two curves is identical. The ê 2 value
of the observed and expected values of the two curves
is 8.043000, with a critical value of 42.557000.

is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.191 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.186. In principle, if the distribution of the normalized increments presented in Figure C.188 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.
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For a mean of 0.008784, with a confidence level of 0.900000
that the error did not exceed 0.000878, 4496 samples would be required.
(With 168 samples, the estimated error is 0.004544 = 51.731212 percent.)

For a standard deviation of 0.035806, with a confidence level of 0.900000
that the error did not exceed 0.003581, 136 samples would be required.
(With 168 samples, the estimated error is 0.003213 = 8.973412 percent.)

Figure C.189: Dow Jones Average, statistical estimates of the normalized increments of the time series shown in
Figure C.186. The table was produced with the tsstatest program, and illustrates the size of the data set required for a
confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.186.

Figure C.192 is the range of values of the time series shown in Figure C.185. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.192
would be a square root function111. Figure C.193 is the deterministic map of the normalized increments of the time
series data shown in Figure C.186. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.188 would seem to indicate that the time series data for the Dow Jones Average represents a cumulative
sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments property
of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data represents
fractional Brownian motion.

C.9.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change112. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.194 is the instantaneous value of the root mean square of the normalized increments for the Dow Jones
Average, and Figure C.195 is the instantaneous Shannon probability for the normalized increments.

C.9.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.9.4. Figure C.196 is a graph of the logistic function
estimates of the time series data for the Dow Jones Average. The reader is cautioned that these graphs are constructed

111Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.192 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

112The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.190: Dow Jones Average, normalized his-
togram of the first derivative of the normalized incre-
ments of the time series data shown in Figure C.186.
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Figure C.191: Dow Jones Average, normalized his-
togram of second derivative of the the normalized
increments of the time series data shown in Fig-
ure C.186.

using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate prediction of the
logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to produce a practical fit
to the data. In addition, there are numerical stability issues with logistic function methodologies113. The methodology
should be regarded as “fragile.” It is included for completeness.

Figure C.196 is a graph of the logistic function for the time series data presented in Figure C.185. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.186. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.186. Figure C.197 is the same graph, but
with the time scale expanded by a factor of two.

113For example, in Figures C.196 and C.197, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.9.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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C.9.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.9.5. Figure C.198 is a graph of the Hurst coefficient
data time series data shown in Figure C.185. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.199 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.186. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.198 implies that the variance of the rate of revenue
returns, (per month,) in the Dow Jones Average, k d X 2 m X 1 i , over a period of time is proportional to the period of
time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time114, X , U d X�i A b0c O�d 1 � ó 2 X�i which

114It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
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Figure C.195: Dow Jones Average, instantaneous
value of the Shannon probability of the normalized
increments, provided by running the program tsin-
stant with the -s option on the data presented in Fig-
ure C.185.

is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.202, and, C.203 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the Dow Jones Average for the near term and far term,
respectively [Pet91, pp. 83-84]115. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data, presented
in Figure C.198, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.891560, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.346)

153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

115The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.196: Dow Jones Average, logistic function
estimates, provided by running the tslsq program on
the normalized increments presented in Figure C.186
with the -p option. These parameters were used as
arguments to the tsdlogistic program.

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350

R
ev

en
ue

 R
at

eí

Time

Discreet Logistic Function Time Series Data

"data"
"data.tsfraction.tslsq-p.tsdlogistic2"

Figure C.197: Dow Jones Average, logistic function
estimates of Figure C.196 with the time scale ex-
panded by a factor of two.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 891560 (C.347)ü ( X 2 m X 1)1 þ 783120 (C.348)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past116. A Hurst coefficient of 0.891560, (for the near future, and 0.566146 for the distant future.) implies

116Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.9.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Dow Jones Average. See also [Pet91, pp. 67, 83-84]
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Figure C.199: Dow Jones Average, H parameter data
for the normalized increments of the time series data
shown in Figure C.186 The slope of the graph is the
H parameter.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
89.156000% [Pet91, pp. 66] for the near future, and 0.566146 for the distant future. Likewise, there is a 89.156000%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 89.156000% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the Dow Jones Average are over time,
since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst coefficient,
or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.349)A 0 { 891560
�

(C.350)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.186, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would

and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 008836 L 100 percent, on the average, with a standard deviation of
0 { 034803 L 100 percent, and a root mean square error value of 0 { 035806 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.351)ü ( X 2 m X 1)0 þ 891560 (C.352)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.352 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.353)ü � ( X 2 m X 1) (C.354)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.355)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time117.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.356)

ü �
( cjX )c 0 þ 891560

(C.357)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.199, to provide a least squares
approximation to the H parameter for the Dow Jones Average. The superimposed least squares approximation on
the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.668492 for the near future, and 0.504399 for the distant future.

Figures C.198 and C.199 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.186. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.186, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.200 and C.201 was made using the -d option.

117To be precise, it is actually asymptotically proportional to � 1
2

Id: fiscal.tex,v 0.0 1995/11/20 04:38:13 john Exp 325



C.9. DOW JONES AVERAGE

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

lo
g 

(R
 / 

S
)�

log (time)

Hurst Coefficient Graphs

"data.tsfraction.tshurst-d"
-0.461101 + 0.680456 * t
-0.905562 + 0.894610 * t

Figure C.200: Dow Jones Average, traditional Hurst
coefficient data for the time series data shown in Fig-
ure C.185. The slope of the graph is the Hurst coeffi-
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for the far term.
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C.9.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.9.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.187. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.186. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Dow Jones Average, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Dow Jones Average, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
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Chapter B, and is presented in Figure C.186, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 008836 f 1)
ln (2)

A 0 { 012692 (C.358)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.186, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 009746 f 1)
ln (2)

A 0 { 013992 (C.359)

Note that if the mean is not constant in Figure C.186, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.185:

� V_X�Z A 0 { 014084 (C.360)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.185:

� V_X�Z A 0 { 011753 (C.361)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.9.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 011753 � (C.362)

therefore: Û
(U ) A 0 { 011753 (C.363)

and, tsshannon 0.011753 gives: Û
(0 { 563735) A 0 { 011753 (C.364)

therefore:

2 � (0 þ 563735) A 20 þ 011753 (C.365)A 1 { 008180 (C.366)A 0 { 817983% (C.367)

and:

2U m 1 A (2 L 0 { 563735) m 1 (C.368)A 0 { 127470 (C.369)A 12 { 747000% (C.370)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Dow
Jones Average executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services
by 12.747000% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 87.253000% will
be held in “reserve” with a 56.373500% chance of making twice the 12.747000% back, (and a 43.626500% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
0.817983%, or a doubling of its rate of revenue returns, (per month,) in 85.084659 months.

Id: fiscal.tex,v 0.0 1995/11/20 04:38:13 john Exp 327



C.9. DOW JONES AVERAGE

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
12.747000% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.817983%, per month, on average.

Note that the metrics presented in this section are representative of the Dow Jones Average as an aggregate whole,
and may or may not be accurate representations for any particular participant in the environment. Of interest to the
participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 12.747000% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the Dow
Jones Average’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank, and
the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 0.817983% per month.

As another simple example, a company re-invests 12.747000% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 12.747000% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.817983% per month.

As an example of “product portfolio” management, suppose a company re-invests 12.747000% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 12 { 747000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 12 { 747000 percent for the second product, implying that the company should diversify its
product line118. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 12 { 747000%, and the investment in each product should be made at
a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of
products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Dow
Jones Average, as a standard bench mark, then the optimal number will be 1

0 þ 127470 . Note that this is a “theoretical”
value, since not all products are “typical,” and there may be strategic reasons, for example product leveraging, that
may increase the number of products above the optimum. However, most of the revenue should come from the optimal
number of products, since having more products will decrease the amount of the potential investment in each product,
and having less than the optimum number of products will increase the risk that many of the products could suffer a
“down market” concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal
“hedging of bets,” in product portfolio strategy, and considering the graph of the normalized increments presented
in Figure C.186, if the organization is running optimally, then these products will generate, at least in principle, one
standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are
approximations, and the values are an approximation to a, probably, complex process, and appropriate scrutiny should
be exercised before making specific projections. As yet another example of “product portfolio” management, consider

118The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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the issue of product mix. In this interpretation, 12.747000% of the product manufactured should be “proprietary,”
while the rest is “industry standard.” As yet another possibility, 12.747000% of the product manufactured should be
predatory into new markets, and the remainder in markets that are “traditional” for the company.

C.9.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Dow Jones Average, and uses the
method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square, c Q Z*� ��� , of the
normalized increments of the Dow Jones Average time series is 0.008836, and 0.035806respectively, the number of
companies participating in the market can be calculated by Equation 2.109 to be 6.891981.

If this value seems consistent number of companies in the Dow Jones Average, within the assumptions outlined in
Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the companies
participating in the Dow Jones Average are operating optimally, and the “average” Shannon probability, u for each
participating company would be, using Equation 2.110, 0.547000, which would be the value which should be used in
Section C.9.5 for each participating company if market expansion was to be consistent with the rest of the industry.
However, if the Shannon probability derived in Section C.9.5 is greater than the average Shannon probability for the
companies participating in the Dow Jones Average, as derived in this section, then the market would, possibly, be
exploitable with the fiscal strategy outlined in Section C.9.5. The maximum exploitability for the Dow Jones Average
is derived in Section C.9.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Dow Jones Average is 0.547000,
with several alternative solutions listed in the previous paragraph. However, these should be contrasted to the Shannon
probability that maximizes a company’s P&L which is 0.623387 in the Dow Jones Average. In all cases, the fraction
of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.371)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Dow Jones Average would tend to indicate that the companies participating in the market
have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.9.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.187.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.186. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Dow Jones Average, and may,
or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.9.5, is derived from the Dow Jones
Average metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be exploitable,
see Section C.9.9.

An additional exploitable strategy may be time itself. Equations C.348, C.352, and, C.350, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Dow Jones Average, becomes
obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational necessity
in strategic planning and project management. Figures C.202, and, C.203 compare methods of approximation of the
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“forecastability” of rate of revenue returns in the Dow Jones Average for the near term and far term [Pet91, pp. 83-84],
respectively. As a general rule, caution must be exercised when making decisions that will span a time interval larger
than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond this time interval,
the chances increase that the competitive and market forces will alter the market environment in a possibly detrimental
unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development, manufacturing, and
distribution of products and services that are consistent with this temporal agenda. Automation of these processes, if
executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Dow Jones Average.
When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate of revenue
returns for the product or service will change in a detrimental fashion. If it is assumed that a product or service life
cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals are equal,
the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Although probably not an accurate prediction of product or service life cycle, the technique
may be used as a conceptual approximation to the dynamics of “market windows.119” The conceptual approximation
will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.202, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.350, 0 { 891560

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.348, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.9.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.9.9. Figure C.204 represents a constructional
simulation of the time series data presented in Figure C.185. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.186. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.186 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.205
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.188.

C.9.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strategy

The data in this section is presented in tabular form in Section D.9.3. One of the issues of analysis, as mentioned in Sec-
tion C.9.7, is to determine the maximum Shannon probability for the time series presented in Figure C.185. Potentially,
this could be exploited with an aggressive fiscal strategy. Figure C.206 is a graph of the output of the tsshannonmax
program, which is described briefly in appendix B. The maximum of this function is the maximum Shannon probability
for the time series data presented in Figure C.185. Figure C.207 was constructed using tsunfairbrownian program,

119For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.202: Dow Jones Average, “forecastability”
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error function is the most accurate, for the near term,ÿ � A 0 { 891560 � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.
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Figure C.203: Dow Jones Average, “forecastability”
of far term rate of revenue returns. Although the error
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be used as a reliable metric of “forecastability” of the
rate of revenue returns.

which is also described in appendix B, with the maximum Shannon probability, and the time series data presented
in Figure C.185. This represents a “what if” the investment strategy was changed from a Shannon probability of
0.563735, as derived in Section C.9.5 to 0.636905. This process, essentially, extracts the random statistical data from
the time series presented in Figure C.185, and constructs a new time series, using the random statistical data, with a
different investment strategy. The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian
fractal with fixed increments. The “quality” of such a reconstruction should be subject to adequate scepticism and
scrutiny since, in all probability, the increments in the original data represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.185, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of months that the Dow Jones Average
movement was positive, and dividing by the total number of timescales represented in the time series. This quotient is
0.634731, as compared with the predicted value from the program tsshannonmax of 0.636905.
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The empirical data has a mean of 0.008836, with a
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simulated data has a mean of 0.009922 with a standard
deviation of 0.034508. This data is superimposed on
the data presented in Figure C.188. The area under
the four curves is identical.

C.9.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.187.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.186. These
values will be used in a fixed increment Brownian fractal analysis of the Dow Jones Average, and may, or may not,
provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.9.6 and D.9.7. As a subjective evaluation of the
“quality” of the analysis of the Dow Jones Average, from Chapter 3, Equation 3.8, and using the mean and root mean
square values of the normalized increments of the time series data presented in Figure C.185 from Figure C.186, and
the Shannon probability as calculated by counting the total number of months that the Dow Jones Average movement
was positive, as presented in Section C.9.9:
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Figure C.207: Dow Jones Average, maximum rate of
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0.273810.

u � BEDGFHGIKJ f 1

2
(C.372)

0 { 634731 � 0 þ 008836
0 þ 035806 f 1

2
(C.373)

0 { 634731 � 0 { 623387 (C.374)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 634731 � 0 { 623387 � 0 { 636905 (C.375)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.9.5, should be
compared. The four methods used were the mean of Figure C.186, the constant in the least squares approximation to
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Figure C.186, the least squares exponential approximation to Figure C.185, and the logarithmic returns of Figure C.185,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 012692 � 0 { 013992 � 0 { 014084 � 0 { 011753 (C.376)

It is implied in Section C.9.5, Subsection C.9.5 and in Section C.9.8 that, a Brownian motion with fixed increments
fractal may “model” the Dow Jones Average. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.377)

0 { 035806 (2 L 0 { 634731 m 1) � 0 { 034803 (2 L 0 { 634731 m 1)

2 ó 0 { 634731 (1 m 0 { 634731)
(C.378)

0 { 035806 L 0 { 269461 � 0 { 034803 L 0 { 279811 (C.379)

0 { 009648 � 0 { 009738 (C.380)

and, equating to the mean:

0 { 008836 � 0 { 009648 � 0 { 009738 (C.381)

where, as in Equation C.374 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.185 from Figure C.186, and the Shannon probability as
calculated by counting the total number of months that the Dow Jones Average movement was positive, as presented
in Section C.9.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value120, where the absolute value is presented in Figure C.187, and the root mean square value is
presented in Figure C.186:

0 { 025721 � 0 { 035806 (C.382)

Note, that if the Dow Jones Average could be “modeled” as a Brownian motion with fixed increments fractal,
then the standard deviation of the absolute value of the normalized increments of the time series data presented in
Figure C.185 from Figure C.186 should be zero. It is 0 { 024985.

C.10 Cirrus Logic Stock

For the analysis, the data was in the directory ../markets/crus121.
The data in this section is presented in tabular form in Section D.10. Note that in this analysis, the rate of

revenue returns means the increase or decrease in the cumulative sum of the Cirrus Logic Stock. This is included for
“theoretical” comparative purposes, and has no meaning, unless it is considered as a “future.”

120The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

121Cirrus Logic stock price, November 15, 1994, through April 8, 1996, inclusive. The data is by days.
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C.10.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.10.1. Figure C.208 is a graph of the time series data
for the Cirrus Logic Stock.

Figure C.209 is a graph of the normalized increments of the time series data presented in Figure C.208. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.210 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.209. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns122.

Figure C.211 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.209. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.211.

Figure C.212 is the statistical estimate for the data presented in Figure C.209, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 521329, as derived in Section C.10.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.213 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.209. In principle, if the distribution of the normalized increments presented in Figure C.211
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.214 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.209. In principle, if the distribution of the normalized increments presented in Figure C.211 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.215 is the range of values of the time series shown in Figure C.208. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.215
would be a square root function123. Figure C.216 is the deterministic map of the normalized increments of the time
series data shown in Figure C.209. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.211 would seem to indicate that the time series data for the Cirrus Logic Stock represents a cumulative
sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments property
of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data represents
fractional Brownian motion.

122The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

123Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.215 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.208: Cirrus Logic Stock, time series data.
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Figure C.209: Cirrus Logic Stock, normalized in-
crements of the time series data presented in Fig-
ure C.208. The mean is 0.002031 with a standard
deviation of 0.046039. The formula for the least
squares approximation is 0 { 010587 f m 0 { 000054 X ,
and the root mean squared value is 0.046012. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000054, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

C.10.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
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Figure C.210: Cirrus Logic Stock, absolute value of
the normalized increments of the time series data pre-
sented in Figure C.209. The mean is 0.030075 with a
standard deviation of 0.034876. The formula for the
least squares approximation is 0 { 023205 f 0 { 000043 X ,
and the root mean square value, from Figure C.209, is
0.046012. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized incre-
ments presented in Figure C.209, superimposed here
for convenience. This graph is the absolute value of
the fraction of change in the time series, as a function
of time.
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Figure C.211: Cirrus Logic Stock, normalized his-
togram of the normalized increments of the time se-
ries data shown in Figure C.209. The data has a mean
of 0.002031, with a standard deviation of 0.046039.
The area under the two curves is identical. The ê 2

value of the observed and expected values of the two
curves is 4.817000, with a critical value of 42.557000.

for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change124. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the

124The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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For a mean of 0.002025, with a confidence level of 0.900000
that the error did not exceed 0.000202, 139735 samples would be required.
(With 321 samples, the estimated error is 0.004224 = 208.640688 percent.)

For a standard deviation of 0.046012, with a confidence level of 0.900000
that the error did not exceed 0.004601, 136 samples would be required.
(With 321 samples, the estimated error is 0.002987 = 6.491719 percent.)

Figure C.212: Cirrus Logic Stock, statistical estimates of the normalized increments of the time series shown in
Figure C.209. The table was produced with the tsstatest program, and illustrates the size of the data set required for a
confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.209.

Shannon probability of the instantaneous fraction of change.
Figure C.217 is the instantaneous value of the root mean square of the normalized increments for the Cirrus Logic

Stock, and Figure C.218 is the instantaneous Shannon probability for the normalized increments.

C.10.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.10.4. Figure C.219 is a graph of the logistic function
estimates of the time series data for the Cirrus Logic Stock. The reader is cautioned that these graphs are constructed
using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate prediction of the
logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to produce a practical fit
to the data. In addition, there are numerical stability issues with logistic function methodologies125. The methodology
should be regarded as “fragile.” It is included for completeness.

Figure C.219 is a graph of the logistic function for the time series data presented in Figure C.208. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.209. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.209. Figure C.220 is the same graph, but
with the time scale expanded by a factor of two.

C.10.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.10.5. Figure C.221 is a graph of the Hurst coefficient
data time series data shown in Figure C.208. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.222 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.209. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.221 implies that the variance of the rate of revenue returns,
(per day,) in the Cirrus Logic Stock, k d X 2 m X 1 i , over a period of time is proportional to the period of time raised to twice
the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative statement concerning how
fast, and to what degree, the rate of revenue returns’ state of affairs can change over a period of time. An additional
implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the state of affairs repeating

125For example, in Figures C.219 and C.220, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.10.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.213: Cirrus Logic Stock, normalized his-
togram of the first derivative of the normalized incre-
ments of the time series data shown in Figure C.209.
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Figure C.214: Cirrus Logic Stock, normalized his-
togram of second derivative of the the normalized
increments of the time series data shown in Fig-
ure C.209.

sometime in the future goes down with increasing time126, X , U d X�i A b�c O�d 1 � ó 2 X5i which is approximately 1 � ó X forXÇô 1 [Sch91, pp. 160]. Figures C.225, and, C.226 compare methods of approximation of the “forecastability” of
the rate of revenue returns in the Cirrus Logic Stock for the near term and far term, respectively [Pet91, pp. 83-
84]127. This seems to be a quantitative statement concerning “windows of opportunity” in the rate of revenue returns,
(per day.) The program tslsq was used on the Hurst coefficient data, presented in Figure C.221, to provide a least
squares approximation to the Hurst coefficient. The superimposed least squares approximation with on original Hurst
coefficient data is presented. The time series data has a Hurst coefficient of 0.887589, so that:

126It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

127The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.383)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 887589 (C.384)ü ( X 2 m X 1)1 þ 775178 (C.385)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per day,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on the
past128. A Hurst coefficient of 0.887589, (for the near future, and 0.706220 for the distant future.) implies that the
likelihood of the rate of revenue returns, (per day,) for any two consecutive days being the same is 88.758900% [Pet91,

128Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
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Figure C.217: Cirrus Logic Stock, instantaneous
value of the root mean square of the normalized
increments, provided by running the program tsin-
stant with the -r option on the data presented in Fig-
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Figure C.218: Cirrus Logic Stock, instantaneous
value of the Shannon probability of the normalized
increments, provided by running the program tsin-
stant with the -s option on the data presented in Fig-
ure C.208.

pp. 66] for the near future, and 0.706220 for the distant future. Likewise, there is a 88.758900% chance of the rate of
revenue returns, (per day,) movements being the same in consecutive time periods—ie., if, in a given day, the rate of
revenue returns, (per day,) is increasing, there is a 88.758900% that the rate of revenue returns, (per day,) will increase
in the following period, also. In some sense, this is a quantitative statement on how “predictable,” or “forecastable”
the rate of revenue returns, (per day,) for the Cirrus Logic Stock are over time, since the probability of having g many
consecutive days of the same agenda is ÿ � where ÿ is the Hurst coefficient, or, letting the short term probability of
having g many days of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.386)A 0 { 887589
�

(C.387)

and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.10.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Cirrus Logic Stock. See also [Pet91, pp. 67, 83-84]
and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.219: Cirrus Logic Stock, logistic function
estimates, provided by running the tslsq program on
the normalized increments presented in Figure C.209
with the -p option. These parameters were used as
arguments to the tsdlogistic program.
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Figure C.220: Cirrus Logic Stock, logistic function
estimates of Figure C.219 with the time scale ex-
panded by a factor of two.

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.209, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would be
made by forecasting, month by month, that the next day’s rate of revenue returns would be the same as the current day’s
revenue rate. Interestingly, it is 0 { 002031 L 100 percent, on the average, with a standard deviation of 0 { 046039 L 100
percent, and a root mean square error value of 0 { 046012 L 100 percent—small values for such a simple forecasting
mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per day,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.388)ü ( X 2 m X 1)0 þ 887589 (C.389)

where � is the range of values in the increments of the rate of revenue returns, (per day.) A Hurst coefficient, ÿ , that
is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate of
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revenue returns, (per day,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1
2 implies that the increments of the rate

of revenue returns, (per day) is characteristic of an independent process [Fed88, pp. 195]. Extreme caution should be
exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp. 124], [Pet91, pp.
106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.389 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.390)ü � ( X 2 m X 1) (C.391)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per day,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.392)
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which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per day,) are known, (and ÿ+� 1

2 ,) then the
expected change in � � , will increase with the square root of time129.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.393)

ü �
( cjX )c 0 þ 887589

(C.394)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.222, to provide a least squares
approximation to the H parameter for the Cirrus Logic Stock. The superimposed least squares approximation on the
original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined in [Cro95,
pp. 249], is 0.490165 for the near future, and 0.502378 for the distant future.

Figures C.221 and C.222 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.209. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.209, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.223 and C.224 was made using the -d option.

C.10.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.10.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.210. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.209. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Cirrus Logic Stock, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Cirrus Logic Stock, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.209, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 002031 f 1)
ln (2)

A 0 { 002927 (C.395)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.209, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 010587 f 1)
ln (2)

A 0 { 015194 (C.396)

Note that if the mean is not constant in Figure C.209, this method will not provide accurate results.

129To be precise, it is actually asymptotically proportional to � 1
2
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And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.208:

� V_X�Z A 0 { 001768 (C.397)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.208:

� V_X�Z A 0 { 001313 (C.398)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.10.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]
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20 þ 001313 � (C.399)

therefore: Û
(U ) A 0 { 001313 (C.400)

and, tsshannon 0.001313 gives: Û
(0 { 521329) A 0 { 001313 (C.401)

therefore:

2 � (0 þ 521329) A 20 þ 001313 (C.402)A 1 { 000911 (C.403)A 0 { 091052% (C.404)

and:

2U m 1 A (2 L 0 { 521329) m 1 (C.405)A 0 { 042658 (C.406)A 4 { 265800% (C.407)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Cirrus
Logic Stock executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every day, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services by
4.265800% of its rate of revenue returns, (per day.) As a conceptual model, the remaining 95.734200% will be held
in “reserve” with a 52.132900% chance of making twice the 4.265800% back, (and a 47.867100% chance of making
0.0,) in one day, on the average, for an average growth in its rate of revenue returns, (per day,) of 0.091052%, or a
doubling of its rate of revenue returns, (per day,) in 761.614623 days.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
4.265800% per day of the rate of revenue returns, (per day,) is made in resources and infrastructure, then the rate of
revenue returns would be expected to increase by 0.091052%, per day, on average.

Note that the metrics presented in this section are representative of the Cirrus Logic Stock as an aggregate whole,
and may or may not be accurate representations for any particular participant in the environment. Of interest to the
participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 4.265800% of its rate of revenue returns, (per day,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some days, depending on the Cirrus Logic
Stock’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank, and the loan is
repaid in full. Other days, the company must default, and the bank seizes a portion of the company’s revenue base to
pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns at 0.091052%
per day.

As another simple example, a company re-invests 4.265800% of its rate of revenue returns, (per day,) in develop-
ment, marketing, sales, and distribution of new products. Although some products will be successful and the return on
the investment will exceed the 4.265800% per day investment, others will not. However, on the average, the company
will expand it gross rate of revenue returns at 0.091052% per day.

As an example of “product portfolio” management, suppose a company re-invests 4.265800% of its rate of revenue
returns, (per day,) in development, marketing, sales, and distribution of new products. Further suppose that the
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company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 4 { 265800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 4 { 265800 percent for the second product, implying that the company should diversify its
product line130. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 4 { 265800%, and the investment in each product should be made at a ratio
of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of products
that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Cirrus Logic
Stock, as a standard bench mark, then the optimal number will be 1

0 þ 042658 . Note that this is a “theoretical” value, since
not all products are “typical,” and there may be strategic reasons, for example product leveraging, that may increase
the number of products above the optimum. However, most of the revenue should come from the optimal number of
products, since having more products will decrease the amount of the potential investment in each product, and having
less than the optimum number of products will increase the risk that many of the products could suffer a “down market”
concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal “hedging of
bets,” in product portfolio strategy, and considering the graph of the normalized increments presented in Figure C.209,
if the organization is running optimally, then these products will generate, at least in principle, one standard deviation,
approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are approximations,
and the values are an approximation to a, probably, complex process, and appropriate scrutiny should be exercised
before making specific projections. As yet another example of “product portfolio” management, consider the issue of
product mix. In this interpretation, 4.265800% of the product manufactured should be “proprietary,” while the rest is
“industry standard.” As yet another possibility, 4.265800% of the product manufactured should be predatory into new
markets, and the remainder in markets that are “traditional” for the company.

C.10.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Cirrus Logic Stock, and uses the
method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square, c Q Z*� ��� , of the
normalized increments of the Cirrus Logic Stock time series is 0.002031, and 0.046012respectively, the number of
companies participating in the market can be calculated by Equation 2.109 to be 0.959329.

If this value seems consistent number of companies in the Cirrus Logic Stock, within the assumptions outlined in
Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the companies
participating in the Cirrus Logic Stock are operating optimally, and the “average” Shannon probability, u for each
participating company would be, using Equation 2.110, 0.522533, which would be the value which should be used in
Section C.10.5 for each participating company if market expansion was to be consistent with the rest of the industry.
However, if the Shannon probability derived in Section C.10.5 is greater than the average Shannon probability for
the companies participating in the Cirrus Logic Stock, as derived in this section, then the market would, possibly, be
exploitable with the fiscal strategy outlined in Section C.10.5. The maximum exploitability for the Cirrus Logic Stock
is derived in Section C.10.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in

130The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Cirrus Logic Stock is 0.522533,
with several alternative solutions listed in the previous paragraph. However, these should be contrasted to the Shannon
probability that maximizes a company’s P&L which is 0.522070 in the Cirrus Logic Stock. In all cases, the fraction
of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.408)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Cirrus Logic Stock would tend to indicate that the companies participating in the market
have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.10.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.210.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.209. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Cirrus Logic Stock, and may,
or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.10.5, is derived from the Cirrus Logic
Stock metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be exploitable,
see Section C.10.9.

An additional exploitable strategy may be time itself. Equations C.385, C.389, and, C.387, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Cirrus Logic Stock, becomes
obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational necessity
in strategic planning and project management. Figures C.225, and, C.226 compare methods of approximation of the
“forecastability” of rate of revenue returns in the Cirrus Logic Stock for the near term and far term [Pet91, pp. 83-84],
respectively. As a general rule, caution must be exercised when making decisions that will span a time interval larger
than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond this time interval,
the chances increase that the competitive and market forces will alter the market environment in a possibly detrimental
unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development, manufacturing, and
distribution of products and services that are consistent with this temporal agenda. Automation of these processes, if
executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Cirrus Logic Stock.
When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate of revenue
returns for the product or service will change in a detrimental fashion. If it is assumed that a product or service life
cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals are equal,
the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Although probably not an accurate prediction of product or service life cycle, the technique
may be used as a conceptual approximation to the dynamics of “market windows.131” The conceptual approximation
will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.225, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over

131For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.225: Cirrus Logic Stock, “forecastability”
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error function is the most accurate, for the near term,ÿ � A 0 { 887589 � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.
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Figure C.226: Cirrus Logic Stock, “forecastability”
of far term rate of revenue returns. Although the error
function is the most accurate, for the far term, 1! � may
be used as a reliable metric of “forecastability” of the
rate of revenue returns.

extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.387, 0 { 887589

� A 0 { 5 days of operations. Since the optimal amount of
inventory and, from Equation C.385, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.10.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.10.9. Figure C.227 represents a constructional
simulation of the time series data presented in Figure C.208. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented

Id: simulation.tex,v 0.0 1995/11/20 04:38:13 john Exp 349



C.10. CIRRUS LOGIC STOCK

in Figure C.209. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.209 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.228
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.211.
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brownian with f = 0.046012. This data is superim-
posed on the data presented in Figure C.208.
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C.10.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.10.3. One of the issues of analysis, as mentioned
in Section C.10.7, is to determine the maximum Shannon probability for the time series presented in Figure C.208.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.229 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.208. Figure C.230 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.208. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.521329, as derived in Section C.10.5 to 0.576324. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.208, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.208, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of days that the Cirrus Logic Stock movement
was positive, and dividing by the total number of timescales represented in the time series. This quotient is 0.575000,
as compared with the predicted value from the program tsshannonmax of 0.576324.

C.10.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.210.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.209. These
values will be used in a fixed increment Brownian fractal analysis of the Cirrus Logic Stock, and may, or may not,
provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.10.6 and D.10.7. As a subjective evaluation of
the “quality” of the analysis of the Cirrus Logic Stock, from Chapter 3, Equation 3.8, and using the mean and root
mean square values of the normalized increments of the time series data presented in Figure C.208 from Figure C.209,
and the Shannon probability as calculated by counting the total number of days that the Cirrus Logic Stock movement
was positive, as presented in Section C.10.9:

u � BEDGFHGIKJ f 1

2
(C.409)

0 { 575000 � 0 þ 002031
0 þ 046012 f 1

2
(C.410)

0 { 575000 � 0 { 522070 (C.411)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 575000 � 0 { 522070 � 0 { 576324 (C.412)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.10.5, should be
compared. The four methods used were the mean of Figure C.209, the constant in the least squares approximation to
Figure C.209, the least squares exponential approximation to Figure C.208, and the logarithmic returns of Figure C.208,
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revenue returns, per day, at a Shannon probability,
of 0.576324, corresponding to a “wager” fraction of
0.152648.

derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 002927 � 0 { 015194 � 0 { 001768 � 0 { 001313 (C.413)

It is implied in Section C.10.5, Subsection C.10.5 and in Section C.10.8 that, a Brownian motion with fixed
increments fractal may “model” the Cirrus Logic Stock. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.414)

0 { 046012 (2 L 0 { 575000 m 1) � 0 { 046039 (2 L 0 { 575000 m 1)

2 ó 0 { 575000 (1 m 0 { 575000)
(C.415)

0 { 046012 L 0 { 150000 � 0 { 046039 L 0 { 151717 (C.416)

0 { 006902 � 0 { 006985 (C.417)

and, equating to the mean:
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0 { 002031 � 0 { 006902 � 0 { 006985 (C.418)

where, as in Equation C.411 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.208 from Figure C.209, and the Shannon probability as
calculated by counting the total number of days that the Cirrus Logic Stock movement was positive, as presented in
Section C.10.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value132, where the absolute value is presented in Figure C.210, and the root mean square value is
presented in Figure C.209:

0 { 030075 � 0 { 046012 (C.419)

Note, that if the Cirrus Logic Stock could be “modeled” as a Brownian motion with fixed increments fractal,
then the standard deviation of the absolute value of the normalized increments of the time series data presented in
Figure C.208 from Figure C.209 should be zero. It is 0 { 034876.

C.11 United States Gross Domestic Product

For the analysis, the data was in the directory ../markets/us.gdp133.
The data in this section is presented in tabular form in Section D.11. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the United States Gross Domestic Product. This is included for comparative
purposes.

C.11.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.11.1. Figure C.231 is a graph of the time series data
for the United States Gross Domestic Product.

Figure C.232 is a graph of the normalized increments of the time series data presented in Figure C.231. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.233 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.232. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns134.

Figure C.234 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.232. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.234.

132The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

133Data from the United States Department of Commerce, 1979—1994, by months, in billions of 1987 dollars, US.
134The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.231: United States Gross Domestic Product,
time series data.
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Figure C.232: United States Gross Domestic Product,
normalized increments of the time series data pre-
sented in Figure C.231. The mean is 0.005789 with a
standard deviation of 0.008347. The formula for the
least squares approximation is 0 { 003515 f 0 { 000073 X ,
and the root mean squared value is 0.010103. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000073, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

Figure C.235 is the statistical estimate for the data presented in Figure C.232, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 553093, as derived in Section C.11.5. See Chapter 2,
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Figure C.233: United States Gross Domestic Product,
absolute value of the normalized increments of the
time series data presented in Figure C.232. The mean
is 0.008280 with a standard deviation of 0.005836.
The formula for the least squares approximation is
0 { 009628 fÅm 0 { 000044 X , and the root mean square
value, from Figure C.232, is 0.010103. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.232, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.234: United States Gross Domestic Product,
normalized histogram of the normalized increments
of the time series data shown in Figure C.232. The
data has a mean of 0.005789, with a standard devia-
tion of 0.008347. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 8.124000, with a critical
value of 42.557000.

Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.236 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.232. In principle, if the distribution of the normalized increments presented in Figure C.234
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
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For a mean of 0.005698, with a confidence level of 0.900000
that the error did not exceed 0.000570, 851 samples would be required.
(With 64 samples, the estimated error is 0.002077 = 36.454172 percent.)

For a standard deviation of 0.010103, with a confidence level of 0.900000
that the error did not exceed 0.001010, 136 samples would be required.
(With 64 samples, the estimated error is 0.001469 = 14.538589 percent.)

Figure C.235: United States Gross Domestic Product, statistical estimates of the normalized increments of the time
series shown in Figure C.232. The table was produced with the tsstatest program, and illustrates the size of the data
set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the
time series shown in Figure C.232.

The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.237 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.232. In principle, if the distribution of the normalized increments presented in Figure C.234 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.238 is the range of values of the time series shown in Figure C.231. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.238
would be a square root function135. Figure C.239 is the deterministic map of the normalized increments of the time
series data shown in Figure C.232. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.234 would seem to indicate that the time series data for the United States Gross Domestic Product represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.11.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change136. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.240 is the instantaneous value of the root mean square of the normalized increments for the United States
Gross Domestic Product, and Figure C.241 is the instantaneous Shannon probability for the normalized increments.

135Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.238 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

136The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.236: United States Gross Domestic Product,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.232.
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Figure C.237: United States Gross Domestic Product,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.232.

C.11.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.11.4. Figure C.242 is a graph of the logistic
function estimates of the time series data for the United States Gross Domestic Product. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies137. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.242 is a graph of the logistic function for the time series data presented in Figure C.231. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.232. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.232. Figure C.243 is the same graph, but
with the time scale expanded by a factor of two.

137For example, in Figures C.242 and C.243, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.11.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
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Figure C.238: United States Gross Domestic Product,
range of the time series data shown in Figure C.231.
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C.11.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.11.5. Figure C.244 is a graph of the Hurst coefficient
data time series data shown in Figure C.231. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.245 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.232. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.244 implies that the variance of the rate of revenue returns,
(per month,) in the United States Gross Domestic Product, k d X 2 m X 1 i , over a period of time is proportional to the
period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time138, X , U d X�i A b0c O�d 1 � ó 2 X�i which

of time
138It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning

that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
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Figure C.241: United States Gross Domestic Prod-
uct, instantaneous value of the Shannon probability
of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.231.

is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.248, and, C.249 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the United States Gross Domestic Product for the near term
and far term, respectively [Pet91, pp. 83-84]139. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.244, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.935237, so that:

to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

139The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.242: United States Gross Domestic Product,
logistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.232 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.243: United States Gross Domestic Product,
logistic function estimates of Figure C.242 with the
time scale expanded by a factor of two.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.420)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 935237 (C.421)ü ( X 2 m X 1)1 þ 870474 (C.422)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past140. A Hurst coefficient of 0.935237, (for the near future, and 0.858488 for the distant future.) implies

140Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For the
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Figure C.245: United States Gross Domestic Product,
H parameter data for the normalized increments of the
time series data shown in Figure C.232 The slope of
the graph is the H parameter.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
93.523700% [Pet91, pp. 66] for the near future, and 0.858488 for the distant future. Likewise, there is a 93.523700%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 93.523700% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Gross Domestic Product
are over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the
Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.423)

“long term,”
� ì 0 � 5, or a standard root mean square summation process should be used. If

�
is 0 � 5 then the market is termed a Brownian motion,

or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term” and
“far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
W� 0 � 5 © ln 	���
 , or when ln 	 ��
9� 2, or �W� 7 � 389 ����� See
Section C.11.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Gross Domestic Product. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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A 0 { 935237
�

(C.424)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.232, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 005789 L 100 percent, on the average, with a standard deviation of
0 { 008347 L 100 percent, and a root mean square error value of 0 { 010103 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.425)ü ( X 2 m X 1)0 þ 935237 (C.426)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.426 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.427)ü � ( X 2 m X 1) (C.428)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.429)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time141.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.430)

ü �
( cjX )c 0 þ 935237

(C.431)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.245, to provide a least squares
approximation to the H parameter for the United States Gross Domestic Product. The superimposed least squares

141To be precise, it is actually asymptotically proportional to � 1
2
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approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.742580 for the near future, and 0.657280 for the distant future.

Figures C.244 and C.245 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.232. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.232, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.246 and C.247 was made using the -d option.
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Figure C.246: United States Gross Domestic Product,
traditional Hurst coefficient data for the time series
data shown in Figure C.231. The slope of the graph
is the Hurst coefficient, and is 0.935962 for the near
term, and 0.846454 for the far term.
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Figure C.247: United States Gross Domestic Product,
traditional H parameter data for the time series data
shown in Figure C.231 The slope of the graph is the
H parameter, and is 0.727413 for the near term, and
0.624175 for the far term.

C.11.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.11.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.233. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.232. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Gross Domestic Product, and may, or may not, provide adequate
accuracy for projections.
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For an organization operating in the United States Gross Domestic Product, the fiscal strategy, commensurate with
the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.232, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 005789 f 1)
ln (2)

A 0 { 008328 (C.432)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.232, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 003515 f 1)
ln (2)

A 0 { 005062 (C.433)

Note that if the mean is not constant in Figure C.232, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.231:

� V_X�Z A 0 { 008994 (C.434)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.231:

� V_X�Z A 0 { 008149 (C.435)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.11.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 008149 � (C.436)

therefore: Û
(U ) A 0 { 008149 (C.437)

and, tsshannon 0.008149 gives: Û
(0 { 553093) A 0 { 008149 (C.438)

therefore:

2 � (0 þ 553093) A 20 þ 008149 (C.439)A 1 { 005664 (C.440)A 0 { 566444% (C.441)

and:

2U m 1 A (2 L 0 { 553093) m 1 (C.442)A 0 { 106186 (C.443)A 10 { 618600% (C.444)
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Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Gross Domestic Product executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 10.618600% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
89.381400% will be held in “reserve” with a 55.309300% chance of making twice the 10.618600% back, (and a
44.690700% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 0.566444%, or a doubling of its rate of revenue returns, (per month,) in 122.714443 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
10.618600% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.566444%, per month, on average.

Note that the metrics presented in this section are representative of the United States Gross Domestic Product as
an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 10.618600% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Gross Domestic Product’s environment, the company’s rate of revenue returns exceeds what was borrowed from
the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.566444% per month.

As another simple example, a company re-invests 10.618600% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 10.618600% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.566444% per month.

As an example of “product portfolio” management, suppose a company re-invests 10.618600% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 10 { 618600, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 10 { 618600 percent for the second product, implying that the company should diversify its
product line142. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 10 { 618600%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
United States Gross Domestic Product, as a standard bench mark, then the optimal number will be 1

0 þ 106186 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example

142The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.232, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 10.618600% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 10.618600% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.11.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Gross Domestic
Product, and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~�� �$� , and the root mean square,c Q Z � ��� , of the normalized increments of the United States Gross Domestic Product time series is 0.005789, and
0.010103respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
56.715641.

If this value seems consistent number of companies in the United States Gross Domestic Product, within the
assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the United States Gross Domestic Product are operating optimally, and
the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.538043,
which would be the value which should be used in Section C.11.5 for each participating company if market expansion
was to be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.11.5 is
greater than the average Shannon probability for the companies participating in the United States Gross Domestic
Product, as derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in
Section C.11.5. The maximum exploitability for the United States Gross Domestic Product is derived in Section C.11.9,
but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Gross Domestic
Product is 0.538043, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.786499 in the United States Gross
Domestic Product. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.445)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Gross Domestic Product would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.11.7 Fixed Increment Approximation for Operational Strategy

.
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This section derives various values based on the “average” of the normalized increments presented in Figure C.233.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.232. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Gross Domestic
Product, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.11.5, is derived from the United States
Gross Domestic Product metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which
may be exploitable, see Section C.11.9.

An additional exploitable strategy may be time itself. Equations C.422, C.426, and, C.424, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Gross Domestic
Product, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.248, and, C.249 compare methods of
approximation of the “forecastability” of rate of revenue returns in the United States Gross Domestic Product for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States Gross
Domestic Product. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that
the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product
or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.143” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.248, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.424, 0 { 935237

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.422, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.11.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.11.9. Figure C.250 represents a constructional
simulation of the time series data presented in Figure C.231. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.232. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in

143For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.248: United States Gross Domestic Product,
“forecastability” of near term rate of revenue returns.
Although the error function is the most accurate, for
the near term, ÿ � A 0 { 935237 � may be used as a reli-
able metric of “forecastability” of the rate of revenue
returns.
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Figure C.249: United States Gross Domestic Product,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

all probability, the normalized increments presented in Figure C.232 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.251
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.234.

C.11.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.11.3. One of the issues of analysis, as mentioned
in Section C.11.7, is to determine the maximum Shannon probability for the time series presented in Figure C.231.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.252 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
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Figure C.251: United States Gross Domestic Product,
normalized histogram of the normalized increments
of the time series data shown in Figure C.250, em-
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of 0.005789, with a standard deviation of 0.008347.
By comparison, the simulated data has a mean of
0.007170 with a standard deviation of 0.007176. This
data is superimposed on the data presented in Fig-
ure C.234. The area under the four curves is identical.

Shannon probability for the time series data presented in Figure C.231. Figure C.253 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.231. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.553093, as derived in Section C.11.5 to 0.859375. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.231, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.231, constitutes classical Brownian motion,
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Figure C.253: United States Gross Domestic Product,
maximum rate of revenue returns, per month, at a
Shannon probability, of 0.859375, corresponding to a
“wager” fraction of 0.718750.

then the Shannon probability can be calculated by counting the total number of months that the United States Gross
Domestic Product movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.857143, as compared with the predicted value from the program tsshannonmax of 0.859375.

C.11.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.233.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.232. These
values will be used in a fixed increment Brownian fractal analysis of the United States Gross Domestic Product, and
may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.11.6 and D.11.7. As a subjective evaluation of
the “quality” of the analysis of the United States Gross Domestic Product, from Chapter 3, Equation 3.8, and using
the mean and root mean square values of the normalized increments of the time series data presented in Figure C.231
from Figure C.232, and the Shannon probability as calculated by counting the total number of months that the United
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States Gross Domestic Product movement was positive, as presented in Section C.11.9:

u � BEDGFHGIKJ f 1

2
(C.446)

0 { 857143 � 0 þ 005789
0 þ 010103 f 1

2
(C.447)

0 { 857143 � 0 { 786499 (C.448)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 857143 � 0 { 786499 � 0 { 859375 (C.449)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.11.5, should be
compared. The four methods used were the mean of Figure C.232, the constant in the least squares approximation to
Figure C.232, the least squares exponential approximation to Figure C.231, and the logarithmic returns of Figure C.231,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 008328 � 0 { 005062 � 0 { 008994 � 0 { 008149 (C.450)

It is implied in Section C.11.5, Subsection C.11.5 and in Section C.11.8 that, a Brownian motion with fixed
increments fractal may “model” the United States Gross Domestic Product. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.451)

0 { 010103 (2 L 0 { 857143 m 1) � 0 { 008347 (2 L 0 { 857143 m 1)

2 ó 0 { 857143 (1 m 0 { 857143)
(C.452)

0 { 010103 L 0 { 714286 � 0 { 008347 L 1 { 020621 (C.453)

0 { 007216 � 0 { 008519 (C.454)

and, equating to the mean:

0 { 005789 � 0 { 007216 � 0 { 008519 (C.455)

where, as in Equation C.448 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.231 from Figure C.232, and the Shannon probability as
calculated by counting the total number of months that the United States Gross Domestic Product movement was
positive, as presented in Section C.11.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value144, where the absolute value is presented in Figure C.233, and the root mean square value is
presented in Figure C.232:

0 { 008280 � 0 { 010103 (C.456)

144The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Note, that if the United States Gross Domestic Product could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.231 from Figure C.232 should be zero. It is 0 { 005836.

C.12 United States Employment Figures

For the analysis, the data was in the directory ../markets/us.employment145.
The data in this section is presented in tabular form in Section D.12. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the United States Employment Figures. This is included for comparative
purposes. Presumably, the United States Employment Figures represents something of value, or they could be used as
a “futures” derivative, and thus, it would be considered that there is a rate of revenue returns.

C.12.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.12.1. Figure C.254 is a graph of the time series data
for the United States Employment Figures.

Figure C.255 is a graph of the normalized increments of the time series data presented in Figure C.254. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.256 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.255. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns146.

Figure C.257 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.255. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.257.

Figure C.258 is the statistical estimate for the data presented in Figure C.255, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 525655, as derived in Section C.12.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.259 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.255. In principle, if the distribution of the normalized increments presented in Figure C.257
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.260 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.255. In principle, if the distribution of the normalized increments presented in Figure C.257 is an integrated

145Data from the United States Bureau of Labor and Statistics, 1980—1994, by months, in thousands of persons.
146The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.254: United States Employment Figures,
time series data.
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Figure C.255: United States Employment Figures,
normalized increments of the time series data pre-
sented in Figure C.254. The mean is 0.001327 with a
standard deviation of 0.002254. The formula for the
least squares approximation is 0 { 000929 f 0 { 000004 X ,
and the root mean squared value is 0.002611. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000004, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.261 is the range of values of the time series shown in Figure C.254. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.261
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Figure C.256: United States Employment Figures,
absolute value of the normalized increments of the
time series data presented in Figure C.255. The mean
is 0.002171 with a standard deviation of 0.001454.
The formula for the least squares approximation is
0 { 002656 fÅm 0 { 000005 X , and the root mean square
value, from Figure C.255, is 0.002611. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.255, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.257: United States Employment Figures,
normalized histogram of the normalized increments
of the time series data shown in Figure C.255. The
data has a mean of 0.001327, with a standard devia-
tion of 0.002254. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 4.227000, with a critical
value of 42.557000.

would be a square root function147. Figure C.262 is the deterministic map of the normalized increments of the time
series data shown in Figure C.255. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

147Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.261 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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For a mean of 0.001320, with a confidence level of 0.900000
that the error did not exceed 0.000132, 1059 samples would be required.
(With 183 samples, the estimated error is 0.000317 = 24.046114 percent.)

For a standard deviation of 0.002611, with a confidence level of 0.900000
that the error did not exceed 0.000261, 136 samples would be required.
(With 183 samples, the estimated error is 0.000224 = 8.597788 percent.)

Figure C.258: United States Employment Figures, statistical estimates of the normalized increments of the time series
shown in Figure C.255. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.255.

Observations on the Time Series Increments Analysis

Figure C.257 would seem to indicate that the time series data for the United States Employment Figures represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.12.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change148. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.263 is the instantaneous value of the root mean square of the normalized increments for the United States
Employment Figures, and Figure C.264 is the instantaneous Shannon probability for the normalized increments.

C.12.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.12.4. Figure C.265 is a graph of the logistic
function estimates of the time series data for the United States Employment Figures. The reader is cautioned that
these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies149. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.265 is a graph of the logistic function for the time series data presented in Figure C.254. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters

148The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

149For example, in Figures C.265 and C.266, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.12.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.259: United States Employment Figures,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.255.
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Figure C.260: United States Employment Figures,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.255.

extracted from the time series data as suggested in Figure C.255. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.255. Figure C.266 is the same graph, but
with the time scale expanded by a factor of two.

C.12.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.12.5. Figure C.267 is a graph of the Hurst coefficient
data time series data shown in Figure C.254. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.268 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.255. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.267 implies that the variance of the rate of revenue returns,
(per month,) in the United States Employment Figures, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
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Figure C.261: United States Employment Figures,
range of the time series data shown in Figure C.254.
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Figure C.262: United States Employment Figures,
deterministic map of the normalized increments of
the time series data shown in Figure C.255.

period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time150, X , U d X�i A b0c O�d 1 ��ó 2 X�i which
is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.271, and, C.272 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the United States Employment Figures for the near term
and far term, respectively [Pet91, pp. 83-84]151. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.267, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient

150It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

151The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 377



C.12. UNITED STATES EMPLOYMENT FIGURES

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20 40 60 80 100 120 140 160 180 200

R
M

Sú

Time

Instantaneous Root Mean Square of Normalized Increments

"data.tsinstant-r"

Figure C.263: United States Employment Figures,
instantaneous value of the root mean square of the
normalized increments, provided by running the pro-
gram tsinstant with the -r option on the data presented
in Figure C.254.
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Figure C.264: United States Employment Figures,
instantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.254.

of 0.879967, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.457)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 879967 (C.458)ü ( X 2 m X 1)1 þ 759934 (C.459)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past152. A Hurst coefficient of 0.879967, (for the near future, and 0.986346 for the distant future.) implies

152Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient
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Figure C.265: United States Employment Figures,
logistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.255 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.266: United States Employment Figures,
logistic function estimates of Figure C.265 with the
time scale expanded by a factor of two.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
87.996700% [Pet91, pp. 66] for the near future, and 0.986346 for the distant future. Likewise, there is a 87.996700%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 87.996700% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Employment Figures are
over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.12.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Employment Figures. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 379



C.12. UNITED STATES EMPLOYMENT FIGURES

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

lo
g 

(R
 / 

S
)�

log (Time)

Hurst Coefficient Graphs

"data.tshurst"
-1.127901 + 0.986346 * t
-0.902926 + 0.879967 * t

Figure C.267: United States Employment Figures,
Hurst coefficient data for the normalized increments
of the time series data shown in Figure C.255. The
slope of the graph is the Hurst coefficient.
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Figure C.268: United States Employment Figures, H
parameter data for the normalized increments of the
time series data shown in Figure C.255 The slope of
the graph is the H parameter.

U B ( g ) A ÿ � (C.460)A 0 { 879967
�

(C.461)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.255, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 001327 L 100 percent, on the average, with a standard deviation of
0 { 002254 L 100 percent, and a root mean square error value of 0 { 002611 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.462)
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ü ( X 2 m X 1)0 þ 879967 (C.463)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.463 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.464)ü � ( X 2 m X 1) (C.465)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.466)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time153.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.467)

ü �
( cjX )c 0 þ 879967

(C.468)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.268, to provide a least squares
approximation to the H parameter for the United States Employment Figures. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.833184 for the near future, and 0.856829 for the distant future.

Figures C.267 and C.268 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.255. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.255, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.269 and C.270 was made using the -d option.

C.12.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.12.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.256. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.255. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Employment Figures, and may, or may not, provide adequate
accuracy for projections.

153To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.269: United States Employment Figures,
traditional Hurst coefficient data for the time series
data shown in Figure C.254. The slope of the graph
is the Hurst coefficient, and is 0.880810 for the near
term, and 0.978765 for the far term.
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Figure C.270: United States Employment Figures,
traditional H parameter data for the time series data
shown in Figure C.254 The slope of the graph is the
H parameter, and is 0.824760 for the near term, and
0.847150 for the far term.

For an organization operating in the United States Employment Figures, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.255, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 001327 f 1)
ln (2)

A 0 { 001913 (C.469)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.255, and Equation 2.17 from
Section 2.3.2 in Chapter 2:
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� V_X�Z A ln (0 { 000929 f 1)
ln (2)

A 0 { 001340 (C.470)

Note that if the mean is not constant in Figure C.255, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.254:

� V_X�Z A 0 { 002205 (C.471)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.254:

� V_X�Z A 0 { 001900 (C.472)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.12.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 001900 � (C.473)

therefore: Û
(U ) A 0 { 001900 (C.474)

and, tsshannon 0.001900 gives: Û
(0 { 525655) A 0 { 001900 (C.475)

therefore:

2 � (0 þ 525655) A 20 þ 001900 (C.476)A 1 { 001318 (C.477)A 0 { 131785% (C.478)

and:

2U m 1 A (2 L 0 { 525655) m 1 (C.479)A 0 { 051310 (C.480)A 5 { 131000% (C.481)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Employment Figures executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 5.131000% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 94.869000%
will be held in “reserve” with a 52.565500% chance of making twice the 5.131000% back, (and a 47.434500% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
0.131785%, or a doubling of its rate of revenue returns, (per month,) in 526.315789 months.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
5.131000% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.131785%, per month, on average.

Note that the metrics presented in this section are representative of the United States Employment Figures as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 5.131000% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Employment Figures’s environment, the company’s rate of revenue returns exceeds what was borrowed from
the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.131785% per month.

As another simple example, a company re-invests 5.131000% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 5.131000% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.131785% per month.

As an example of “product portfolio” management, suppose a company re-invests 5.131000% of its rate of revenue
returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 5 { 131000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 5 { 131000 percent for the second product, implying that the company should diversify its
product line154. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 5 { 131000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the United States Employment Figures, as a standard bench mark, then the optimal number will be 1

0 þ 051310 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.255, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex

154The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 5.131000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 5.131000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.12.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Employment Figures,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the United States Employment Figures time series is 0.001327, and 0.002611respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 194.651242.

If this value seems consistent number of companies in the United States Employment Figures, within the assump-
tions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence
that the companies participating in the United States Employment Figures are operating optimally, and the “average”
Shannon probability, u for each participating company would be, using Equation 2.110, 0.518214, which would be
the value which should be used in Section C.12.5 for each participating company if market expansion was to be
consistent with the rest of the industry. However, if the Shannon probability derived in Section C.12.5 is greater than
the average Shannon probability for the companies participating in the United States Employment Figures, as derived
in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.12.5. The
maximum exploitability for the United States Employment Figures is derived in Section C.12.9, but it is probably of
doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Employment
Figures is 0.518214, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.754117 in the United States
Employment Figures. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.482)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Employment Figures would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.12.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.256.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.255. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Employment
Figures, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.12.5, is derived from the United States
Employment Figures metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.12.9.
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An additional exploitable strategy may be time itself. Equations C.459, C.463, and, C.461, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Employment
Figures, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as
an operational necessity in strategic planning and project management. Figures C.271, and, C.272 compare methods
of approximation of the “forecastability” of rate of revenue returns in the United States Employment Figures for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Employment Figures. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance
that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.155” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.271, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.461, 0 { 879967

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.459, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.12.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.12.9. Figure C.273 represents a constructional
simulation of the time series data presented in Figure C.254. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.255. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.255 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.274
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.257.

155For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.271: United States Employment Figures,
“forecastability” of near term rate of revenue returns.
Although the error function is the most accurate, for
the near term, ÿ � A 0 { 879967 � may be used as a reli-
able metric of “forecastability” of the rate of revenue
returns.
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Figure C.272: United States Employment Figures,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

C.12.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.12.3. One of the issues of analysis, as mentioned
in Section C.12.7, is to determine the maximum Shannon probability for the time series presented in Figure C.254.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.275 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.254. Figure C.276 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.254. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.525655, as derived in Section C.12.5 to 0.759563. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.254, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
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Figure C.274: United States Employment Figures,
normalized histogram of the normalized increments
of the time series data shown in Figure C.273, em-
pirical and simulated. The empirical data has a mean
of 0.001327, with a standard deviation of 0.002254.
By comparison, the simulated data has a mean of
0.001342 with a standard deviation of 0.002246. This
data is superimposed on the data presented in Fig-
ure C.257. The area under the four curves is identical.

to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.254, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Employment
Figures movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.758242, as compared with the predicted value from the program tsshannonmax of 0.759563.
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Figure C.276: United States Employment Figures,
maximum rate of revenue returns, per month, at a
Shannon probability, of 0.759563, corresponding to a
“wager” fraction of 0.519126.

C.12.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.256.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.255. These
values will be used in a fixed increment Brownian fractal analysis of the United States Employment Figures, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.12.6 and D.12.7. As a subjective evaluation of
the “quality” of the analysis of the United States Employment Figures, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.254 from
Figure C.255, and the Shannon probability as calculated by counting the total number of months that the United States
Employment Figures movement was positive, as presented in Section C.12.9:

u � BEDGFHGIKJ f 1

2
(C.483)
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0 { 758242 � 0 þ 001327
0 þ 002611 f 1

2
(C.484)

0 { 758242 � 0 { 754117 (C.485)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 758242 � 0 { 754117 � 0 { 759563 (C.486)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.12.5, should be
compared. The four methods used were the mean of Figure C.255, the constant in the least squares approximation to
Figure C.255, the least squares exponential approximation to Figure C.254, and the logarithmic returns of Figure C.254,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 001913 � 0 { 001340 � 0 { 002205 � 0 { 001900 (C.487)

It is implied in Section C.12.5, Subsection C.12.5 and in Section C.12.8 that, a Brownian motion with fixed
increments fractal may “model” the United States Employment Figures. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.488)

0 { 002611 (2 L 0 { 758242 m 1) � 0 { 002254 (2 L 0 { 758242 m 1)

2 ó 0 { 758242 (1 m 0 { 758242)
(C.489)

0 { 002611 L 0 { 516484 � 0 { 002254 L 0 { 603159 (C.490)

0 { 001349 � 0 { 001360 (C.491)

and, equating to the mean:

0 { 001327 � 0 { 001349 � 0 { 001360 (C.492)

where, as in Equation C.485 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.254 from Figure C.255, and the Shannon probability as
calculated by counting the total number of months that the United States Employment Figures movement was positive,
as presented in Section C.12.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value156, where the absolute value is presented in Figure C.256, and the root mean square value is
presented in Figure C.255:

0 { 002171 � 0 { 002611 (C.493)

Note, that if the United States Employment Figures could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.254 from Figure C.255 should be zero. It is 0 { 001454.

156The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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C.13 United States Leading Economic Indicators

For the analysis, the data was in the directory ../markets/us.indicators157.
The data in this section is presented in tabular form in Section D.13. Note that in this analysis, the rate of

revenue returns means the increase or decrease in the United States Leading Economic Indicators. This is included for
comparative purposes. Presumably, the United States Leading Economic Indicators represent something of value, or
they could be used as a “futures” derivative, and thus, it would be considered that there is a rate of revenue returns.

C.13.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.13.1. Figure C.277 is a graph of the time series data
for the United States Leading Economic Indicators.

Figure C.278 is a graph of the normalized increments of the time series data presented in Figure C.277. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.279 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.278. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns158.

Figure C.280 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.278. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.280.

Figure C.281 is the statistical estimate for the data presented in Figure C.278, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 518919, as derived in Section C.13.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.282 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.278. In principle, if the distribution of the normalized increments presented in Figure C.280
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.283 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.278. In principle, if the distribution of the normalized increments presented in Figure C.280 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.284 is the range of values of the time series shown in Figure C.277. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.284

157Data from the United States Department of Commerce, 1980—1994, by months, as an index of 1987 = 100.
158The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.277: United States Leading Economic Indi-
cators, time series data.
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Figure C.278: United States Leading Economic Indi-
cators, normalized increments of the time series data
presented in Figure C.277. The mean is 0.000733
with a standard deviation of 0.005089. The formula
for the least squares approximation is 0 { 000683 f
0 { 000001 X , and the root mean squared value is
0.005128. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized incre-
ments. This graph is the fraction of change in the time
series, as a function of time. Note that the slope of the
mean, 0.000001, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

would be a square root function159. Figure C.285 is the deterministic map of the normalized increments of the time
series data shown in Figure C.278. The deterministic map is useful for determining if a time series was created by a

159Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.284 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.279: United States Leading Economic In-
dicators, absolute value of the normalized increments
of the time series data presented in Figure C.278.
The mean is 0.003869 with a standard deviation of
0.003375. The formula for the least squares approxi-
mation is 0 { 006230 f m 0 { 000027 X , and the root mean
square value, from Figure C.278, is 0.005128. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.278, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.280: United States Leading Economic Indi-
cators, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.278.
The data has a mean of 0.000733, with a standard de-
viation of 0.005089. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 4.790000, with a critical
value of 42.557000.

deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].
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For a mean of 0.000729, with a confidence level of 0.900000
that the error did not exceed 0.000073, 13371 samples would be required.
(With 180 samples, the estimated error is 0.000629 = 86.184948 percent.)

For a standard deviation of 0.005128, with a confidence level of 0.900000
that the error did not exceed 0.000513, 136 samples would be required.
(With 180 samples, the estimated error is 0.000445 = 8.669140 percent.)

Figure C.281: United States Leading Economic Indicators, statistical estimates of the normalized increments of the
time series shown in Figure C.278. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.278.

Observations on the Time Series Increments Analysis

Figure C.280 would seem to indicate that the time series data for the United States Leading Economic Indicators
represents a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the
Gaussian increments property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that
the time series data represents fractional Brownian motion.

C.13.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change160. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.286 is the instantaneous value of the root mean square of the normalized increments for the United
States Leading Economic Indicators, and Figure C.287 is the instantaneous Shannon probability for the normalized
increments.

C.13.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.13.4. Figure C.288 is a graph of the logistic
function estimates of the time series data for the United States Leading Economic Indicators. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies161. The methodology should be regarded as “fragile.” It is included for completeness.

160The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

161For example, in Figures C.288 and C.289, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.13.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.282: United States Leading Economic In-
dicators, normalized histogram of the first derivative
of the normalized increments of the time series data
shown in Figure C.278.
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Figure C.283: United States Leading Economic Indi-
cators, normalized histogram of second derivative of
the the normalized increments of the time series data
shown in Figure C.278.

Figure C.288 is a graph of the logistic function for the time series data presented in Figure C.277. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.278. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.278. Figure C.289 is the same graph, but
with the time scale expanded by a factor of two.

C.13.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.13.5. Figure C.290 is a graph of the Hurst coefficient
data time series data shown in Figure C.277. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.291 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.278. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.290 implies that the variance of the rate of revenue returns,
(per month,) in the United States Leading Economic Indicators, k d X 2 m X 1 i , over a period of time is proportional to the
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Figure C.284: United States Leading Economic In-
dicators, range of the time series data shown in Fig-
ure C.277.
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Figure C.285: United States Leading Economic In-
dicators, deterministic map of the normalized incre-
ments of the time series data shown in Figure C.278.

period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time162, X , U d X�i A b0c O�d 1 � ó 2 X�i which is
approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.294, and, C.295 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the United States Leading Economic Indicators for the near term
and far term, respectively [Pet91, pp. 83-84]163. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,

162It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

163The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.286: United States Leading Economic In-
dicators, instantaneous value of the root mean square
of the normalized increments, provided by running
the program tsinstant with the -r option on the data
presented in Figure C.277.
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Figure C.287: United States Leading Economic Indi-
cators, instantaneous value of the Shannon probabil-
ity of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.277.

presented in Figure C.290, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.931126, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.494)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 931126 (C.495)ü ( X 2 m X 1)1 þ 862252 (C.496)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
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Figure C.288: United States Leading Economic Indi-
cators, logistic function estimates, provided by run-
ning the tslsq program on the normalized increments
presented in Figure C.278 with the -p option. These
parameters were used as arguments to the tsdlogistic
program.
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Figure C.289: United States Leading Economic In-
dicators, logistic function estimates of Figure C.288
with the time scale expanded by a factor of two.

the past164. A Hurst coefficient of 0.931126, (for the near future, and 0.714236 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
93.112600% [Pet91, pp. 66] for the near future, and 0.714236 for the distant future. Likewise, there is a 93.112600%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 93.112600% that the rate of revenue

164Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.13.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Leading Economic Indicators. See
also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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Figure C.290: United States Leading Economic Indi-
cators, Hurst coefficient data for the normalized incre-
ments of the time series data shown in Figure C.278.
The slope of the graph is the Hurst coefficient.
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Figure C.291: United States Leading Economic In-
dicators, H parameter data for the normalized incre-
ments of the time series data shown in Figure C.278
The slope of the graph is the H parameter.

returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on
how “predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Leading Economic
Indicators are over time, since the probability of having g many consecutive months of the same agenda is ÿ � whereÿ is the Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda,U B , is:

U B ( g ) A ÿ � (C.497)A 0 { 931126
�

(C.498)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.278, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 000733 L 100 percent, on the average, with a standard deviation of
0 { 005089 L 100 percent, and a root mean square error value of 0 { 005128 L 100 percent—small values for such a simple
forecasting mechanism.
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This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.499)ü ( X 2 m X 1)0 þ 931126 (C.500)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.500 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.501)ü � ( X 2 m X 1) (C.502)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.503)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time165.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.504)

ü �
( cjX )c 0 þ 931126

(C.505)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.291, to provide a least squares
approximation to the H parameter for the United States Leading Economic Indicators. The superimposed least
squares approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.746931 for the near future, and 0.651345 for the distant future.

Figures C.290 and C.291 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.278. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.278, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.292 and C.293 was made using the -d option.

165To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.292: United States Leading Economic Indi-
cators, traditional Hurst coefficient data for the time
series data shown in Figure C.277. The slope of the
graph is the Hurst coefficient, and is 0.930925 for the
near term, and 0.708761 for the far term.
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Figure C.293: United States Leading Economic Indi-
cators, traditional H parameter data for the time series
data shown in Figure C.277 The slope of the graph is
the H parameter, and is 0.727710 for the near term,
and 0.653283 for the far term.

C.13.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.13.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.279. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.278. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the United States Leading Economic Indicators, and may, or may not,
provide adequate accuracy for projections.

For an organization operating in the United States Leading Economic Indicators, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
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The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
Chapter B, and is presented in Figure C.278, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 000733 f 1)
ln (2)

A 0 { 001057 (C.506)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.278, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 000683 f 1)
ln (2)

A 0 { 000985 (C.507)

Note that if the mean is not constant in Figure C.278, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.277:

� V_X�Z A 0 { 001105 (C.508)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.277:

� V_X�Z A 0 { 001033 (C.509)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.13.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 001033 � (C.510)

therefore: Û
(U ) A 0 { 001033 (C.511)

and, tsshannon 0.001033 gives: Û
(0 { 518919) A 0 { 001033 (C.512)

therefore:

2 � (0 þ 518919) A 20 þ 001033 (C.513)A 1 { 000716 (C.514)A 0 { 071628% (C.515)

and:

2U m 1 A (2 L 0 { 518919) m 1 (C.516)A 0 { 037838 (C.517)A 3 { 783800% (C.518)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Leading Economic Indicators executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of
goods and services by 3.783800% of its rate of revenue returns, (per month.) As a conceptual model, the remaining
96.216200% will be held in “reserve” with a 51.891900% chance of making twice the 3.783800% back, (and a
48.108100% chance of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns,
(per month,) of 0.071628%, or a doubling of its rate of revenue returns, (per month,) in 968.054211 months.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
3.783800% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.071628%, per month, on average.

Note that the metrics presented in this section are representative of the United States Leading Economic Indicators
as an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 3.783800% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Leading Economic Indicators’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion
of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate
of revenue returns at 0.071628% per month.

As another simple example, a company re-invests 3.783800% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 3.783800% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.071628% per month.

As an example of “product portfolio” management, suppose a company re-invests 3.783800% of its rate of revenue
returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 3 { 783800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 3 { 783800 percent for the second product, implying that the company should diversify its
product line166. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 3 { 783800%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the United States Leading Economic Indicators, as a standard bench mark, then the optimal number will be 1

0 þ 037838 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.278, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex

166The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 3.783800% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 3.783800% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.13.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Leading Economic
Indicators, and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the United States Leading Economic Indicators time series is 0.000733, and
0.005128respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
27.874555.

If this value seems consistent number of companies in the United States Leading Economic Indicators, within
the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the United States Leading Economic Indicators are operating optimally,
and the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.513537,
which would be the value which should be used in Section C.13.5 for each participating company if market expansion
was to be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.13.5 is
greater than the average Shannon probability for the companies participating in the United States Leading Economic
Indicators, as derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined
in Section C.13.5. The maximum exploitability for the United States Leading Economic Indicators is derived in
Section C.13.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Leading Economic
Indicators is 0.513537, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.571470 in the United States Leading
Economic Indicators. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.519)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Leading Economic Indicators would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.13.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.279.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.278. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Leading Economic
Indicators, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.13.5, is derived from the United States
Leading Economic Indicators metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.13.9.
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An additional exploitable strategy may be time itself. Equations C.496, C.500, and, C.498, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Leading
Economic Indicators, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be
addressed as an operational necessity in strategic planning and project management. Figures C.294, and, C.295
compare methods of approximation of the “forecastability” of rate of revenue returns in the United States Leading
Economic Indicators for the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be
exercised when making decisions that will span a time interval larger than the time interval where the “forecastability”
of rate of revenue returns drops below 50%. Beyond this time interval, the chances increase that the competitive and
market forces will alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is
significant advantage in “timeliness” of development, manufacturing, and distribution of products and services that are
consistent with this temporal agenda. Automation of these processes, if executed consistently with this agenda, should
be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States
Leading Economic Indicators. When the “forecastability” of rate of revenue returns drops below 50%, there is an
even chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is
assumed that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if
all three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.167” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.294, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.498, 0 { 931126

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.496, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.13.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.13.9. Figure C.296 represents a constructional
simulation of the time series data presented in Figure C.277. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.278. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.278 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.297
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.280.

167For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.294: United States Leading Economic Indi-
cators, “forecastability” of near term rate of revenue
returns. Although the error function is the most accu-
rate, for the near term, ÿ � A 0 { 931126 � may be used
as a reliable metric of “forecastability” of the rate of
revenue returns.
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Figure C.295: United States Leading Economic In-
dicators, “forecastability” of far term rate of revenue
returns. Although the error function is the most ac-
curate, for the far term, 1! � may be used as a reliable
metric of “forecastability” of the rate of revenue re-
turns.

C.13.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.13.3. One of the issues of analysis, as mentioned
in Section C.13.7, is to determine the maximum Shannon probability for the time series presented in Figure C.277.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.298 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.277. Figure C.299 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.277. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.518919, as derived in Section C.13.5 to 0.622222. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.277, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
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Figure C.297: United States Leading Economic Indi-
cators, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.296,
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a mean of 0.000733, with a standard deviation of
0.005089. By comparison, the simulated data has
a mean of 0.001210 with a standard deviation of
0.004997. This data is superimposed on the data
presented in Figure C.280. The area under the four
curves is identical.

time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.277, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of months that the United States Leading
Economic Indicators movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.620112, as compared with the predicted value from the program tsshannonmax of 0.622222.
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Figure C.299: United States Leading Economic Indi-
cators, maximum rate of revenue returns, per month,
at a Shannon probability, of 0.622222, corresponding
to a “wager” fraction of 0.244444.

C.13.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.279.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.278. These
values will be used in a fixed increment Brownian fractal analysis of the United States Leading Economic Indicators,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.13.6 and D.13.7. As a subjective evaluation of the
“quality” of the analysis of the United States Leading Economic Indicators, from Chapter 3, Equation 3.8, and using
the mean and root mean square values of the normalized increments of the time series data presented in Figure C.277
from Figure C.278, and the Shannon probability as calculated by counting the total number of months that the United
States Leading Economic Indicators movement was positive, as presented in Section C.13.9:

u � BEDGFHGIKJ f 1

2
(C.520)
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0 { 620112 � 0 þ 000733
0 þ 005128 f 1

2
(C.521)

0 { 620112 � 0 { 571470 (C.522)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 620112 � 0 { 571470 � 0 { 622222 (C.523)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.13.5, should be
compared. The four methods used were the mean of Figure C.278, the constant in the least squares approximation to
Figure C.278, the least squares exponential approximation to Figure C.277, and the logarithmic returns of Figure C.277,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 001057 � 0 { 000985 � 0 { 001105 � 0 { 001033 (C.524)

It is implied in Section C.13.5, Subsection C.13.5 and in Section C.13.8 that, a Brownian motion with fixed
increments fractal may “model” the United States Leading Economic Indicators. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.525)

0 { 005128 (2 L 0 { 620112 m 1) � 0 { 005089 (2 L 0 { 620112 m 1)
2 ó 0 { 620112 (1 m 0 { 620112)

(C.526)

0 { 005128 L 0 { 240223 � 0 { 005089 L 0 { 247470 (C.527)

0 { 001232 � 0 { 001259 (C.528)

and, equating to the mean:

0 { 000733 � 0 { 001232 � 0 { 001259 (C.529)

where, as in Equation C.522 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.277 from Figure C.278, and the Shannon probability as
calculated by counting the total number of months that the United States Leading Economic Indicators movement was
positive, as presented in Section C.13.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value168, where the absolute value is presented in Figure C.279, and the root mean square value is
presented in Figure C.278:

0 { 003869 � 0 { 005128 (C.530)

Note, that if the United States Leading Economic Indicators could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.277 from Figure C.278 should be zero. It is 0 { 003375.

168The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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C.14 United States M2

For the analysis, the data was in the directory ../markets/us.m2169.
The data in this section is presented in tabular form in Section D.14. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the United States M2. This is included for comparative purposes. Presumably,
the United States M2 represents something of value, or it could be used as a “futures” derivative, and thus, it would be
considered that there is a rate of revenue returns.

C.14.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.14.1. Figure C.300 is a graph of the time series data
for the United States M2.

Figure C.301 is a graph of the normalized increments of the time series data presented in Figure C.300. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.302 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.301. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns170.

Figure C.303 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.301. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.303.

Figure C.304 is the statistical estimate for the data presented in Figure C.301, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 527119, as derived in Section C.14.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.305 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.301. In principle, if the distribution of the normalized increments presented in Figure C.303
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.306 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.301. In principle, if the distribution of the normalized increments presented in Figure C.303 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.307 is the range of values of the time series shown in Figure C.300. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.307

169Data from the United States Federal Reserve Board, 1980—1994, by months, in billions of 1987 dollars, US.
170The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.300: United States M2, time series data.
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0.004817

Figure C.301: United States M2, normalized in-
crements of the time series data presented in Fig-
ure C.300. The mean is 0.001492 with a standard
deviation of 0.004594. The formula for the least
squares approximation is 0 { 004922 f m 0 { 000041 X ,
and the root mean squared value is 0.004817. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000041, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

would be a square root function171. Figure C.308 is the deterministic map of the normalized increments of the time
series data shown in Figure C.301. The deterministic map is useful for determining if a time series was created by a

171Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.307 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.302: United States M2, absolute value of
the normalized increments of the time series data
presented in Figure C.301. The mean is 0.003529
with a standard deviation of 0.003289. The formula
for the least squares approximation is 0 { 005573 fm 0 { 000025 X , and the root mean square value, from
Figure C.301, is 0.004817. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
and “data.tsfraction.tsavg” is the running average of
the normalized increments presented in Figure C.301,
superimposed here for convenience. This graph is the
absolute value of the fraction of change in the time
series, as a function of time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution of Increments

"data.tsfraction.tsnormal-s30"
"data.tsfraction.tsnormal-s30-f"

Figure C.303: United States M2, normalized his-
togram of the normalized increments of the time series
data shown in Figure C.301. The data has a mean of
0.001492, with a standard deviation of 0.004594. The
area under the two curves is identical. The ê 2 value
of the observed and expected values of the two curves
is 3.176000, with a critical value of 42.557000.

deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].
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For a mean of 0.001483, with a confidence level of 0.900000
that the error did not exceed 0.000148, 2856 samples would be required.
(With 168 samples, the estimated error is 0.000611 = 41.227913 percent.)

For a standard deviation of 0.004817, with a confidence level of 0.900000
that the error did not exceed 0.000482, 136 samples would be required.
(With 168 samples, the estimated error is 0.000432 = 8.973412 percent.)

Figure C.304: United States M2, statistical estimates of the normalized increments of the time series shown in
Figure C.301. The table was produced with the tsstatest program, and illustrates the size of the data set required for a
confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.301.

Observations on the Time Series Increments Analysis

Figure C.303 would seem to indicate that the time series data for the United States M2 represents a cumulative
sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments property
of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data represents
fractional Brownian motion.

C.14.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change172. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.309 is the instantaneous value of the root mean square of the normalized increments for the United States
M2, and Figure C.310 is the instantaneous Shannon probability for the normalized increments.

C.14.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.14.4. Figure C.311 is a graph of the logistic function
estimates of the time series data for the United States M2. The reader is cautioned that these graphs are constructed
using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate prediction of the
logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to produce a practical fit
to the data. In addition, there are numerical stability issues with logistic function methodologies173. The methodology
should be regarded as “fragile.” It is included for completeness.

Figure C.311 is a graph of the logistic function for the time series data presented in Figure C.300. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters

172The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

173For example, in Figures C.311 and C.312, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.14.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.305: United States M2, normalized his-
togram of the first derivative of the normalized incre-
ments of the time series data shown in Figure C.301.
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Figure C.306: United States M2, normalized his-
togram of second derivative of the the normalized
increments of the time series data shown in Fig-
ure C.301.

extracted from the time series data as suggested in Figure C.301. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.301. Figure C.312 is the same graph, but
with the time scale expanded by a factor of two.

C.14.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.14.5. Figure C.313 is a graph of the Hurst coefficient
data time series data shown in Figure C.300. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.314 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.301. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.313 implies that the variance of the rate of revenue returns,
(per month,) in the United States M2, k d X 2 m X 1 i , over a period of time is proportional to the period of time raised to twice
the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative statement concerning how
fast, and to what degree, the rate of revenue returns’ state of affairs can change over a period of time. An additional
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Figure C.307: United States M2, range of the time
series data shown in Figure C.300.
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Figure C.308: United States M2, deterministic map
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implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the state of affairs repeating
sometime in the future goes down with increasing time174, X , U d X�i A b�c O�d 1 �[ó 2 X5i which is approximately 1 � ó X forXÇô 1 [Sch91, pp. 160]. Figures C.317, and, C.318 compare methods of approximation of the “forecastability” of
the rate of revenue returns in the United States M2 for the near term and far term, respectively [Pet91, pp. 83-84]175.
This seems to be a quantitative statement concerning “windows of opportunity” in the rate of revenue returns, (per
month.) The program tslsq was used on the Hurst coefficient data, presented in Figure C.313, to provide a least
squares approximation to the Hurst coefficient. The superimposed least squares approximation with on original Hurst
coefficient data is presented. The time series data has a Hurst coefficient of 0.956159, so that:

174It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

175The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.309: United States M2, instantaneous value
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option on the data presented in Figure C.300.
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Figure C.310: United States M2, instantaneous value
of the Shannon probability of the normalized incre-
ments, provided by running the program tsinstant
with the -s option on the data presented in Fig-
ure C.300.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.531)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 956159 (C.532)ü ( X 2 m X 1)1 þ 912318 (C.533)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past176. A Hurst coefficient of 0.956159, (for the near future, and 0.917851 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is

176Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
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Figure C.311: United States M2, logistic function
estimates, provided by running the tslsq program on
the normalized increments presented in Figure C.301
with the -p option. These parameters were used as
arguments to the tsdlogistic program.
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Figure C.312: United States M2, logistic function es-
timates of Figure C.311 with the time scale expanded
by a factor of two.

95.615900% [Pet91, pp. 66] for the near future, and 0.917851 for the distant future. Likewise, there is a 95.615900%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 95.615900% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States M2 are over time, since
the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst coefficient, or,
letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.534)

the “long term,”
� ì 0 � 5, or a standard root mean square summation process should be used. If

�
is 0 � 5 then the market is termed a Brownian

motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.14.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States M2. See also [Pet91, pp. 67, 83-84]
and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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A 0 { 956159
�

(C.535)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.301, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 001492 L 100 percent, on the average, with a standard deviation of
0 { 004594 L 100 percent, and a root mean square error value of 0 { 004817 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.536)ü ( X 2 m X 1)0 þ 956159 (C.537)
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where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.537 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.538)ü � ( X 2 m X 1) (C.539)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.540)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time177.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.541)

ü �
( cjX )c 0 þ 956159

(C.542)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.314, to provide a least squares
approximation to the H parameter for the United States M2. The superimposed least squares approximation on the
original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined in [Cro95,
pp. 249], is 0.827824 for the near future, and 0.788208 for the distant future.

Figures C.313 and C.314 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.301. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.301, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.315 and C.316 was made using the -d option.

C.14.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.14.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.302. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.301. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the United States M2, and may, or may not, provide adequate accuracy for
projections.

For an organization operating in the United States M2, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

177To be precise, it is actually asymptotically proportional to � 1
2
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Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.301, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 001492 f 1)
ln (2)

A 0 { 002151 (C.543)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.301, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 004922 f 1)
ln (2)

A 0 { 007084 (C.544)

Note that if the mean is not constant in Figure C.301, this method will not provide accurate results.
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And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.300:

� V_X�Z A 0 { 002294 (C.545)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.300:

� V_X�Z A 0 { 002123 (C.546)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.14.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 002123 � (C.547)

therefore: Û
(U ) A 0 { 002123 (C.548)

and, tsshannon 0.002123 gives: Û
(0 { 527119) A 0 { 002123 (C.549)

therefore:

2 � (0 þ 527119) A 20 þ 002123 (C.550)A 1 { 001473 (C.551)A 0 { 147263% (C.552)

and:

2U m 1 A (2 L 0 { 527119) m 1 (C.553)A 0 { 054238 (C.554)A 5 { 423800% (C.555)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States M2 executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest, every
month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services by
5.423800% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 94.576200% will be held
in “reserve” with a 52.711900% chance of making twice the 5.423800% back, (and a 47.288100% chance of making
0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of 0.147263%, or
a doubling of its rate of revenue returns, (per month,) in 471.031559 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
5.423800% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.147263%, per month, on average.

Note that the metrics presented in this section are representative of the United States M2 as an aggregate whole,
and may or may not be accurate representations for any particular participant in the environment. Of interest to the
participants in the environment would be a similar analysis of each product or service rendered in the marketplace.
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As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 5.423800% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States M2’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank, and the
loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the company’s revenue
base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns at
0.147263% per month.

As another simple example, a company re-invests 5.423800% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 5.423800% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.147263% per month.

As an example of “product portfolio” management, suppose a company re-invests 5.423800% of its rate of revenue
returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 5 { 423800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 5 { 423800 percent for the second product, implying that the company should diversify its
product line178. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 5 { 423800%, and the investment in each product should be made at a ratio
of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of products
that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the United States
M2, as a standard bench mark, then the optimal number will be 1

0 þ 054238 . Note that this is a “theoretical” value, since
not all products are “typical,” and there may be strategic reasons, for example product leveraging, that may increase
the number of products above the optimum. However, most of the revenue should come from the optimal number of
products, since having more products will decrease the amount of the potential investment in each product, and having
less than the optimum number of products will increase the risk that many of the products could suffer a “down market”
concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal “hedging of
bets,” in product portfolio strategy, and considering the graph of the normalized increments presented in Figure C.301,
if the organization is running optimally, then these products will generate, at least in principle, one standard deviation,
approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are approximations,
and the values are an approximation to a, probably, complex process, and appropriate scrutiny should be exercised
before making specific projections. As yet another example of “product portfolio” management, consider the issue of
product mix. In this interpretation, 5.423800% of the product manufactured should be “proprietary,” while the rest is
“industry standard.” As yet another possibility, 5.423800% of the product manufactured should be predatory into new
markets, and the remainder in markets that are “traditional” for the company.

C.14.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States M2, and uses the
method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square, c Q Z*� ��� , of the

178The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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normalized increments of the United States M2 time series is 0.001492, and 0.004817respectively, the number of
companies participating in the market can be calculated by Equation 2.109 to be 64.300675.

If this value seems consistent number of companies in the United States M2, within the assumptions outlined in
Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the companies
participating in the United States M2 are operating optimally, and the “average” Shannon probability, u for each
participating company would be, using Equation 2.110, 0.519313, which would be the value which should be used in
Section C.14.5 for each participating company if market expansion was to be consistent with the rest of the industry.
However, if the Shannon probability derived in Section C.14.5 is greater than the average Shannon probability for
the companies participating in the United States M2, as derived in this section, then the market would, possibly, be
exploitable with the fiscal strategy outlined in Section C.14.5. The maximum exploitability for the United States M2
is derived in Section C.14.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States M2 is 0.519313,
with several alternative solutions listed in the previous paragraph. However, these should be contrasted to the Shannon
probability that maximizes a company’s P&L which is 0.654868 in the United States M2. In all cases, the fraction of
the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.556)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States M2 would tend to indicate that the companies participating in the market
have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.14.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.302.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.301. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States M2, and may,
or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.14.5, is derived from the United States
M2 metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be exploitable, see
Section C.14.9.

An additional exploitable strategy may be time itself. Equations C.533, C.537, and, C.535, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States M2, becomes
obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational necessity
in strategic planning and project management. Figures C.317, and, C.318 compare methods of approximation of the
“forecastability” of rate of revenue returns in the United States M2 for the near term and far term [Pet91, pp. 83-84],
respectively. As a general rule, caution must be exercised when making decisions that will span a time interval larger
than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond this time interval,
the chances increase that the competitive and market forces will alter the market environment in a possibly detrimental
unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development, manufacturing, and
distribution of products and services that are consistent with this temporal agenda. Automation of these processes, if
executed consistently with this agenda, should be considered a competitive advantage.
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In some sense, this temporal agenda defines the “average” product or service life cycle in the United States M2.
When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate of revenue
returns for the product or service will change in a detrimental fashion. If it is assumed that a product or service life
cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals are equal,
the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Although probably not an accurate prediction of product or service life cycle, the technique
may be used as a conceptual approximation to the dynamics of “market windows.179” The conceptual approximation
will probably predict a “conservative” or “pessimistic” value in relation to actual markets.
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As an interesting interpretation of the data presented in Figure C.317, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over

179For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.535, 0 { 956159

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.533, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.14.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.14.9. Figure C.319 represents a constructional
simulation of the time series data presented in Figure C.300. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.301. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.301 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.320
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.303.

C.14.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.14.3. One of the issues of analysis, as mentioned
in Section C.14.7, is to determine the maximum Shannon probability for the time series presented in Figure C.300.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.321 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.300. Figure C.322 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.300. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.527119, as derived in Section C.14.5 to 0.571429. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.300, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.300, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States M2 movement
was positive, and dividing by the total number of timescales represented in the time series. This quotient is 0.568862,
as compared with the predicted value from the program tsshannonmax of 0.571429.

C.14.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.302.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.301. These
values will be used in a fixed increment Brownian fractal analysis of the United States M2, and may, or may not,
provide adequate accuracy for projections.
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Figure C.320: United States M2, normalized his-
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deviation of 0.004781. This data is superimposed on
the data presented in Figure C.303. The area under
the four curves is identical.

The data in this section is presented in tabular form in sections D.14.6 and D.14.7. As a subjective evaluation of
the “quality” of the analysis of the United States M2, from Chapter 3, Equation 3.8, and using the mean and root mean
square values of the normalized increments of the time series data presented in Figure C.300 from Figure C.301, and
the Shannon probability as calculated by counting the total number of months that the United States M2 movement
was positive, as presented in Section C.14.9:

u � BEDGFHGIKJ f 1

2
(C.557)

0 { 568862 � 0 þ 001492
0 þ 004817 f 1

2
(C.558)
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0 { 568862 � 0 { 654868 (C.559)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 568862 � 0 { 654868 � 0 { 571429 (C.560)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.14.5, should be
compared. The four methods used were the mean of Figure C.301, the constant in the least squares approximation to
Figure C.301, the least squares exponential approximation to Figure C.300, and the logarithmic returns of Figure C.300,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 002151 � 0 { 007084 � 0 { 002294 � 0 { 002123 (C.561)

It is implied in Section C.14.5, Subsection C.14.5 and in Section C.14.8 that, a Brownian motion with fixed
increments fractal may “model” the United States M2. Using Equation 2.104 from Chapter 2, Section 2.5:
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c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.562)

0 { 004817 (2 L 0 { 568862 m 1) � 0 { 004594 (2 L 0 { 568862 m 1)

2 ó 0 { 568862 (1 m 0 { 568862)
(C.563)

0 { 004817 L 0 { 137725 � 0 { 004594 L 0 { 139050 (C.564)

0 { 000663 � 0 { 000639 (C.565)

and, equating to the mean:

0 { 001492 � 0 { 000663 � 0 { 000639 (C.566)

where, as in Equation C.559 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.300 from Figure C.301, and the Shannon probability as
calculated by counting the total number of months that the United States M2 movement was positive, as presented in
Section C.14.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value180, where the absolute value is presented in Figure C.302, and the root mean square value is
presented in Figure C.301:

0 { 003529 � 0 { 004817 (C.567)

Note, that if the United States M2 could be “modeled” as a Brownian motion with fixed increments fractal, then the
standard deviation of the absolute value of the normalized increments of the time series data presented in Figure C.300
from Figure C.301 should be zero. It is 0 { 003289.

C.15 United States Treasury Bill Returns

For the analysis, the data was in the directory ../markets/us.tbill181.
The data in this section is presented in tabular form in Section D.15. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the United States Treasury Bill Returns. This is included for comparative
purposes. The data file actually represents how the value of an investment in United States Treasury Bill Returns
Returns has increased, over the years.

C.15.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.15.1. Figure C.323 is a graph of the time series data
for the United States Treasury Bill Returns.

Figure C.324 is a graph of the normalized increments of the time series data presented in Figure C.323. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

180The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

181Data from the United States Federal Reserve Board, 1980—1994, by months, in percent. The time series, which was Treasury Bill rate of
returns, in percent per year, was converted to cumulative growth per month by converting each element in the time series to a fraction, dividing by
12, and adding 1. The previous value of cumulative returns was multiplied by this number for the next value of cumulative returns.
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Figure C.323: United States Treasury Bill Returns,
time series data.
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Figure C.324: United States Treasury Bill Returns,
normalized increments of the time series data pre-
sented in Figure C.323. The mean is 0.005895
with a standard deviation of 0.002409. The formula
for the least squares approximation is 0 { 009310 fm 0 { 000041 X , and the root mean squared value is
0.006365. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000041, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

Figure C.325 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.324. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
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rate of revenue returns182.
Figure C.326 is the normalized histogram of the normalized increments of the time series data shown in Fig-

ure C.324. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.326.

Figure C.327 is the statistical estimate for the data presented in Figure C.324, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 553983, as derived in Section C.15.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.328 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.324. In principle, if the distribution of the normalized increments presented in Figure C.326
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.329 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.324. In principle, if the distribution of the normalized increments presented in Figure C.326 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.330 is the range of values of the time series shown in Figure C.323. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.330
would be a square root function183. Figure C.331 is the deterministic map of the normalized increments of the time
series data shown in Figure C.324. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Observations on the Time Series Increments Analysis

Figure C.326 would seem to indicate that the time series data for the United States Treasury Bill Returns represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.15.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change184. Squaring this value is the average of the instantaneous fraction

182The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

183Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.330 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

184The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.325: United States Treasury Bill Returns,
absolute value of the normalized increments of the
time series data presented in Figure C.324. The mean
is 0.005895 with a standard deviation of 0.002409.
The formula for the least squares approximation is
0 { 009310 fÅm 0 { 000041 X , and the root mean square
value, from Figure C.324, is 0.006365. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.324, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.326: United States Treasury Bill Returns,
normalized histogram of the normalized increments
of the time series data shown in Figure C.324. The
data has a mean of 0.005895, with a standard devia-
tion of 0.002409. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 7.453000, with a critical
value of 42.557000.

of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.332 is the instantaneous value of the root mean square of the normalized increments for the United States
Treasury Bill Returns, and Figure C.333 is the instantaneous Shannon probability for the normalized increments.
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For a mean of 0.005859, with a confidence level of 0.900000
that the error did not exceed 0.000586, 320 samples would be required.
(With 167 samples, the estimated error is 0.000810 = 13.826739 percent.)

For a standard deviation of 0.006365, with a confidence level of 0.900000
that the error did not exceed 0.000637, 136 samples would be required.
(With 167 samples, the estimated error is 0.000573 = 9.000239 percent.)

Figure C.327: United States Treasury Bill Returns, statistical estimates of the normalized increments of the time series
shown in Figure C.324. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.324.

C.15.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.15.4. Figure C.334 is a graph of the logistic
function estimates of the time series data for the United States Treasury Bill Returns. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies185. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.334 is a graph of the logistic function for the time series data presented in Figure C.323. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.324. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.324. Figure C.335 is the same graph, but
with the time scale expanded by a factor of two.

C.15.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.15.5. Figure C.336 is a graph of the Hurst coefficient
data time series data shown in Figure C.323. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.337 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.324. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.336 implies that the variance of the rate of revenue returns,
(per month,) in the United States Treasury Bill Returns, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time186, X , U d X�i A b0c O�d 1 � ó 2 X�i which

185For example, in Figures C.334 and C.335, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.15.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time

186It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
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Figure C.328: United States Treasury Bill Returns,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.324.
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Figure C.329: United States Treasury Bill Returns,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.324.

is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.340, and, C.341 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the United States Treasury Bill Returns for the near term
and far term, respectively [Pet91, pp. 83-84]187. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.336, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 1.086831, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.568)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 1 þ 086831 (C.569)

characteristic.)
187The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”

which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.330: United States Treasury Bill Returns,
range of the time series data shown in Figure C.323.
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Figure C.331: United States Treasury Bill Returns,
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ü ( X 2 m X 1)2 þ 173662 (C.570)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past188. A Hurst coefficient of 1.086831, (for the near future, and 0.918814 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
108.683100% [Pet91, pp. 66] for the near future, and 0.918814 for the distant future. Likewise, there is a 108.683100%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in

188Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.15.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the United States Treasury Bill Returns. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.332: United States Treasury Bill Returns,
instantaneous value of the root mean square of the
normalized increments, provided by running the pro-
gram tsinstant with the -r option on the data presented
in Figure C.323.
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Figure C.333: United States Treasury Bill Returns,
instantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.323.

a given month, the rate of revenue returns, (per month,) is increasing, there is a 108.683100% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the United States Treasury Bill Returns
are over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the
Hurst coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.571)A 1 { 086831
�

(C.572)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.324, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 005895 L 100 percent, on the average, with a standard deviation of
0 { 002409 L 100 percent, and a root mean square error value of 0 { 006365 L 100 percent—small values for such a simple
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Figure C.334: United States Treasury Bill Returns,
logistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.324 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.335: United States Treasury Bill Returns,
logistic function estimates of Figure C.334 with the
time scale expanded by a factor of two.

forecasting mechanism.
This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)

that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.573)ü ( X 2 m X 1)1 þ 086831 (C.574)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.574 reduces to, [Sch91, pp. 129]:
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Figure C.336: United States Treasury Bill Returns,
Hurst coefficient data for the normalized increments
of the time series data shown in Figure C.324. The
slope of the graph is the Hurst coefficient.
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Figure C.337: United States Treasury Bill Returns, H
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time series data shown in Figure C.324 The slope of
the graph is the H parameter.

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.575)ü � ( X 2 m X 1) (C.576)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.577)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time189.

189To be precise, it is actually asymptotically proportional to � 1
2
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Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.578)

ü �
( cjX )c 1 þ 086831

(C.579)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.337, to provide a least squares
approximation to the H parameter for the United States Treasury Bill Returns. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.988674 for the near future, and 0.963522 for the distant future.

Figures C.336 and C.337 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.324. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.324, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.338 and C.339 was made using the -d option.

C.15.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.15.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.325. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.324. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the United States Treasury Bill Returns, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the United States Treasury Bill Returns, the fiscal strategy, commensurate with
the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.324, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 005895 f 1)
ln (2)

A 0 { 008480 (C.580)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.324, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 009310 f 1)
ln (2)

A 0 { 013369 (C.581)

Note that if the mean is not constant in Figure C.324, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.323:

� V_X�Z A 0 { 008215 (C.582)
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And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.323:

� V_X�Z A 0 { 008425 (C.583)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.15.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 008425 � (C.584)

therefore: Û
(U ) A 0 { 008425 (C.585)
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and, tsshannon 0.008425 gives: Û
(0 { 553983) A 0 { 008425 (C.586)

therefore:

2 � (0 þ 553983) A 20 þ 008425 (C.587)A 1 { 005857 (C.588)A 0 { 585685% (C.589)

and:

2U m 1 A (2 L 0 { 553983) m 1 (C.590)A 0 { 107966 (C.591)A 10 { 796600% (C.592)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the United
States Treasury Bill Returns executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 10.796600% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 89.203400%
will be held in “reserve” with a 55.398300% chance of making twice the 10.796600% back, (and a 44.601700% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
0.585685%, or a doubling of its rate of revenue returns, (per month,) in 118.694362 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
10.796600% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 0.585685%, per month, on average.

Note that the metrics presented in this section are representative of the United States Treasury Bill Returns as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 10.796600% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the United
States Treasury Bill Returns’s environment, the company’s rate of revenue returns exceeds what was borrowed from
the bank, and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.585685% per month.

As another simple example, a company re-invests 10.796600% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 10.796600% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.585685% per month.

As an example of “product portfolio” management, suppose a company re-invests 10.796600% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 10 { 796600, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 10 { 796600 percent for the second product, implying that the company should diversify its
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product line190. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 10 { 796600%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the United States Treasury Bill Returns, as a standard bench mark, then the optimal number will be 1

0 þ 107966 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.324, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 10.796600% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 10.796600% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.15.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the United States Treasury Bill Returns,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the United States Treasury Bill Returns time series is 0.005895, and 0.006365respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 145.508041.

If this value seems consistent number of companies in the United States Treasury Bill Returns, within the assump-
tions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence
that the companies participating in the United States Treasury Bill Returns are operating optimally, and the “average”
Shannon probability, u for each participating company would be, using Equation 2.110, 0.538389, which would be
the value which should be used in Section C.15.5 for each participating company if market expansion was to be
consistent with the rest of the industry. However, if the Shannon probability derived in Section C.15.5 is greater than
the average Shannon probability for the companies participating in the United States Treasury Bill Returns, as derived
in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.15.5. The
maximum exploitability for the United States Treasury Bill Returns is derived in Section C.15.9, but it is probably of
doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the United States Treasury Bill
Returns is 0.538389, with several alternative solutions listed in the previous paragraph. However, these should be

190The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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contrasted to the Shannon probability that maximizes a company’s P&L which is 0.963079 in the United States Treasury
Bill Returns. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.593)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the United States Treasury Bill Returns would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.15.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.325.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.324. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the United States Treasury Bill
Returns, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.15.5, is derived from the United States
Treasury Bill Returns metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.15.9.

An additional exploitable strategy may be time itself. Equations C.570, C.574, and, C.572, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the United States Treasury Bill
Returns, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as
an operational necessity in strategic planning and project management. Figures C.340, and, C.341 compare methods
of approximation of the “forecastability” of rate of revenue returns in the United States Treasury Bill Returns for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the United States Treasury
Bill Returns. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the
rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.191” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.340, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory

191For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.340: United States Treasury Bill Returns,
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Figure C.341: United States Treasury Bill Returns,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

levels that do not exceed, from Equation C.572, 1 { 086831
� A 0 { 5 months of operations. Since the optimal amount of

inventory and, from Equation C.570, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.15.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.15.9. Figure C.342 represents a constructional
simulation of the time series data presented in Figure C.323. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
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in Figure C.324. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.324 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.343
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.326.
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Time series data, empirical and simulated, using the
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data is superimposed on the data presented in Fig-
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C.15.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.15.3. One of the issues of analysis, as mentioned
in Section C.15.7, is to determine the maximum Shannon probability for the time series presented in Figure C.323.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.344 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.323. Figure C.345 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.323. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.553983, as derived in Section C.15.5 to 1.000000. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.323, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.323, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the United States Treasury Bill
Returns movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.999990, as compared with the predicted value from the program tsshannonmax of 1.000000.

C.15.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.325.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.324. These
values will be used in a fixed increment Brownian fractal analysis of the United States Treasury Bill Returns, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.15.6 and D.15.7. As a subjective evaluation of
the “quality” of the analysis of the United States Treasury Bill Returns, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.323 from
Figure C.324, and the Shannon probability as calculated by counting the total number of months that the United States
Treasury Bill Returns movement was positive, as presented in Section C.15.9:

u � BEDGFHGIKJ f 1

2
(C.594)

0 { 999990 � 0 þ 005895
0 þ 006365 f 1

2
(C.595)

0 { 999990 � 0 { 963079 (C.596)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 999990 � 0 { 963079 � 1 { 000000 (C.597)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.15.5, should be
compared. The four methods used were the mean of Figure C.324, the constant in the least squares approximation to
Figure C.324, the least squares exponential approximation to Figure C.323, and the logarithmic returns of Figure C.323,
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Figure C.345: United States Treasury Bill Returns,
maximum rate of revenue returns, per month, at a
Shannon probability, of 1.000000, corresponding to a
“wager” fraction of 1.000000.

derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 008480 � 0 { 013369 � 0 { 008215 � 0 { 008425 (C.598)

It is implied in Section C.15.5, Subsection C.15.5 and in Section C.15.8 that, a Brownian motion with fixed
increments fractal may “model” the United States Treasury Bill Returns. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.599)

0 { 006365 (2 L 0 { 999990 m 1) � 0 { 002409 (2 L 0 { 999990 m 1)

2 ó 0 { 999990 (1 m 0 { 999990)
(C.600)

0 { 006365 L 0 { 999980 � 0 { 002409 L 158 { 111511 (C.601)
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0 { 006365 � 0 { 380891 (C.602)

and, equating to the mean:

0 { 005895 � 0 { 006365 � 0 { 380891 (C.603)

where, as in Equation C.596 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.323 from Figure C.324, and the Shannon probability as
calculated by counting the total number of months that the United States Treasury Bill Returns movement was positive,
as presented in Section C.15.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value192, where the absolute value is presented in Figure C.325, and the root mean square value is
presented in Figure C.324:

0 { 005895 � 0 { 006365 (C.604)

Note, that if the United States Treasury Bill Returns could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.323 from Figure C.324 should be zero. It is 0 { 002409.

C.16 Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin193.
The data in this section is presented in tabular form in Section D.16. Note that in this analysis, the rate of

revenue returns means the increase or decrease in the cumulative sum of the Coin Tossing Game. This is included for
“theoretical” comparative purposes.

C.16.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.16.1. Figure C.346 is a graph of the time series data
for the Coin Tossing Game.

Figure C.347 is a graph of the normalized increments of the time series data presented in Figure C.346. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.348 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.347. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns194.

192The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

193As a simulation model, the program tscoin was run to make a time series data file, with the following parameters:

tscoin -p 0.6 300 > data

to make a time series of 300 elements, with a Shannon probability of 0.6. The data is by tosses.
194The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.346: Coin Tossing Game, time series data.
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Figure C.347: Coin Tossing Game, normalized in-
crements of the time series data presented in Fig-
ure C.346. The mean is 0.020736 with a standard de-
viation of 0.199256. The formula for the least squares
approximation is 0 { 013699 f 0 { 000047 X , and the root
mean squared value is 0.200000. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments. This graph is the
fraction of change in the time series, as a function of
time. Note that the slope of the mean, 0.000047, is the
coefficient of the nonlinearity term in the normalized
increments. See Chapter 2, Section 2.8 for a possible
application of the logistic function to this data set.

Figure C.349 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.347. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.349.
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Figure C.348: Coin Tossing Game, absolute value of
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standard deviation of 0.000001. The formula for the
least squares approximation is 0 { 200000 f 0 { 000000 X ,
and the root mean square value, from Figure C.347, is
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Figure C.349: Coin Tossing Game, normalized his-
togram of the normalized increments of the time series
data shown in Figure C.347. The data has a mean of
0.020736, with a standard deviation of 0.199256. The
area under the two curves is identical. The ê 2 value
of the observed and expected values of the two curves
is 117.483000, with a critical value of 42.557000.

Figure C.350 is the statistical estimate for the data presented in Figure C.347, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 517402, as derived in Section C.16.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
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For a mean of 0.020667, with a confidence level of 0.900000
that the error did not exceed 0.002067, 25339 samples would be required.
(With 300 samples, the estimated error is 0.018993 = 91.902275 percent.)

For a standard deviation of 0.200000, with a confidence level of 0.900000
that the error did not exceed 0.020000, 136 samples would be required.
(With 300 samples, the estimated error is 0.013430 = 6.715087 percent.)

Figure C.350: Coin Tossing Game, statistical estimates of the normalized increments of the time series shown in
Figure C.347. The table was produced with the tsstatest program, and illustrates the size of the data set required for a
confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.347.

too high.
Figure C.351 is the normalized histogram of the first derivative of the normalized increments of the time series

data shown in Figure C.347. In principle, if the distribution of the normalized increments presented in Figure C.349
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.352 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.347. In principle, if the distribution of the normalized increments presented in Figure C.349 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.353 is the range of values of the time series shown in Figure C.346. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.353
would be a square root function195. Figure C.354 is the deterministic map of the normalized increments of the time
series data shown in Figure C.347. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

C.16.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change196. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.355 is the instantaneous value of the root mean square of the normalized increments for the Coin Tossing
Game, and Figure C.356 is the instantaneous Shannon probability for the normalized increments.

195Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.353 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

196The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.351: Coin Tossing Game, normalized his-
togram of the first derivative of the normalized incre-
ments of the time series data shown in Figure C.347.
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Figure C.352: Coin Tossing Game, normalized his-
togram of second derivative of the the normalized
increments of the time series data shown in Fig-
ure C.347.

C.16.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.16.4. Figure C.357 is a graph of the logistic function
estimates of the time series data for the Coin Tossing Game. The reader is cautioned that these graphs are constructed
using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate prediction of the
logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to produce a practical fit
to the data. In addition, there are numerical stability issues with logistic function methodologies197. The methodology
should be regarded as “fragile.” It is included for completeness.

Figure C.357 is a graph of the logistic function for the time series data presented in Figure C.346. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.347. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.347. Figure C.358 is the same graph, but
with the time scale expanded by a factor of two.

197For example, in Figures C.357 and C.358, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.16.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 451



C.16. COIN TOSSING GAME

0

1

2

3

4

5

6

0 50 100 150 200 250 300

R
an

geñ

Time

Range

"data.tshurst-f"

Figure C.353: Coin Tossing Game, range of the time
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C.16.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.16.5. Figure C.359 is a graph of the Hurst coefficient
data time series data shown in Figure C.346. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.360 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.347. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.359 implies that the variance of the rate of revenue
returns, (per tosses,) in the Coin Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the period of
time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time198, X , U d X�i A b0c O�d 1 � ó 2 X�i which

198It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
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Figure C.355: Coin Tossing Game, instantaneous
value of the root mean square of the normalized
increments, provided by running the program tsin-
stant with the -r option on the data presented in Fig-
ure C.346.
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Figure C.356: Coin Tossing Game, instantaneous
value of the Shannon probability of the normalized
increments, provided by running the program tsin-
stant with the -s option on the data presented in Fig-
ure C.346.

is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.363, and, C.364 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the Coin Tossing Game for the near term and far term,
respectively [Pet91, pp. 83-84]199. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data, presented in
Figure C.359, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.853212, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.605)

153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

199The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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panded by a factor of two.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 853212 (C.606)ü ( X 2 m X 1)1 þ 706424 (C.607)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past200. A Hurst coefficient of 0.853212, (for the near future, and 0.506256 for the distant future.) implies

200Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.16.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Coin Tossing Game. See also [Pet91, pp. 67, 83-84]
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Figure C.359: Coin Tossing Game, Hurst coefficient
data for the normalized increments of the time series
data shown in Figure C.347. The slope of the graph
is the Hurst coefficient.
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Figure C.360: Coin Tossing Game, H parameter data
for the normalized increments of the time series data
shown in Figure C.347 The slope of the graph is the
H parameter.

that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is
85.321200% [Pet91, pp. 66] for the near future, and 0.506256 for the distant future. Likewise, there is a 85.321200%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in
a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 85.321200% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Coin Tossing Game are over time, since
the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is the Hurst coefficient, or,
letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.608)A 0 { 853212
�

(C.609)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.347,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that

and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 020736 L 100 percent, on the average, with a standard deviation of
0 { 199256 L 100 percent, and a root mean square error value of 0 { 200000 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.610)ü ( X 2 m X 1)0 þ 853212 (C.611)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.611 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.612)ü � ( X 2 m X 1) (C.613)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.614)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time201.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.615)

ü �
( cjX )c 0 þ 853212

(C.616)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.360, to provide a least squares
approximation to the H parameter for the Coin Tossing Game. The superimposed least squares approximation on
the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.438467 for the near future, and 0.420986 for the distant future.

Figures C.359 and C.360 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.347. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.347, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.361 and C.362 was made using the -d option.

201To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.361: Coin Tossing Game, traditional Hurst
coefficient data for the time series data shown in Fig-
ure C.346. The slope of the graph is the Hurst coeffi-
cient, and is 0.858532 for the near term, and 0.571735
for the far term.
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Figure C.362: Coin Tossing Game, traditional H pa-
rameter data for the time series data shown in Fig-
ure C.346 The slope of the graph is the H parameter,
and is 0.476668 for the near term, and 0.479198 for
the far term.

C.16.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.16.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.348. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.347. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Coin Tossing Game, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Coin Tossing Game, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
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Chapter B, and is presented in Figure C.347, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 020736 f 1)
ln (2)

A 0 { 029610 (C.617)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.347, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 013699 f 1)
ln (2)

A 0 { 019629 (C.618)

Note that if the mean is not constant in Figure C.347, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.346:

� V_X�Z A 0 { 001451 (C.619)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.346:

� V_X�Z A 0 { 000874 (C.620)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.16.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 000874 � (C.621)

therefore: Û
(U ) A 0 { 000874 (C.622)

and, tsshannon 0.000874 gives: Û
(0 { 517402) A 0 { 000874 (C.623)

therefore:

2 � (0 þ 517402) A 20 þ 000874 (C.624)A 1 { 000606 (C.625)A 0 { 060599% (C.626)

and:

2U m 1 A (2 L 0 { 517402) m 1 (C.627)A 0 { 034804 (C.628)A 3 { 480400% (C.629)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Coin
Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services
by 3.480400% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining 96.519600% will
be held in “reserve” with a 51.740200% chance of making twice the 3.480400% back, (and a 48.259800% chance
of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns, (per tosses,) of
0.060599%, or a doubling of its rate of revenue returns, (per tosses,) in 1144.164760 tossess.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
3.480400% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.060599%, per tosses, on average.

Note that the metrics presented in this section are representative of the Coin Tossing Game as an aggregate whole,
and may or may not be accurate representations for any particular participant in the environment. Of interest to the
participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 3.480400% of its rate of revenue returns, (per tosses,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the Coin
Tossing Game’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank, and
the loan is repaid in full. Other tossess, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 0.060599% per tosses.

As another simple example, a company re-invests 3.480400% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 3.480400% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.060599% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 3.480400% of its rate of revenue
returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 3 { 480400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 3 { 480400 percent for the second product, implying that the company should diversify its
product line202. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 3 { 480400%, and the investment in each product should be made at a ratio
of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of products
that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Coin Tossing
Game, as a standard bench mark, then the optimal number will be 1

0 þ 034804 . Note that this is a “theoretical” value, since
not all products are “typical,” and there may be strategic reasons, for example product leveraging, that may increase
the number of products above the optimum. However, most of the revenue should come from the optimal number of
products, since having more products will decrease the amount of the potential investment in each product, and having
less than the optimum number of products will increase the risk that many of the products could suffer a “down market”
concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal “hedging of
bets,” in product portfolio strategy, and considering the graph of the normalized increments presented in Figure C.347,
if the organization is running optimally, then these products will generate, at least in principle, one standard deviation,
approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are approximations,
and the values are an approximation to a, probably, complex process, and appropriate scrutiny should be exercised
before making specific projections. As yet another example of “product portfolio” management, consider the issue of

202The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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product mix. In this interpretation, 3.480400% of the product manufactured should be “proprietary,” while the rest is
“industry standard.” As yet another possibility, 3.480400% of the product manufactured should be predatory into new
markets, and the remainder in markets that are “traditional” for the company.

C.16.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Coin Tossing Game, and uses the
method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square, c Q Z*� ��� , of the
normalized increments of the Coin Tossing Game time series is 0.020736, and 0.200000respectively, the number of
companies participating in the market can be calculated by Equation 2.109 to be 0.518400.

If this value seems consistent number of companies in the Coin Tossing Game, within the assumptions outlined in
Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the companies
participating in the Coin Tossing Game are operating optimally, and the “average” Shannon probability, u for each
participating company would be, using Equation 2.110, 0.572000, which would be the value which should be used in
Section C.16.5 for each participating company if market expansion was to be consistent with the rest of the industry.
However, if the Shannon probability derived in Section C.16.5 is greater than the average Shannon probability for
the companies participating in the Coin Tossing Game, as derived in this section, then the market would, possibly, be
exploitable with the fiscal strategy outlined in Section C.16.5. The maximum exploitability for the Coin Tossing Game
is derived in Section C.16.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Coin Tossing Game is 0.572000,
with several alternative solutions listed in the previous paragraph. However, these should be contrasted to the Shannon
probability that maximizes a company’s P&L which is 0.551840 in the Coin Tossing Game. In all cases, the fraction
of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.630)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Coin Tossing Game would tend to indicate that the companies participating in the market
have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.16.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.348.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.347. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Coin Tossing Game, and may,
or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.16.5, is derived from the Coin Tossing
Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be exploitable,
see Section C.16.9.

An additional exploitable strategy may be time itself. Equations C.607, C.611, and, C.609, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Coin Tossing Game, becomes
obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational necessity
in strategic planning and project management. Figures C.363, and, C.364 compare methods of approximation of the
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“forecastability” of rate of revenue returns in the Coin Tossing Game for the near term and far term [Pet91, pp. 83-84],
respectively. As a general rule, caution must be exercised when making decisions that will span a time interval larger
than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond this time interval,
the chances increase that the competitive and market forces will alter the market environment in a possibly detrimental
unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development, manufacturing, and
distribution of products and services that are consistent with this temporal agenda. Automation of these processes, if
executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Coin Tossing Game.
When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate of revenue
returns for the product or service will change in a detrimental fashion. If it is assumed that a product or service life
cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals are equal,
the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Although probably not an accurate prediction of product or service life cycle, the technique
may be used as a conceptual approximation to the dynamics of “market windows.203” The conceptual approximation
will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.363, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.609, 0 { 853212

� A 0 { 5 tossess of operations. Since the optimal amount of
inventory and, from Equation C.607, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.16.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.16.9. Figure C.365 represents a constructional
simulation of the time series data presented in Figure C.346. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.347. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.347 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.366
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.349.

C.16.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.16.3. One of the issues of analysis, as mentioned
in Section C.16.7, is to determine the maximum Shannon probability for the time series presented in Figure C.346.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.367 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum

203For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.363: Coin Tossing Game, “forecastability”
of near term rate of revenue returns. Although the
error function is the most accurate, for the near term,ÿ � A 0 { 853212 � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

0

0.05

0.1

0.15

0.2

0.25

25 30 35 40 45 50 55 60

C
on

fid
en

ce
 in

 R
ev

en
ue

 R
at

e 
F

or
ec

as
t

"

Time into Future

Revenue Rate Forecastability

0.853212 ** t
erf (1 / sqrt (2 * t))

1 / sqrt (t)

Figure C.364: Coin Tossing Game, “forecastability”
of far term rate of revenue returns. Although the error
function is the most accurate, for the far term, 1! � may
be used as a reliable metric of “forecastability” of the
rate of revenue returns.

Shannon probability for the time series data presented in Figure C.346. Figure C.368 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.346. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.517402, as derived in Section C.16.5 to 0.553333. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.346, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.346, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of tossess that the Coin Tossing Game
movement was positive, and dividing by the total number of timescales represented in the time series. This quotient is
0.551839, as compared with the predicted value from the program tsshannonmax of 0.553333.
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Figure C.365: Coin Tossing Game, Time series data,
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0

1

2

3

4

5

6

7

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution of Increments

"data.tsfraction.tsnormal-s30"
"data.tsfraction.tsnormal-s30-f"

"tsunfairbrownian-f.tsfraction.tsnormal-s30"
"tsunfairbrownian-f.tsfraction.tsnormal-s30-f"

Figure C.366: Coin Tossing Game, normalized his-
togram of the normalized increments of the time series
data shown in Figure C.365, empirical and simulated.
The empirical data has a mean of 0.020736, with a
standard deviation of 0.199256. By comparison, the
simulated data has a mean of 0.020134 with a standard
deviation of 0.199319. This data is superimposed on
the data presented in Figure C.349. The area under
the four curves is identical.

C.16.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.348.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.347. These
values will be used in a fixed increment Brownian fractal analysis of the Coin Tossing Game, and may, or may not,
provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.16.6 and D.16.7. As a subjective evaluation of the
“quality” of the analysis of the Coin Tossing Game, from Chapter 3, Equation 3.8, and using the mean and root mean
square values of the normalized increments of the time series data presented in Figure C.346 from Figure C.347, and
the Shannon probability as calculated by counting the total number of tossess that the Coin Tossing Game movement
was positive, as presented in Section C.16.9:
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of 0.553333, corresponding to a “wager” fraction of
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u � BEDGFHGIKJ f 1

2
(C.631)

0 { 551839 � 0 þ 020736
0 þ 200000 f 1

2
(C.632)

0 { 551839 � 0 { 551840 (C.633)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 551839 � 0 { 551840 � 0 { 553333 (C.634)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.16.5, should be
compared. The four methods used were the mean of Figure C.347, the constant in the least squares approximation to
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Figure C.347, the least squares exponential approximation to Figure C.346, and the logarithmic returns of Figure C.346,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 029610 � 0 { 019629 � 0 { 001451 � 0 { 000874 (C.635)

It is implied in Section C.16.5, Subsection C.16.5 and in Section C.16.8 that, a Brownian motion with fixed
increments fractal may “model” the Coin Tossing Game. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.636)

0 { 200000 (2 L 0 { 551839 m 1) � 0 { 199256 (2 L 0 { 551839 m 1)

2 ó 0 { 551839 (1 m 0 { 551839)
(C.637)

0 { 200000 L 0 { 103679 � 0 { 199256 L 0 { 104241 (C.638)

0 { 020736 � 0 { 020771 (C.639)

and, equating to the mean:

0 { 020736 � 0 { 020736 � 0 { 020771 (C.640)

where, as in Equation C.633 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.346 from Figure C.347, and the Shannon probability as
calculated by counting the total number of tossess that the Coin Tossing Game movement was positive, as presented
in Section C.16.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value204, where the absolute value is presented in Figure C.348, and the root mean square value is
presented in Figure C.347:

0 { 200000 � 0 { 200000 (C.641)

Note, that if the Coin Tossing Game could be “modeled” as a Brownian motion with fixed increments fractal,
then the standard deviation of the absolute value of the normalized increments of the time series data presented in
Figure C.346 from Figure C.347 should be zero. It is 0 { 000001.

C.17 Non-optimal Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tsunfairbrownian205.
The data in this section is presented in tabular form in Section D.17. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Non-optimal Coin Tossing Game. This is included
for “theoretical” comparative purposes.

204The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

205As a simulation model, the program tscoin was run to make a time series data file, with the following parameters:

tscoin -p 0.7 300 > data.1

to make a time series of 300 elements, with a Shannon probability of 0.7. In addition, the program tsunfairbrownian was run on the data file with
the following parameters:

tsunfairbrownian -f 0.03 data.1 > data

to make a time series with a known non-optimal investment strategy. The data is by tosses.
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C.17.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.17.1. Figure C.369 is a graph of the time series data
for the Non-optimal Coin Tossing Game.

Figure C.370 is a graph of the normalized increments of the time series data presented in Figure C.369. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.371 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.370. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns206.

Figure C.372 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.370. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.372.

Figure C.373 is the statistical estimate for the data presented in Figure C.370, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 574001, as derived in Section C.17.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.374 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.370. In principle, if the distribution of the normalized increments presented in Figure C.372
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.375 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.370. In principle, if the distribution of the normalized increments presented in Figure C.372 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.376 is the range of values of the time series shown in Figure C.369. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.376
would be a square root function207. Figure C.377 is the deterministic map of the normalized increments of the time
series data shown in Figure C.370. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

C.17.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,

206The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

207Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.376 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.369: Non-optimal Coin Tossing Game, time
series data.
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Figure C.370: Non-optimal Coin Tossing Game, nor-
malized increments of the time series data presented
in Figure C.369. The mean is 0.011477 with a stan-
dard deviation of 0.027765. The formula for the
least squares approximation is 0 { 007028 f 0 { 000030 X ,
and the root mean squared value is 0.030000. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000030, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
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Figure C.371: Non-optimal Coin Tossing Game, ab-
solute value of the normalized increments of the time
series data presented in Figure C.370. The mean
is 0.030000 with a standard deviation of 0.000000.
The formula for the least squares approximation is
0 { 030000 f 0 { 000000 X , and the root mean square
value, from Figure C.370, is 0.030000. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.370, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.372: Non-optimal Coin Tossing Game, nor-
malized histogram of the normalized increments of
the time series data shown in Figure C.370. The data
has a mean of 0.011477, with a standard deviation of
0.027765. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 130.435000, with a critical value of
42.557000.

mean square of the instantaneous fraction of change208. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

208The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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For a mean of 0.011438, with a confidence level of 0.900000
that the error did not exceed 0.001144, 1862 samples would be required.
(With 299 samples, the estimated error is 0.002854 = 24.949283 percent.)

For a standard deviation of 0.030000, with a confidence level of 0.900000
that the error did not exceed 0.003000, 136 samples would be required.
(With 299 samples, the estimated error is 0.002018 = 6.726307 percent.)

Figure C.373: Non-optimal Coin Tossing Game, statistical estimates of the normalized increments of the time series
shown in Figure C.370. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.370.

Figure C.378 is the instantaneous value of the root mean square of the normalized increments for the Non-optimal
Coin Tossing Game, and Figure C.379 is the instantaneous Shannon probability for the normalized increments.

C.17.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.17.4. Figure C.380 is a graph of the logistic
function estimates of the time series data for the Non-optimal Coin Tossing Game. The reader is cautioned that
these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies209. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.380 is a graph of the logistic function for the time series data presented in Figure C.369. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.370. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.370. Figure C.381 is the same graph, but
with the time scale expanded by a factor of two.

C.17.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.17.5. Figure C.382 is a graph of the Hurst coefficient
data time series data shown in Figure C.369. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.383 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.370. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.382 implies that the variance of the rate of revenue returns,
(per tosses,) in the Non-optimal Coin Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the

209For example, in Figures C.380 and C.381, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.17.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.374: Non-optimal Coin Tossing Game, nor-
malized histogram of the first derivative of the nor-
malized increments of the time series data shown in
Figure C.370.
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Figure C.375: Non-optimal Coin Tossing Game, nor-
malized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.370.

state of affairs repeating sometime in the future goes down with increasing time210, X , U d X�i A b0c O�d 1 ��ó 2 X�i which is
approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.386, and, C.387 compare methods of approximation of the
“forecastability” of the rate of revenue returns in the Non-optimal Coin Tossing Game for the near term and far term,
respectively [Pet91, pp. 83-84]211. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data, presented in
Figure C.382, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of

210It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

211The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.376: Non-optimal Coin Tossing Game,
range of the time series data shown in Figure C.369.
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0.836828, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.642)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 836828 (C.643)ü ( X 2 m X 1)1 þ 673656 (C.644)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past212. A Hurst coefficient of 0.836828, (for the near future, and 0.737672 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is

212Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
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Figure C.378: Non-optimal Coin Tossing Game, in-
stantaneous value of the root mean square of the nor-
malized increments, provided by running the program
tsinstant with the -r option on the data presented in
Figure C.369.
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Figure C.379: Non-optimal Coin Tossing Game, in-
stantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.369.

83.682800% [Pet91, pp. 66] for the near future, and 0.737672 for the distant future. Likewise, there is a 83.682800%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in
a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 83.682800% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Non-optimal Coin Tossing Game are
over time, since the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.645)A 0 { 836828
�

(C.646)

motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.17.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Non-optimal Coin Tossing Game. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.380: Non-optimal Coin Tossing Game, lo-
gistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.370 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.381: Non-optimal Coin Tossing Game, lo-
gistic function estimates of Figure C.380 with the time
scale expanded by a factor of two.

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.370,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 011477 L 100 percent, on the average, with a standard deviation of
0 { 027765 L 100 percent, and a root mean square error value of 0 { 030000 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.647)ü ( X 2 m X 1)0 þ 836828 (C.648)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
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Figure C.382: Non-optimal Coin Tossing Game,
Hurst coefficient data for the normalized increments
of the time series data shown in Figure C.370. The
slope of the graph is the Hurst coefficient.
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Figure C.383: Non-optimal Coin Tossing Game, H
parameter data for the normalized increments of the
time series data shown in Figure C.370 The slope of
the graph is the H parameter.

of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1
2 implies that the increments

of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.648 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.649)ü � ( X 2 m X 1) (C.650)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.651)
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which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time213.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.652)

ü �
( cjX )c 0 þ 836828

(C.653)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.383, to provide a least squares approx-
imation to the H parameter for the Non-optimal Coin Tossing Game. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.635389 for the near future, and 0.792153 for the distant future.

Figures C.382 and C.383 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.370. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.370, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.384 and C.385 was made using the -d option.

C.17.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.17.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.371. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.370. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Non-optimal Coin Tossing Game, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Non-optimal Coin Tossing Game, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.370, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 011477 f 1)
ln (2)

A 0 { 016464 (C.654)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.370, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 007028 f 1)
ln (2)

A 0 { 010104 (C.655)

Note that if the mean is not constant in Figure C.370, this method will not provide accurate results.

213To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.384: Non-optimal Coin Tossing Game, tra-
ditional Hurst coefficient data for the time series data
shown in Figure C.369. The slope of the graph is the
Hurst coefficient, and is 0.821860 for the near term,
and 0.541955 for the far term.
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Figure C.385: Non-optimal Coin Tossing Game, tra-
ditional H parameter data for the time series data
shown in Figure C.369 The slope of the graph is the
H parameter, and is 0.439904 for the near term, and
0.478377 for the far term.

And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.369:

� V_X�Z A 0 { 014992 (C.656)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.369:

� V_X�Z A 0 { 015859 (C.657)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.17.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]
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20 þ 015859 � (C.658)

therefore: Û
(U ) A 0 { 015859 (C.659)

and, tsshannon 0.015859 gives: Û
(0 { 574001) A 0 { 015859 (C.660)

therefore:

2 � (0 þ 574001) A 20 þ 015859 (C.661)A 1 { 011053 (C.662)A 1 { 105326% (C.663)

and:

2U m 1 A (2 L 0 { 574001) m 1 (C.664)A 0 { 148002 (C.665)A 14 { 800200% (C.666)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Non-
optimal Coin Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 14.800200% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining 85.199800%
will be held in “reserve” with a 57.400100% chance of making twice the 14.800200% back, (and a 42.599900% chance
of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns, (per tosses,) of
1.105326%, or a doubling of its rate of revenue returns, (per tosses,) in 63.055678 tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
14.800200% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 1.105326%, per tosses, on average.

Note that the metrics presented in this section are representative of the Non-optimal Coin Tossing Game as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 14.800200% of its rate of revenue returns, (per tosses,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the
Non-optimal Coin Tossing Game’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other tossess, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 1.105326% per tosses.

As another simple example, a company re-invests 14.800200% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 14.800200% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.105326% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 14.800200% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
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that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 14 { 800200, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 14 { 800200 percent for the second product, implying that the company should diversify its
product line214. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 14 { 800200%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the Non-optimal Coin Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 148002 . Note that
this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.370, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 14.800200% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 14.800200% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.17.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Non-optimal Coin Tossing Game,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the Non-optimal Coin Tossing Game time series is 0.011477, and 0.030000respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 12.752222.

If this value seems consistent number of companies in the Non-optimal Coin Tossing Game, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the
companies participating in the Non-optimal Coin Tossing Game are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.553565, which would be the value
which should be used in Section C.17.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.17.5 is greater than the average
Shannon probability for the companies participating in the Non-optimal Coin Tossing Game, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.17.5. The maximum
exploitability for the Non-optimal Coin Tossing Game is derived in Section C.17.9, but it is probably of doubtful
practicality.

214The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Non-optimal Coin Tossing Game
is 0.553565, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.691283 in the Non-optimal Coin Tossing Game.
In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.667)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Non-optimal Coin Tossing Game would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.17.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.371.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.370. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Non-optimal Coin Tossing
Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.17.5, is derived from the Non-optimal
Coin Tossing Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be
exploitable, see Section C.17.9.

An additional exploitable strategy may be time itself. Equations C.644, C.648, and, C.646, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Non-optimal Coin Tossing
Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.386, and, C.387 compare methods
of approximation of the “forecastability” of rate of revenue returns in the Non-optimal Coin Tossing Game for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Non-optimal Coin
Tossing Game. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the
rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.215” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

215For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.386: Non-optimal Coin Tossing Game,
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able metric of “forecastability” of the rate of revenue
returns.

0

0.05

0.1

0.15

0.2

0.25

25 30 35 40 45 50 55 60

C
on

fid
en

ce
 in

 R
ev

en
ue

 R
at

e 
F

or
ec

as
t

"

Time into Future

Revenue Rate Forecastability

0.836828 ** t
erf (1 / sqrt (2 * t))

1 / sqrt (t)

Figure C.387: Non-optimal Coin Tossing Game,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

As an interesting interpretation of the data presented in Figure C.386, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.646, 0 { 836828

� A 0 { 5 tossess of operations. Since the optimal amount of
inventory and, from Equation C.644, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.
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C.17.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.17.9. Figure C.388 represents a constructional
simulation of the time series data presented in Figure C.369. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.370. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.370 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.389
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.372.

C.17.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.17.3. One of the issues of analysis, as mentioned
in Section C.17.7, is to determine the maximum Shannon probability for the time series presented in Figure C.369.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.390 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.369. Figure C.391 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.369. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.574001, as derived in Section C.17.5 to 0.692308. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.369, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.369, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of tossess that the Non-optimal Coin Tossing
Game movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.691275, as compared with the predicted value from the program tsshannonmax of 0.692308.

C.17.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.371.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.370. These
values will be used in a fixed increment Brownian fractal analysis of the Non-optimal Coin Tossing Game, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.17.6 and D.17.7. As a subjective evaluation of
the “quality” of the analysis of the Non-optimal Coin Tossing Game, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.369 from
Figure C.370, and the Shannon probability as calculated by counting the total number of tossess that the Non-optimal
Coin Tossing Game movement was positive, as presented in Section C.17.9:

u � BEDGFHGIKJ f 1

2
(C.668)
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Figure C.389: Non-optimal Coin Tossing Game, nor-
malized histogram of the normalized increments of
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ical and simulated. The empirical data has a mean
of 0.011477, with a standard deviation of 0.027765.
By comparison, the simulated data has a mean of
0.011414 with a standard deviation of 0.027791. This
data is superimposed on the data presented in Fig-
ure C.372. The area under the four curves is identical.

0 { 691275 � 0 þ 011477
0 þ 030000 f 1

2
(C.669)

0 { 691275 � 0 { 691283 (C.670)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 691275 � 0 { 691283 � 0 { 692308 (C.671)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.17.5, should be
compared. The four methods used were the mean of Figure C.370, the constant in the least squares approximation to
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Figure C.391: Non-optimal Coin Tossing Game,
maximum rate of revenue returns, per tosses, at a
Shannon probability, of 0.692308, corresponding to a
“wager” fraction of 0.384616.

Figure C.370, the least squares exponential approximation to Figure C.369, and the logarithmic returns of Figure C.369,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 016464 � 0 { 010104 � 0 { 014992 � 0 { 015859 (C.672)

It is implied in Section C.17.5, Subsection C.17.5 and in Section C.17.8 that, a Brownian motion with fixed
increments fractal may “model” the Non-optimal Coin Tossing Game. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.673)

0 { 030000 (2 L 0 { 691275 m 1) � 0 { 027765 (2 L 0 { 691275 m 1)

2 ó 0 { 691275 (1 m 0 { 691275)
(C.674)
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0 { 030000 L 0 { 382550 � 0 { 027765 L 0 { 414045 (C.675)

0 { 011477 � 0 { 011496 (C.676)

and, equating to the mean:

0 { 011477 � 0 { 011477 � 0 { 011496 (C.677)

where, as in Equation C.670 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.369 from Figure C.370, and the Shannon probability as
calculated by counting the total number of tossess that the Non-optimal Coin Tossing Game movement was positive,
as presented in Section C.17.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value216, where the absolute value is presented in Figure C.371, and the root mean square value is
presented in Figure C.370:

0 { 030000 � 0 { 030000 (C.678)

Note, that if the Non-optimal Coin Tossing Game could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.369 from Figure C.370 should be zero. It is 0 { 000000.

C.18 Time Sampled Non-optimal Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tsunfairbrownian.tssample217.
The data in this section is presented in tabular form in Section D.18. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Time Sampled Non-optimal Coin Tossing Game.
This is included for “theoretical” comparative purposes.

C.18.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.18.1. Figure C.392 is a graph of the time series data
for the Time Sampled Non-optimal Coin Tossing Game.

Figure C.393 is a graph of the normalized increments of the time series data presented in Figure C.392. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described

216The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

217As a simulation model, the program tscoin was run to make a time series data file, with the following parameters:

tscoin -p 0.70 1500 > data.1

to make a time series of 1500 elements, with a Shannon probability of 0.70. In addition, the program tsunfairbrownian was run on the data file with
the following parameters:

tsunfairbrownian -f 0.0894 data.1 > data.2

to make a time series with a known non-optimal investment strategy. The value, 0.0894 was calculated by reducing the desired value, 0.2, by a
factor of 1¹

5
, where the sampling occurs every fifth time series element. Then the program tssample was run with the following parameters:

tssample -i 5 data.2 > data

to time sample every fifth element in the time series to make a time sampled time series with a known non optimal investment strategy. The data is
by tosses.
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briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.
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Figure C.392: Time Sampled Non-optimal Coin
Tossing Game, time series data.
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Figure C.393: Time Sampled Non-optimal Coin
Tossing Game, normalized increments of the time
series data presented in Figure C.392. The mean
is 0.179112 with a standard deviation of 0.221159.
The formula for the least squares approximation is
0 { 152372 f 0 { 000180 X , and the root mean squared
value is 0.284303. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
and “data.tsfraction.tsavg” is the running average of
the normalized increments. This graph is the fraction
of change in the time series, as a function of time.
Note that the slope of the mean, 0.000180, is the co-
efficient of the nonlinearity term in the normalized
increments. See Chapter 2, Section 2.8 for a possible
application of the logistic function to this data set.

Figure C.394 is a graph of the absolute value of the normalized increments of the time series data presented in
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Figure C.393. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns218.

Figure C.395 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.393. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.395.

Figure C.396 is the statistical estimate for the data presented in Figure C.393, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 763464, as derived in Section C.18.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.397 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.393. In principle, if the distribution of the normalized increments presented in Figure C.395
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.398 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.393. In principle, if the distribution of the normalized increments presented in Figure C.395 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.399 is the range of values of the time series shown in Figure C.392. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.399
would be a square root function219. Figure C.400 is the deterministic map of the normalized increments of the time
series data shown in Figure C.393. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

C.18.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change220. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.401 is the instantaneous value of the root mean square of the normalized increments for the Time Sampled
Non-optimal Coin Tossing Game, and Figure C.402 is the instantaneous Shannon probability for the normalized

218The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

219Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.399 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

220The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.394: Time Sampled Non-optimal Coin
Tossing Game, absolute value of the normalized in-
crements of the time series data presented in Fig-
ure C.393. The mean is 0.233375 with a standard de-
viation of 0.162645. The formula for the least squares
approximation is 0 { 214675 f 0 { 000126 X , and the root
mean square value, from Figure C.393, is 0.284303.
The graph, labeled “data.tsfraction.tsrms,” is the run-
ning root mean square, and “data.tsfraction.tsavg” is
the running average of the normalized increments pre-
sented in Figure C.393, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.395: Time Sampled Non-optimal Coin
Tossing Game, normalized histogram of the normal-
ized increments of the time series data shown in Fig-
ure C.393. The data has a mean of 0.179112, with a
standard deviation of 0.221159. The area under the
two curves is identical. The ê 2 value of the observed
and expected values of the two curves is 51.060000,
with a critical value of 42.557000.

increments.

C.18.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.18.4. Figure C.403 is a graph of the logistic function
estimates of the time series data for the Time Sampled Non-optimal Coin Tossing Game. The reader is cautioned
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For a mean of 0.178513, with a confidence level of 0.900000
that the error did not exceed 0.017851, 687 samples would be required.
(With 299 samples, the estimated error is 0.027044 = 15.149664 percent.)

For a standard deviation of 0.284303, with a confidence level of 0.900000
that the error did not exceed 0.028430, 136 samples would be required.
(With 299 samples, the estimated error is 0.019123 = 6.726307 percent.)

Figure C.396: Time Sampled Non-optimal Coin Tossing Game, statistical estimates of the normalized increments of
the time series shown in Figure C.393. The table was produced with the tsstatest program, and illustrates the size of
the data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate
on the time series shown in Figure C.393.

that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies221. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.403 is a graph of the logistic function for the time series data presented in Figure C.392. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.393. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.393. Figure C.404 is the same graph, but
with the time scale expanded by a factor of two.

C.18.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.18.5. Figure C.405 is a graph of the Hurst coefficient
data time series data shown in Figure C.392. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.406 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.393. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.405 implies that the variance of the rate of revenue returns,
(per tosses,) in the Time Sampled Non-optimal Coin Tossing Game, k d X 2 m X 1 i , over a period of time is proportional
to the period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a
quantitative statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change
over a period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability
of the state of affairs repeating sometime in the future goes down with increasing time222, X , U d X�i A b�c Oqd 1 �[ó 2 X5i which
is approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.409, and, C.410 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the Time Sampled Non-optimal Coin Tossing Game for the near

221For example, in Figures C.403 and C.404, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.18.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time

222It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)
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Figure C.397: Time Sampled Non-optimal Coin
Tossing Game, normalized histogram of the first
derivative of the normalized increments of the time
series data shown in Figure C.393.
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Figure C.398: Time Sampled Non-optimal Coin
Tossing Game, normalized histogram of second
derivative of the the normalized increments of the
time series data shown in Figure C.393.

term and far term, respectively [Pet91, pp. 83-84]223. This seems to be a quantitative statement concerning “windows
of opportunity” in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.405, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.869484, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.679)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 869484 (C.680)ü ( X 2 m X 1)1 þ 738968 (C.681)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time interval

223The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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X
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past224. A Hurst coefficient of 0.869484, (for the near future, and 0.734095 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is
86.948400% [Pet91, pp. 66] for the near future, and 0.734095 for the distant future. Likewise, there is a 86.948400%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in
a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 86.948400% that the rate of revenue

224Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For the
“long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian motion,
or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term” and
“far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
W� 0 � 5 © ln 	���
 , or when ln 	 ��
9� 2, or �W� 7 � 389 ����� See
Section C.18.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Time Sampled Non-optimal Coin Tossing Game. See
also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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Figure C.401: Time Sampled Non-optimal Coin
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Figure C.402: Time Sampled Non-optimal Coin
Tossing Game, instantaneous value of the Shannon
probability of the normalized increments, provided
by running the program tsinstant with the -s option
on the data presented in Figure C.392.

returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on
how “predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Time Sampled Non-optimal Coin
Tossing Game are over time, since the probability of having g many consecutive tossess of the same agenda is ÿ �
where ÿ is the Hurst coefficient, or, letting the short term probability of having g many tossess of the same market
agenda, U B , is:

U B ( g ) A ÿ � (C.682)A 0 { 869484
�

(C.683)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.393,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 179112 L 100 percent, on the average, with a standard deviation of
0 { 221159 L 100 percent, and a root mean square error value of 0 { 284303 L 100 percent—small values for such a simple
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Figure C.404: Time Sampled Non-optimal Coin
Tossing Game, logistic function estimates of Fig-
ure C.403 with the time scale expanded by a factor of
two.

forecasting mechanism.
This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)

that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.684)ü ( X 2 m X 1)0 þ 869484 (C.685)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].
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As a useful approximation, if ÿ , is approximately 1
2 , Equation C.685 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.686)ü � ( X 2 m X 1) (C.687)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.688)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
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expected change in � � , will increase with the square root of time225.
Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1

2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.689)

ü �
( cjX )c 0 þ 869484

(C.690)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.406, to provide a least squares
approximation to the H parameter for the Time Sampled Non-optimal Coin Tossing Game. The superimposed least
squares approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 1.147782 for the near future, and 1.057144 for the distant future.

Figures C.405 and C.406 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.393. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.393, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.407 and C.408 was made using the -d option.

C.18.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.18.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.394. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.393. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Time Sampled Non-optimal Coin Tossing Game, and may, or may not, provide
adequate accuracy for projections.

For an organization operating in the Time Sampled Non-optimal Coin Tossing Game, the fiscal strategy, commen-
surate with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80,
pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.393, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 179112 f 1)
ln (2)

A 0 { 237701 (C.691)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.393, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 152372 f 1)
ln (2)

A 0 { 204607 (C.692)

Note that if the mean is not constant in Figure C.393, this method will not provide accurate results.

225To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.407: Time Sampled Non-optimal Coin
Tossing Game, traditional Hurst coefficient data for
the time series data shown in Figure C.392. The slope
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for the near term, and 0.519188 for the far term.
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Figure C.408: Time Sampled Non-optimal Coin
Tossing Game, traditional H parameter data for the
time series data shown in Figure C.392 The slope of
the graph is the H parameter, and is 0.506773 for the
near term, and 0.511544 for the far term.

And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.392:

� V_X�Z A 0 { 210487 (C.693)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.392:

� V_X�Z A 0 { 210768 (C.694)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.18.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]
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20 þ 210768 � (C.695)

therefore: Û
(U ) A 0 { 210768 (C.696)

and, tsshannon 0.210768 gives: Û
(0 { 763464) A 0 { 210768 (C.697)

therefore:

2 � (0 þ 763464) A 20 þ 210768 (C.698)A 1 { 157304 (C.699)A 15 { 730410% (C.700)

and:

2U m 1 A (2 L 0 { 763464) m 1 (C.701)A 0 { 526928 (C.702)A 52 { 692800% (C.703)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Time
Sampled Non-optimal Coin Tossing Game executes a long term fiscal strategy, commensurate with the aggregate
environment, that is to invest, every tosses, in sufficient additional resources and infrastructure, to increase the
manufacturing of goods and services by 52.692800% of its rate of revenue returns, (per tosses.) As a conceptual model,
the remaining 47.307200% will be held in “reserve” with a 76.346400% chance of making twice the 52.692800%
back, (and a 23.653600% chance of making 0.0,) in one tosses, on the average, for an average growth in its rate of
revenue returns, (per tosses,) of 15.730410%, or a doubling of its rate of revenue returns, (per tosses,) in 4.744553
tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
52.692800% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 15.730410%, per tosses, on average.

Note that the metrics presented in this section are representative of the Time Sampled Non-optimal Coin Tossing
Game as an aggregate whole, and may or may not be accurate representations for any particular participant in the
environment. Of interest to the participants in the environment would be a similar analysis of each product or service
rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 52.692800% of its rate of revenue returns, (per tosses,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the Time
Sampled Non-optimal Coin Tossing Game’s environment, the company’s rate of revenue returns exceeds what was
borrowed from the bank, and the loan is repaid in full. Other tossess, the company must default, and the bank seizes a
portion of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand
its rate of revenue returns at 15.730410% per tosses.

As another simple example, a company re-invests 52.692800% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 52.692800% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 15.730410% per tosses.
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As an example of “product portfolio” management, suppose a company re-invests 52.692800% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 52 { 692800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 52 { 692800 percent for the second product, implying that the company should diversify its
product line226. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 52 { 692800%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
Time Sampled Non-optimal Coin Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 526928 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.393, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 52.692800% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 52.692800% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.18.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Time Sampled Non-optimal Coin
Tossing Game, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean
square, c Q Z � ��� , of the normalized increments of the Time Sampled Non-optimal Coin Tossing Game time series
is 0.179112, and 0.284303respectively, the number of companies participating in the market can be calculated by
Equation 2.109 to be 2.215959.

If this value seems consistent number of companies in the Time Sampled Non-optimal Coin Tossing Game,
within the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or
indirect evidence that the companies participating in the Time Sampled Non-optimal Coin Tossing Game are operating
optimally, and the “average” Shannon probability, u for each participating company would be, using Equation 2.110,
0.711608, which would be the value which should be used in Section C.18.5 for each participating company if
market expansion was to be consistent with the rest of the industry. However, if the Shannon probability derived in
Section C.18.5 is greater than the average Shannon probability for the companies participating in the Time Sampled

226The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Non-optimal Coin Tossing Game, as derived in this section, then the market would, possibly, be exploitable with
the fiscal strategy outlined in Section C.18.5. The maximum exploitability for the Time Sampled Non-optimal Coin
Tossing Game is derived in Section C.18.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Time Sampled Non-optimal
Coin Tossing Game is 0.711608, with several alternative solutions listed in the previous paragraph. However, these
should be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.815002 in the Time
Sampled Non-optimal Coin Tossing Game. In all cases, the fraction of the P&L that should be “wagered” on the
future, O , should be:

O A 2 uxm 1 (C.704)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Time Sampled Non-optimal Coin Tossing Game would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.18.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.394.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.393. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Time Sampled Non-optimal
Coin Tossing Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.18.5, is derived from the Time Sampled
Non-optimal Coin Tossing Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.18.9.

An additional exploitable strategy may be time itself. Equations C.681, C.685, and, C.683, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Time Sampled Non-
optimal Coin Tossing Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should
be addressed as an operational necessity in strategic planning and project management. Figures C.409, and, C.410
compare methods of approximation of the “forecastability” of rate of revenue returns in the Time Sampled Non-optimal
Coin Tossing Game for the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be
exercised when making decisions that will span a time interval larger than the time interval where the “forecastability”
of rate of revenue returns drops below 50%. Beyond this time interval, the chances increase that the competitive and
market forces will alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is
significant advantage in “timeliness” of development, manufacturing, and distribution of products and services that are
consistent with this temporal agenda. Automation of these processes, if executed consistently with this agenda, should
be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Time Sampled
Non-optimal Coin Tossing Game. When the “forecastability” of rate of revenue returns drops below 50%, there is
an even chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it
is assumed that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then,
if all three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval
where the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction
of product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
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windows.227” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.
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Figure C.409: Time Sampled Non-optimal Coin
Tossing Game, “forecastability” of near term rate of
revenue returns. Although the error function is the
most accurate, for the near term, ÿ � A 0 { 869484 �
may be used as a reliable metric of “forecastability”
of the rate of revenue returns.
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Figure C.410: Time Sampled Non-optimal Coin
Tossing Game, “forecastability” of far term rate of
revenue returns. Although the error function is the
most accurate, for the far term, 1! � may be used as
a reliable metric of “forecastability” of the rate of
revenue returns.

As an interesting interpretation of the data presented in Figure C.409, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.683, 0 { 869484

� A 0 { 5 tossess of operations. Since the optimal amount of
inventory and, from Equation C.681, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing

227For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.18.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.18.9. Figure C.411 represents a constructional
simulation of the time series data presented in Figure C.392. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.393. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.393 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.412
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.395.

C.18.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.18.3. One of the issues of analysis, as mentioned
in Section C.18.7, is to determine the maximum Shannon probability for the time series presented in Figure C.392.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.413 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.392. Figure C.414 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.392. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.763464, as derived in Section C.18.5 to 0.806020. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.392, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.392, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of tossess that the Time Sampled Non-optimal
Coin Tossing Game movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.805369, as compared with the predicted value from the program tsshannonmax of 0.806020.

C.18.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.394.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.393. These
values will be used in a fixed increment Brownian fractal analysis of the Time Sampled Non-optimal Coin Tossing
Game, and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.18.6 and D.18.7. As a subjective evaluation of
the “quality” of the analysis of the Time Sampled Non-optimal Coin Tossing Game, from Chapter 3, Equation 3.8,
and using the mean and root mean square values of the normalized increments of the time series data presented in
Figure C.392 from Figure C.393, and the Shannon probability as calculated by counting the total number of tossess
that the Time Sampled Non-optimal Coin Tossing Game movement was positive, as presented in Section C.18.9:
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ure C.411, empirical and simulated. The empirical
data has a mean of 0.179112, with a standard devia-
tion of 0.221159. By comparison, the simulated data
has a mean of 0.173262 with a standard deviation
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u � BEDGFHGIKJ f 1

2
(C.705)

0 { 805369 � 0 þ 179112
0 þ 284303 f 1

2
(C.706)

0 { 805369 � 0 { 815002 (C.707)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:
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0 { 805369 � 0 { 815002 � 0 { 806020 (C.708)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.18.5, should be
compared. The four methods used were the mean of Figure C.393, the constant in the least squares approximation to
Figure C.393, the least squares exponential approximation to Figure C.392, and the logarithmic returns of Figure C.392,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 237701 � 0 { 204607 � 0 { 210487 � 0 { 210768 (C.709)

It is implied in Section C.18.5, Subsection C.18.5 and in Section C.18.8 that, a Brownian motion with fixed
increments fractal may “model” the Time Sampled Non-optimal Coin Tossing Game. Using Equation 2.104 from
Chapter 2, Section 2.5:
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c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.710)

0 { 284303 (2 L 0 { 805369 m 1) � 0 { 221159 (2 L 0 { 805369 m 1)

2 ó 0 { 805369 (1 m 0 { 805369)
(C.711)

0 { 284303 L 0 { 610738 � 0 { 221159 L 0 { 771297 (C.712)

0 { 173635 � 0 { 170579 (C.713)

and, equating to the mean:

0 { 179112 � 0 { 173635 � 0 { 170579 (C.714)

where, as in Equation C.707 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.392 from Figure C.393, and the Shannon probability as
calculated by counting the total number of tossess that the Time Sampled Non-optimal Coin Tossing Game movement
was positive, as presented in Section C.18.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value228, where the absolute value is presented in Figure C.394, and the root mean square value is
presented in Figure C.393:

0 { 233375 � 0 { 284303 (C.715)

Note, that if the Time Sampled Non-optimal Coin Tossing Game could be “modeled” as a Brownian motion with
fixed increments fractal, then the standard deviation of the absolute value of the normalized increments of the time
series data presented in Figure C.392 from Figure C.393 should be zero. It is 0 { 162645.

C.19 Time Sampled Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tssample229.
The data in this section is presented in tabular form in Section D.19. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Time Sampled Coin Tossing Game. This is
included for “theoretical” comparative purposes.

C.19.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.19.1. Figure C.415 is a graph of the time series data
for the Time Sampled Coin Tossing Game.

228The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

229As a simulation model, the program tscoin was run to make a time series data file, with the following parameters:

tscoin -p 0.5447 1500 > data.1

to make a time series of 1500 elements, with a Shannon probability of 0.5447. Since ¬�� 2 È^¦ 1, where the desired Shannon probability, È , is
0 � 6, ¬ must be reduced by a factor of 1¹

5
. Reducing ¬ from 0 � 2 to 0 � 0894, and recalculating È to be 0 � 5447. Then the program tssample was run

with the following parameters:

tssample -i 5 data.1 > data

to time sample every fifth element in the time series to make a time sampled time series. The data is by tosses.
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Figure C.416 is a graph of the normalized increments of the time series data presented in Figure C.415. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.417 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.416. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns230.

Figure C.418 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.416. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.418.

Figure C.419 is the statistical estimate for the data presented in Figure C.416, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 557377, as derived in Section C.19.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.420 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.416. In principle, if the distribution of the normalized increments presented in Figure C.418
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.421 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.416. In principle, if the distribution of the normalized increments presented in Figure C.418 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.422 is the range of values of the time series shown in Figure C.415. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.422
would be a square root function231. Figure C.423 is the deterministic map of the normalized increments of the time
series data shown in Figure C.416. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

C.19.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root

230The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

231Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.422 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.415: Time Sampled Coin Tossing Game,
time series data.
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Figure C.416: Time Sampled Coin Tossing Game,
normalized increments of the time series data pre-
sented in Figure C.415. The mean is 0.027085
with a standard deviation of 0.205494. The formula
for the least squares approximation is m 0 { 019736 f
0 { 000314 X , and the root mean squared value is
0.206930. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized incre-
ments. This graph is the fraction of change in the time
series, as a function of time. Note that the slope of the
mean, 0.000314, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

mean square of the instantaneous fraction of change232. Squaring this value is the average of the instantaneous fraction

232The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.417: Time Sampled Coin Tossing Game,
absolute value of the normalized increments of the
time series data presented in Figure C.416. The mean
is 0.171592 with a standard deviation of 0.115850.
The formula for the least squares approximation is
0 { 158506 f 0 { 000088 X , and the root mean square
value, from Figure C.416, is 0.206930. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.416, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.418: Time Sampled Coin Tossing Game,
normalized histogram of the normalized increments
of the time series data shown in Figure C.416. The
data has a mean of 0.027085, with a standard devia-
tion of 0.205494. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 46.304000, with a critical
value of 42.557000.

of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.424 is the instantaneous value of the root mean square of the normalized increments for the Time Sampled
Coin Tossing Game, and Figure C.425 is the instantaneous Shannon probability for the normalized increments.
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For a mean of 0.026994, with a confidence level of 0.900000
that the error did not exceed 0.002699, 15899 samples would be required.
(With 300 samples, the estimated error is 0.019651 = 72.797624 percent.)

For a standard deviation of 0.206930, with a confidence level of 0.900000
that the error did not exceed 0.020693, 136 samples would be required.
(With 300 samples, the estimated error is 0.013896 = 6.715087 percent.)

Figure C.419: Time Sampled Coin Tossing Game, statistical estimates of the normalized increments of the time series
shown in Figure C.416. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.416.

C.19.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.19.4. Figure C.426 is a graph of the logistic
function estimates of the time series data for the Time Sampled Coin Tossing Game. The reader is cautioned that
these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies233. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.426 is a graph of the logistic function for the time series data presented in Figure C.415. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.416. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.416. Figure C.427 is the same graph, but
with the time scale expanded by a factor of two.

C.19.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.19.5. Figure C.428 is a graph of the Hurst coefficient
data time series data shown in Figure C.415. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.429 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.416. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.428 implies that the variance of the rate of revenue returns,
(per tosses,) in the Time Sampled Coin Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time234, X , U d X�i A b0c O�d 1 � ó 2 X�i which

233For example, in Figures C.426 and C.427, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.19.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time

234It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
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Figure C.420: Time Sampled Coin Tossing Game,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.416.
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Figure C.421: Time Sampled Coin Tossing Game,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.416.

is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.432, and, C.433 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the Time Sampled Coin Tossing Game for the near term
and far term, respectively [Pet91, pp. 83-84]235. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.428, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.835189, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.716)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 835189 (C.717)

characteristic.)
235The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”

which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.422: Time Sampled Coin Tossing Game,
range of the time series data shown in Figure C.415.
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ü ( X 2 m X 1)1 þ 670378 (C.718)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past236. A Hurst coefficient of 0.835189, (for the near future, and 0.604532 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is
83.518900% [Pet91, pp. 66] for the near future, and 0.604532 for the distant future. Likewise, there is a 83.518900%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in

236Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.19.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Time Sampled Coin Tossing Game. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.424: Time Sampled Coin Tossing Game,
instantaneous value of the root mean square of the
normalized increments, provided by running the pro-
gram tsinstant with the -r option on the data presented
in Figure C.415.
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Figure C.425: Time Sampled Coin Tossing Game,
instantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.415.

a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 83.518900% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Time Sampled Coin Tossing Game are
over time, since the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.719)A 0 { 835189
�

(C.720)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.416,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 027085 L 100 percent, on the average, with a standard deviation of
0 { 205494 L 100 percent, and a root mean square error value of 0 { 206930 L 100 percent—small values for such a simple
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Figure C.426: Time Sampled Coin Tossing Game,
logistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.416 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.427: Time Sampled Coin Tossing Game,
logistic function estimates of Figure C.426 with the
time scale expanded by a factor of two.

forecasting mechanism.
This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)

that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.721)ü ( X 2 m X 1)0 þ 835189 (C.722)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.722 reduces to, [Sch91, pp. 129]:
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Figure C.428: Time Sampled Coin Tossing Game,
Hurst coefficient data for the normalized increments
of the time series data shown in Figure C.416. The
slope of the graph is the Hurst coefficient.
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Figure C.429: Time Sampled Coin Tossing Game, H
parameter data for the normalized increments of the
time series data shown in Figure C.416 The slope of
the graph is the H parameter.

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.723)ü � ( X 2 m X 1) (C.724)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.725)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time237.

237To be precise, it is actually asymptotically proportional to � 1
2
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Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.726)

ü �
( cjX )c 0 þ 835189

(C.727)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.429, to provide a least squares
approximation to the H parameter for the Time Sampled Coin Tossing Game. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.593239 for the near future, and 0.537758 for the distant future.

Figures C.428 and C.429 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.416. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.416, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.430 and C.431 was made using the -d option.

C.19.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.19.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.417. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.416. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Time Sampled Coin Tossing Game, and may, or may not, provide adequate
accuracy for projections.

For an organization operating in the Time Sampled Coin Tossing Game, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.416, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 027085 f 1)
ln (2)

A 0 { 038556 (C.728)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.416, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V.X�Z A ln ( m 0 { 019736 f 1)
ln (2)

APm 0 { 028758 (C.729)

Note that if the mean is not constant in Figure C.416, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.415:

� V_X�Z A 0 { 011235 (C.730)
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Figure C.430: Time Sampled Coin Tossing Game,
traditional Hurst coefficient data for the time series
data shown in Figure C.415. The slope of the graph
is the Hurst coefficient, and is 0.829636 for the near
term, and 0.611530 for the far term.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0 0.5 1 1.5 2 2.5

lo
g 

(S
td

de
v)

log (Time)

H Parameter Graph

"data.tsfraction.tshcalc-d"
-1.564044 + 0.493320 * t
-1.573807 + 0.507390 * t

Figure C.431: Time Sampled Coin Tossing Game,
traditional H parameter data for the time series data
shown in Figure C.415 The slope of the graph is the
H parameter, and is 0.507390 for the near term, and
0.493320 for the far term.

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.415:

� V_X�Z A 0 { 009520 (C.731)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.19.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 009520 � (C.732)

therefore: Û
(U ) A 0 { 009520 (C.733)
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and, tsshannon 0.009520 gives: Û
(0 { 557377) A 0 { 009520 (C.734)

therefore:

2 � (0 þ 557377) A 20 þ 009520 (C.735)A 1 { 006621 (C.736)A 0 { 662058% (C.737)

and:

2U m 1 A (2 L 0 { 557377) m 1 (C.738)A 0 { 114754 (C.739)A 11 { 475400% (C.740)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Time
Sampled Coin Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 11.475400% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining 88.524600%
will be held in “reserve” with a 55.737700% chance of making twice the 11.475400% back, (and a 44.262300% chance
of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns, (per tosses,) of
0.662058%, or a doubling of its rate of revenue returns, (per tosses,) in 105.042017 tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
11.475400% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.662058%, per tosses, on average.

Note that the metrics presented in this section are representative of the Time Sampled Coin Tossing Game as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 11.475400% of its rate of revenue returns, (per tosses,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the Time
Sampled Coin Tossing Game’s environment, the company’s rate of revenue returns exceeds what was borrowed from
the bank, and the loan is repaid in full. Other tossess, the company must default, and the bank seizes a portion of the
company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.662058% per tosses.

As another simple example, a company re-invests 11.475400% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 11.475400% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.662058% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 11.475400% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 11 { 475400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 11 { 475400 percent for the second product, implying that the company should diversify its
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product line238. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 11 { 475400%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the Time Sampled Coin Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 114754 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.416, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 11.475400% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 11.475400% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.19.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Time Sampled Coin Tossing Game,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the Time Sampled Coin Tossing Game time series is 0.027085, and 0.206930respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 0.632531.

If this value seems consistent number of companies in the Time Sampled Coin Tossing Game,within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the
companies participating in the Time Sampled Coin Tossing Game are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.582288, which would be the value
which should be used in Section C.19.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.19.5 is greater than the average
Shannon probability for the companies participating in the Time Sampled Coin Tossing Game, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.19.5. The maximum
exploitability for the Time Sampled Coin Tossing Game is derived in Section C.19.9, but it is probably of doubtful
practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Time Sampled Coin Tossing
Game is 0.582288, with several alternative solutions listed in the previous paragraph. However, these should be

238The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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contrasted to the Shannon probability that maximizes a company’s P&L which is 0.565445 in the Time Sampled Coin
Tossing Game. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.741)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Time Sampled Coin Tossing Game would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.19.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.417.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.416. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Time Sampled Coin Tossing
Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.19.5, is derived from the Time Sampled
Coin Tossing Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be
exploitable, see Section C.19.9.

An additional exploitable strategy may be time itself. Equations C.718, C.722, and, C.720, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Time Sampled Coin Tossing
Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.432, and, C.433 compare methods of
approximation of the “forecastability” of rate of revenue returns in the Time Sampled Coin Tossing Game for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Time Sampled Coin
Tossing Game. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the
rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.239” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.432, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory

239For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.432: Time Sampled Coin Tossing Game,
“forecastability” of near term rate of revenue returns.
Although the error function is the most accurate, for
the near term, ÿ � A 0 { 835189 � may be used as a reli-
able metric of “forecastability” of the rate of revenue
returns.

0

0.05

0.1

0.15

0.2

0.25

25 30 35 40 45 50 55 60

C
on

fid
en

ce
 in

 R
ev

en
ue

 R
at

e 
F

or
ec

as
t

"

Time into Future

Revenue Rate Forecastability

0.835189 ** t
erf (1 / sqrt (2 * t))

1 / sqrt (t)

Figure C.433: Time Sampled Coin Tossing Game,
“forecastability” of far term rate of revenue returns.
Although the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

levels that do not exceed, from Equation C.720, 0 { 835189
� A 0 { 5 tossess of operations. Since the optimal amount of

inventory and, from Equation C.718, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.19.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.19.9. Figure C.434 represents a constructional
simulation of the time series data presented in Figure C.415. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
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in Figure C.416. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.416 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.435
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.418.
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Figure C.434: Time Sampled Coin Tossing Game,
Time series data, empirical and simulated, using the
program tsunfairbrownian with f = 0.206930. This
data is superimposed on the data presented in Fig-
ure C.415.
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Figure C.435: Time Sampled Coin Tossing Game,
normalized histogram of the normalized increments
of the time series data shown in Figure C.434, em-
pirical and simulated. The empirical data has a mean
of 0.027085, with a standard deviation of 0.205494.
By comparison, the simulated data has a mean of
0.020832 with a standard deviation of 0.206224. This
data is superimposed on the data presented in Fig-
ure C.418. The area under the four curves is identical.
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C.19.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.19.3. One of the issues of analysis, as mentioned
in Section C.19.7, is to determine the maximum Shannon probability for the time series presented in Figure C.415.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.436 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.415. Figure C.437 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.415. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.557377, as derived in Section C.19.5 to 0.550000. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.415, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.415, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of tossess that the Time Sampled Coin
Tossing Game movement was positive, and dividing by the total number of timescales represented in the time series.
This quotient is 0.548495, as compared with the predicted value from the program tsshannonmax of 0.550000.

C.19.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.417.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.416. These
values will be used in a fixed increment Brownian fractal analysis of the Time Sampled Coin Tossing Game, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.19.6 and D.19.7. As a subjective evaluation of
the “quality” of the analysis of the Time Sampled Coin Tossing Game, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.415 from
Figure C.416, and the Shannon probability as calculated by counting the total number of tossess that the Time Sampled
Coin Tossing Game movement was positive, as presented in Section C.19.9:

u � BEDGFHGIKJ f 1

2
(C.742)

0 { 548495 � 0 þ 027085
0 þ 206930 f 1

2
(C.743)

0 { 548495 � 0 { 565445 (C.744)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 548495 � 0 { 565445 � 0 { 550000 (C.745)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.19.5, should be
compared. The four methods used were the mean of Figure C.416, the constant in the least squares approximation to
Figure C.416, the least squares exponential approximation to Figure C.415, and the logarithmic returns of Figure C.415,
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Figure C.436: Time Sampled Coin Tossing Game,
maximum rate of revenue returns, per tosses, vs.
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Figure C.437: Time Sampled Coin Tossing Game,
maximum rate of revenue returns, per tosses, at a
Shannon probability, of 0.550000, corresponding to a
“wager” fraction of 0.100000.

derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 038556 �Pm 0 { 028758 � 0 { 011235 � 0 { 009520 (C.746)

It is implied in Section C.19.5, Subsection C.19.5 and in Section C.19.8 that, a Brownian motion with fixed
increments fractal may “model” the Time Sampled Coin Tossing Game. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.747)

0 { 206930 (2 L 0 { 548495 m 1) � 0 { 205494 (2 L 0 { 548495 m 1)

2 ó 0 { 548495 (1 m 0 { 548495)
(C.748)

0 { 206930 L 0 { 096990 � 0 { 205494 L 0 { 097449 (C.749)
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0 { 020070 � 0 { 020025 (C.750)

and, equating to the mean:

0 { 027085 � 0 { 020070 � 0 { 020025 (C.751)

where, as in Equation C.744 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.415 from Figure C.416, and the Shannon probability as
calculated by counting the total number of tossess that the Time Sampled Coin Tossing Game movement was positive,
as presented in Section C.19.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value240, where the absolute value is presented in Figure C.417, and the root mean square value is
presented in Figure C.416:

0 { 171592 � 0 { 206930 (C.752)

Note, that if the Time Sampled Coin Tossing Game could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.415 from Figure C.416 should be zero. It is 0 { 115850.

C.20 Simulated Shannon Probability of 0.6 Game

For the analysis, the data was in the directory ../markets/tsunfairbrownian.exponential241.

240The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

241As a simulation model, the program tsunfairbrownian was run on the time series, “data.original,” constructed with a text editor, by replicating
the following fragment 1000 times:

0.2
-0.2
0.2
-0.2
0.2

to produce a time series data file of 5000 records that “oscillates,” on a period of 5, with a Shannon probability of 3 / 5 = 0.6. A data file was made
by running:

tsunfairbrownian -d -i 1.0 -f 0.2 data.original > data

since ¬Ç� 2 È´¦ 1, where ÈË� 0 � 6 ,_¬Ç� 0 � 2. An - of 1 � 0 was used simulate an exponential beginning with   0. After running the tsunfairbrownian
program to make the data time series, and the program tsfraction, the sequence will be:

0.2
-0.2
0.2
-0.2
0.2

Note that there are 3 ¤ 0 � 2’s for every 2 ¦ � 2s in 5 time unitss, for an average of ¤ 0 � 2 µ 5 � 0 � 04. The rationale for the numbers, ¤ 0 � 2 and ¦ 0 � 2, is
that it is the optimum for a Shannon probability of È^� 0 � 6, since 0 � 2 � 2 È;¦ 1, (which also equals È;¦.	 1 ¦ È/
 ,) where 2 © 0 � 6 ¦ 1 � 0 � 2, which
is the optimal amount of the cumulative returns to wager with an unfair coin that has a probability of 0 � 6 of a win, ie., 3 out of 5. If the 0¾¦ 1’th
value in the time series is subtracted from the 0 ’th value, and the value of this subtraction is then divided by the 0Ç¦ 1’th value, then this quotient
should be either ¤ 0 � 2 or ¦ 0 � 2 depending on the whether the wager was won or lost.
Under this scenario, ÈË� 0 � 6, and the returns are:
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The data in this section is presented in tabular form in Section D.20. Note that in this analysis, the rate of revenue
returns means the increase or decrease in the cumulative sum of the Simulated Shannon Probability of 0.6 Game. This
is included for “theoretical” comparative purposes.

C.20.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.20.1. Figure C.438 is a graph of the time series data
for the Simulated Shannon Probability of 0.6 Game.

Figure C.439 is a graph of the normalized increments of the time series data presented in Figure C.438. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.440 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.439. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns242.

Figure C.441 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.439. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.441.

Figure C.442 is the statistical estimate for the data presented in Figure C.439, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 599910, as derived in Section C.20.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.443 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.439. In principle, if the distribution of the normalized increments presented in Figure C.441
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.444 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.439. In principle, if the distribution of the normalized increments presented in Figure C.441 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.445 is the range of values of the time series shown in Figure C.438. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.445

20 1 029049406 �^  0 1 020135514 (C.753)

which can be verified with the program tsshannon, and are consistent with [Sch91, pp. 128].
Using tsunfairbrownian -f 0.2 will construct an exponential data time series that is known to be optimum, ie., a Shannon probability of 0.6 with an

optimal wager fraction of 0.2, with an “approximate” Brownian motion noise content-albeit not random. For an analytical insight, see appendix A,
Section 2.3. It is useful for evaluating methodologies. The data is by time units.

242The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.438: Simulated Shannon Probability of 0.6
Game, time series data.
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Figure C.439: Simulated Shannon Probability of
0.6 Game, normalized increments of the time se-
ries data presented in Figure C.438. The mean
is 0.039968 with a standard deviation of 0.195985.
The formula for the least squares approximation is
0 { 039872 f 0 { 000000 X , and the root mean squared
value is 0.200000. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
and “data.tsfraction.tsavg” is the running average of
the normalized increments. This graph is the fraction
of change in the time series, as a function of time.
Note that the slope of the mean, 0.000000, is the co-
efficient of the nonlinearity term in the normalized
increments. See Chapter 2, Section 2.8 for a possible
application of the logistic function to this data set.

would be a square root function243. Figure C.446 is the deterministic map of the normalized increments of the time
series data shown in Figure C.439. The deterministic map is useful for determining if a time series was created by a

243Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.445 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.440: Simulated Shannon Probability of 0.6
Game, absolute value of the normalized increments
of the time series data presented in Figure C.439.
The mean is 0.200000 with a standard deviation of
0.000000. The formula for the least squares approx-
imation is 0 { 200000 f 0 { 000000 X , and the root mean
square value, from Figure C.439, is 0.200000. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.439, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.441: Simulated Shannon Probability of 0.6
Game, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.439.
The data has a mean of 0.039968, with a standard de-
viation of 0.195985. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 131.562000, with a critical
value of 42.557000.

deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].
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For a mean of 0.039960, with a confidence level of 0.900000
that the error did not exceed 0.003996, 6778 samples would be required.
(With 5000 samples, the estimated error is 0.004652 = 11.642514 percent.)

For a standard deviation of 0.200000, with a confidence level of 0.900000
that the error did not exceed 0.020000, 136 samples would be required.
(With 5000 samples, the estimated error is 0.003290 = 1.644854 percent.)

Figure C.442: Simulated Shannon Probability of 0.6 Game, statistical estimates of the normalized increments of the
time series shown in Figure C.439. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.439.

C.20.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change244. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.447 is the instantaneous value of the root mean square of the normalized increments for the Simulated
Shannon Probability of 0.6 Game, and Figure C.448 is the instantaneous Shannon probability for the normalized
increments.

C.20.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.20.4. Figure C.449 is a graph of the logistic
function estimates of the time series data for the Simulated Shannon Probability of 0.6 Game. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies245. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.449 is a graph of the logistic function for the time series data presented in Figure C.438. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.439. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.439. Figure C.450 is the same graph, but
with the time scale expanded by a factor of two.

244The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

245For example, in Figures C.449 and C.450, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.20.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.443: Simulated Shannon Probability of 0.6
Game, normalized histogram of the first derivative
of the normalized increments of the time series data
shown in Figure C.439.

0

1

2

3

4

5

6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution of Derivative of Derivative of Increments

"data.tsfraction.tsderivatives.tsnormal-s30"
"data.tsfraction.tsderivatives.tsnormal-s30-f"

Figure C.444: Simulated Shannon Probability of 0.6
Game, normalized histogram of second derivative of
the the normalized increments of the time series data
shown in Figure C.439.

C.20.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.20.5. Figure C.451 is a graph of the Hurst coefficient
data time series data shown in Figure C.438. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.452 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.439. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.451 implies that the variance of the rate of revenue returns,
(per time units,) in the Simulated Shannon Probability of 0.6 Game, k d X 2 m X 1 i , over a period of time is proportional
to the period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a
quantitative statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change
over a period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability
of the state of affairs repeating sometime in the future goes down with increasing time246, X , U d X�i A b�c Oqd 1 � ó 2 X5i which

246It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
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Figure C.445: Simulated Shannon Probability of 0.6
Game, range of the time series data shown in Fig-
ure C.438.
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Figure C.446: Simulated Shannon Probability of 0.6
Game, deterministic map of the normalized incre-
ments of the time series data shown in Figure C.439.

is approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.455, and, C.456 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the Simulated Shannon Probability of 0.6 Game for the near term
and far term, respectively [Pet91, pp. 83-84]247. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per time units.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.451, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.539904, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.754)

to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

247The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.447: Simulated Shannon Probability of 0.6
Game, instantaneous value of the root mean square
of the normalized increments, provided by running
the program tsinstant with the -r option on the data
presented in Figure C.438.
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Figure C.448: Simulated Shannon Probability of 0.6
Game, instantaneous value of the Shannon probability
of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.438.

k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 539904 (C.755)ü ( X 2 m X 1)1 þ 079808 (C.756)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per time units,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past248. A Hurst coefficient of 0.539904, (for the near future, and 0.668253 for the distant future.) implies that

248Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.20.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Simulated Shannon Probability of 0.6 Game. See
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Figure C.449: Simulated Shannon Probability of 0.6
Game, logistic function estimates, provided by run-
ning the tslsq program on the normalized increments
presented in Figure C.439 with the -p option. These
parameters were used as arguments to the tsdlogistic
program.
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Figure C.450: Simulated Shannon Probability of 0.6
Game, logistic function estimates of Figure C.449
with the time scale expanded by a factor of two.

the likelihood of the rate of revenue returns, (per time units,) for any two consecutive time unitss being the same is
53.990400% [Pet91, pp. 66] for the near future, and 0.668253 for the distant future. Likewise, there is a 53.990400%
chance of the rate of revenue returns, (per time units,) movements being the same in consecutive time periods—ie., if,
in a given time units, the rate of revenue returns, (per time units,) is increasing, there is a 53.990400% that the rate
of revenue returns, (per time units,) will increase in the following period, also. In some sense, this is a quantitative
statement on how “predictable,” or “forecastable” the rate of revenue returns, (per time units,) for the Simulated
Shannon Probability of 0.6 Game are over time, since the probability of having g many consecutive time unitss of the
same agenda is ÿ � where ÿ is the Hurst coefficient, or, letting the short term probability of having g many time unitss
of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.757)

also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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Figure C.451: Simulated Shannon Probability of 0.6
Game, Hurst coefficient data for the normalized incre-
ments of the time series data shown in Figure C.439.
The slope of the graph is the Hurst coefficient.
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Figure C.452: Simulated Shannon Probability of 0.6
Game, H parameter data for the normalized incre-
ments of the time series data shown in Figure C.439
The slope of the graph is the H parameter.

A 0 { 539904
�

(C.758)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.439, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next time units’s rate of revenue returns would be the same as the
current time units’s revenue rate. Interestingly, it is 0 { 039968 L 100 percent, on the average, with a standard deviation of
0 { 195985 L 100 percent, and a root mean square error value of 0 { 200000 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per time
units,) that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.759)ü ( X 2 m X 1)0 þ 539904 (C.760)
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where � is the range of values in the increments of the rate of revenue returns, (per time units.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per time units,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per time units) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.760 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.761)ü � ( X 2 m X 1) (C.762)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per time units,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.763)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per time units,) are known, (and ÿ2� 1

2 ,) then the
expected change in � � , will increase with the square root of time249.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.764)

ü �
( cjX )c 0 þ 539904

(C.765)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.452, to provide a least squares
approximation to the H parameter for the Simulated Shannon Probability of 0.6 Game. The superimposed least
squares approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is -0.130047 for the near future, and 0.142002 for the distant future.

Figures C.451 and C.452 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.439. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.439, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.453 and C.454 was made using the -d option.

Observations on the Hurst Coefficient Analysis

Note that both the Hurst coefficient and H parameter graphs indicate that the time series data set does not contain a
random process—which is to be anticipated, since the data set is periodic.

249To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.453: Simulated Shannon Probability of 0.6
Game, traditional Hurst coefficient data for the time
series data shown in Figure C.438. The slope of the
graph is the Hurst coefficient, and is 0.526347 for the
near term, and 0.029183 for the far term.
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Figure C.454: Simulated Shannon Probability of 0.6
Game, traditional H parameter data for the time series
data shown in Figure C.438 The slope of the graph is
the H parameter, and is -0.196343 for the near term,
and -2.732599 for the far term.

C.20.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.20.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.440. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.439. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Simulated Shannon Probability of 0.6 Game, and may, or may not,
provide adequate accuracy for projections.

For an organization operating in the Simulated Shannon Probability of 0.6 Game, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
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The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
Chapter B, and is presented in Figure C.439, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 039968 f 1)
ln (2)

A 0 { 056539 (C.766)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.439, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 039872 f 1)
ln (2)

A 0 { 056406 (C.767)

Note that if the mean is not constant in Figure C.439, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.438:

� V_X�Z A 0 { 029049 (C.768)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.438:

� V_X�Z A 0 { 028997 (C.769)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.20.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 028997 � (C.770)

therefore: Û
(U ) A 0 { 028997 (C.771)

and, tsshannon 0.028997 gives: Û
(0 { 599910) A 0 { 028997 (C.772)

therefore:

2 � (0 þ 599910) A 20 þ 028997 (C.773)A 1 { 020303 (C.774)A 2 { 030254% (C.775)

and:

2U m 1 A (2 L 0 { 599910) m 1 (C.776)A 0 { 199820 (C.777)A 19 { 982000% (C.778)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Simulated
Shannon Probability of 0.6 Game executes a long term fiscal strategy, commensurate with the aggregate environment,
that is to invest, every time units, in sufficient additional resources and infrastructure, to increase the manufacturing
of goods and services by 19.982000% of its rate of revenue returns, (per time units.) As a conceptual model, the
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remaining 80.018000% will be held in “reserve” with a 59.991000% chance of making twice the 19.982000% back,
(and a 40.009000% chance of making 0.0,) in one time units, on the average, for an average growth in its rate of revenue
returns, (per time units,) of 2.030254%, or a doubling of its rate of revenue returns, (per time units,) in 34.486326 time
unitss.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
19.982000% per time units of the rate of revenue returns, (per time units,) is made in resources and infrastructure, then
the rate of revenue returns would be expected to increase by 2.030254%, per time units, on average.

Note that the metrics presented in this section are representative of the Simulated Shannon Probability of 0.6 Game
as an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 19.982000% of its rate of revenue returns, (per time units,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some time unitss, depending on
the Simulated Shannon Probability of 0.6 Game’s environment, the company’s rate of revenue returns exceeds what
was borrowed from the bank, and the loan is repaid in full. Other time unitss, the company must default, and the bank
seizes a portion of the company’s revenue base to pay the delinquent loan. However, on the average, the company will
expand its rate of revenue returns at 2.030254% per time units.

As another simple example, a company re-invests 19.982000% of its rate of revenue returns, (per time units,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 19.982000% per time units investment, others will not. However, on the
average, the company will expand it gross rate of revenue returns at 2.030254% per time units.

As an example of “product portfolio” management, suppose a company re-invests 19.982000% of its rate of
revenue returns, (per time units,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 19 { 982000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 19 { 982000 percent for the second product, implying that the company should diversify its
product line250. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 19 { 982000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the
Simulated Shannon Probability of 0.6 Game, as a standard bench mark, then the optimal number will be 1

0 þ 199820 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk

250The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.439, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 19.982000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 19.982000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.20.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Simulated Shannon Probability of
0.6 Game, and uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square,c Q Z � ��� , of the normalized increments of the Simulated Shannon Probability of 0.6 Game time series is 0.039968, and
0.200000respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
0.999200.

If this value seems consistent number of companies in the Simulated Shannon Probability of 0.6 Game, within
the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the Simulated Shannon Probability of 0.6 Game are operating optimally,
and the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.599960,
which would be the value which should be used in Section C.20.5 for each participating company if market expansion
was to be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.20.5 is
greater than the average Shannon probability for the companies participating in the Simulated Shannon Probability of
0.6 Game, as derived in this section, then the market would, possibly, be exploitable with the fiscal strategy outlined
in Section C.20.5. The maximum exploitability for the Simulated Shannon Probability of 0.6 Game is derived in
Section C.20.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Simulated Shannon Probability
of 0.6 Game is 0.599960, with several alternative solutions listed in the previous paragraph. However, these should be
contrasted to the Shannon probability that maximizes a company’s P&L which is 0.599920 in the Simulated Shannon
Probability of 0.6 Game. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.779)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Simulated Shannon Probability of 0.6 Game would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.20.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.440.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.439. These
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values will be used in a fixed increment Brownian fractal analysis and simulation of the Simulated Shannon Probability
of 0.6 Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.20.5, is derived from the Simulated
Shannon Probability of 0.6 Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.20.9.

An additional exploitable strategy may be time itself. Equations C.756, C.760, and, C.758, are, essentially, metrics
on how fast a decision,which is based on information concerning the current status of the Simulated Shannon Probability
of 0.6 Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as
an operational necessity in strategic planning and project management. Figures C.455, and, C.456 compare methods of
approximation of the “forecastability” of rate of revenue returns in the Simulated Shannon Probability of 0.6 Game for
the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Simulated Shannon
Probability of 0.6 Game. When the “forecastability” of rate of revenue returns drops below 50%, there is an even
chance that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.251” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.455, there may be, perhaps, some applicability to
such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation where
the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over extend
the company, creating unnecessary losses when the market contracts. The company should maintain inventory levels
that do not exceed, from Equation C.758, 0 { 539904

� A 0 { 5 time unitss of operations. Since the optimal amount of
inventory and, from Equation C.756, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.20.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.20.9. Figure C.457 represents a constructional
simulation of the time series data presented in Figure C.438. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.439. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.439 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

251For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.455: Simulated Shannon Probability of 0.6
Game, “forecastability” of near term rate of revenue
returns. Although the error function is the most accu-
rate, for the near term, ÿ � A 0 { 539904 � may be used
as a reliable metric of “forecastability” of the rate of
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Figure C.456: Simulated Shannon Probability of 0.6
Game, “forecastability” of far term rate of revenue
returns. Although the error function is the most ac-
curate, for the far term, 1! � may be used as a reliable
metric of “forecastability” of the rate of revenue re-
turns.

As a further comparison of the the constructional simulation with the original time series data, Figure C.458
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.441.

C.20.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.20.3. One of the issues of analysis, as mentioned
in Section C.20.7, is to determine the maximum Shannon probability for the time series presented in Figure C.438.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.459 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.438. Figure C.460 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
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Figure C.458: Simulated Shannon Probability of 0.6
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ments of the time series data shown in Figure C.457,
empirical and simulated. The empirical data has
a mean of 0.039968, with a standard deviation of
0.195985. By comparison, the simulated data has
a mean of 0.040016 with a standard deviation of
0.195976. This data is superimposed on the data
presented in Figure C.441. The area under the four
curves is identical.

data presented in Figure C.438. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.599910, as derived in Section C.20.5 to 0.600000. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.438, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.438, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of time unitss that the Simulated Shannon
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Figure C.460: Simulated Shannon Probability of 0.6
Game, maximum rate of revenue returns, per time
units, at a Shannon probability, of 0.600000, corre-
sponding to a “wager” fraction of 0.200000.

Probability of 0.6 Game movement was positive, and dividing by the total number of timescales represented in the time
series. This quotient is 0.599920, as compared with the predicted value from the program tsshannonmax of 0.600000.

C.20.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.440.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.439. These
values will be used in a fixed increment Brownian fractal analysis of the Simulated Shannon Probability of 0.6 Game,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.20.6 and D.20.7. As a subjective evaluation of the
“quality” of the analysis of the Simulated Shannon Probability of 0.6 Game, from Chapter 3, Equation 3.8, and using
the mean and root mean square values of the normalized increments of the time series data presented in Figure C.438
from Figure C.439, and the Shannon probability as calculated by counting the total number of time unitss that the
Simulated Shannon Probability of 0.6 Game movement was positive, as presented in Section C.20.9:
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u � BEDGFHGIKJ f 1

2
(C.780)

0 { 599920 � 0 þ 039968
0 þ 200000 f 1

2
(C.781)

0 { 599920 � 0 { 599920 (C.782)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 599920 � 0 { 599920 � 0 { 600000 (C.783)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.20.5, should be
compared. The four methods used were the mean of Figure C.439, the constant in the least squares approximation to
Figure C.439, the least squares exponential approximation to Figure C.438, and the logarithmic returns of Figure C.438,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 056539 � 0 { 056406 � 0 { 029049 � 0 { 028997 (C.784)

It is implied in Section C.20.5, Subsection C.20.5 and in Section C.20.8 that, a Brownian motion with fixed
increments fractal may “model” the Simulated Shannon Probability of 0.6 Game. Using Equation 2.104 from
Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.785)

0 { 200000 (2 L 0 { 599920 m 1) � 0 { 195985 (2 L 0 { 599920 m 1)

2 ó 0 { 599920 (1 m 0 { 599920)
(C.786)

0 { 200000 L 0 { 199840 � 0 { 195985 L 0 { 203954 (C.787)

0 { 039968 � 0 { 039972 (C.788)

and, equating to the mean:

0 { 039968 � 0 { 039968 � 0 { 039972 (C.789)

where, as in Equation C.782 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.438 from Figure C.439, and the Shannon probability as
calculated by counting the total number of time unitss that the Simulated Shannon Probability of 0.6 Game movement
was positive, as presented in Section C.20.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value252, where the absolute value is presented in Figure C.440, and the root mean square value is
presented in Figure C.439:

0 { 200000 � 0 { 200000 (C.790)

Note, that if the Simulated Shannon Probability of 0.6 Game could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.438 from Figure C.439 should be zero. It is 0 { 000000.

252The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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C.21 Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins253.
The data in this section is presented in tabular form in Section D.21. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Coins Tossing Game. This is included for
“theoretical” comparative purposes.

C.21.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.21.1. Figure C.461 is a graph of the time series data
for the Coins Tossing Game.

Figure C.462 is a graph of the normalized increments of the time series data presented in Figure C.461. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.463 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.462. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns254.

Figure C.464 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.462. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.464.

Figure C.465 is the statistical estimate for the data presented in Figure C.462, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 645287, as derived in Section C.21.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.466 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.462. In principle, if the distribution of the normalized increments presented in Figure C.464
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.467 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.462. In principle, if the distribution of the normalized increments presented in Figure C.464 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

253As a simulation model, the program tscoins was run to make a time series data file, with the following parameters:

tscoins -p 0.6 300 > data

to make a time series of 300 elements, with a Shannon probability of 0.6. The data is by tosses.
254The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.461: Coins Tossing Game, time series data.
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Figure C.462: Coins Tossing Game, normalized in-
crements of the time series data presented in Fig-
ure C.461. The mean is 0.062916 with a standard
deviation of 0.196353. The formula for the least
squares approximation is 0 { 073339 f m 0 { 000070 X ,
and the root mean squared value is 0.205874. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000070, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

Figure C.468 is the range of values of the time series shown in Figure C.461. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.468
would be a square root function255. Figure C.469 is the deterministic map of the normalized increments of the time

255Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.468 are a computational artifact—caused by not using the -m
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Figure C.463: Coins Tossing Game, absolute value of
the normalized increments of the time series data pre-
sented in Figure C.462. The mean is 0.169184 with a
standard deviation of 0.117504. The formula for the
least squares approximation is 0 { 167643 f 0 { 000010 X ,
and the root mean square value, from Figure C.462, is
0.205874. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized incre-
ments presented in Figure C.462, superimposed here
for convenience. This graph is the absolute value of
the fraction of change in the time series, as a function
of time.
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Figure C.464: Coins Tossing Game, normalized his-
togram of the normalized increments of the time series
data shown in Figure C.462. The data has a mean of
0.062916, with a standard deviation of 0.196353. The
area under the two curves is identical. The ê 2 value
of the observed and expected values of the two curves
is 1.028000, with a critical value of 42.557000.

series data shown in Figure C.462. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.464 would seem to indicate that the time series data for the Coins Tossing Game represents a cumulative
sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments property

option to the program tshurst, which is computationally inefficient.
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For a mean of 0.062707, with a confidence level of 0.900000
that the error did not exceed 0.006271, 2917 samples would be required.
(With 300 samples, the estimated error is 0.019551 = 31.178531 percent.)

For a standard deviation of 0.205874, with a confidence level of 0.900000
that the error did not exceed 0.020587, 136 samples would be required.
(With 300 samples, the estimated error is 0.013825 = 6.715087 percent.)

Figure C.465: Coins Tossing Game, statistical estimates of the normalized increments of the time series shown in
Figure C.462. The table was produced with the tsstatest program, and illustrates the size of the data set required for a
confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.462.

of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data represents
fractional Brownian motion.

C.21.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change256. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.470 is the instantaneous value of the root mean square of the normalized increments for the Coins Tossing
Game, and Figure C.471 is the instantaneous Shannon probability for the normalized increments.

C.21.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.21.4. Figure C.472 is a graph of the logistic function
estimates of the time series data for the Coins Tossing Game. The reader is cautioned that these graphs are constructed
using the method suggested in Chapter 2, Section 2.8 and enormous precision is required for adequate prediction of the
logistic function, [Mod92]. Particularly, the non-linear term will usually require intervention to produce a practical fit
to the data. In addition, there are numerical stability issues with logistic function methodologies257. The methodology
should be regarded as “fragile.” It is included for completeness.

Figure C.472 is a graph of the logistic function for the time series data presented in Figure C.461. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.462. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.462. Figure C.473 is the same graph, but
with the time scale expanded by a factor of two.

256The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

257For example, in Figures C.472 and C.473, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.21.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.466: Coins Tossing Game, normalized his-
togram of the first derivative of the normalized incre-
ments of the time series data shown in Figure C.462.
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Figure C.467: Coins Tossing Game, normalized his-
togram of second derivative of the the normalized
increments of the time series data shown in Fig-
ure C.462.

C.21.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.21.5. Figure C.474 is a graph of the Hurst coefficient
data time series data shown in Figure C.461. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.475 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.462. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.474 implies that the variance of the rate of revenue
returns, (per tosses,) in the Coins Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of
the state of affairs repeating sometime in the future goes down with increasing time258, X , U d X�i A b0c O�d 1 � ó 2 X�i which

258It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
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Figure C.468: Coins Tossing Game, range of the time
series data shown in Figure C.461.
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is approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.478, and, C.479 compare methods of approximation
of the “forecastability” of the rate of revenue returns in the Coins Tossing Game for the near term and far term,
respectively [Pet91, pp. 83-84]259. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data, presented in
Figure C.474, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.856676, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.791)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 856676 (C.792)

“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

259The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.470: Coins Tossing Game, instantaneous
value of the root mean square of the normalized
increments, provided by running the program tsin-
stant with the -r option on the data presented in Fig-
ure C.461.
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Figure C.471: Coins Tossing Game, instantaneous
value of the Shannon probability of the normalized
increments, provided by running the program tsin-
stant with the -s option on the data presented in Fig-
ure C.461.

ü ( X 2 m X 1)1 þ 713352 (C.793)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past260. A Hurst coefficient of 0.856676, (for the near future, and 0.642211 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is

260Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For the
“long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian motion,
or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term” and
“far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
W� 0 � 5 © ln 	���
 , or when ln 	 ��
9� 2, or �W� 7 � 389 ����� See
Section C.21.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Coins Tossing Game. See also [Pet91, pp. 67, 83-84]
and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.472: Coins Tossing Game, logistic function
estimates, provided by running the tslsq program on
the normalized increments presented in Figure C.462
with the -p option. These parameters were used as
arguments to the tsdlogistic program.
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Figure C.473: Coins Tossing Game, logistic func-
tion estimates of Figure C.472 with the time scale
expanded by a factor of two.

85.667600% [Pet91, pp. 66] for the near future, and 0.642211 for the distant future. Likewise, there is a 85.667600%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in
a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 85.667600% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Coins Tossing Game are over time,
since the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is the Hurst coefficient,
or, letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.794)A 0 { 856676
�

(C.795)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.462,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
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Figure C.474: Coins Tossing Game, Hurst coefficient
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Figure C.475: Coins Tossing Game, H parameter data
for the normalized increments of the time series data
shown in Figure C.462 The slope of the graph is the
H parameter.

current tosses’s revenue rate. Interestingly, it is 0 { 062916 L 100 percent, on the average, with a standard deviation of
0 { 196353 L 100 percent, and a root mean square error value of 0 { 205874 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.796)ü ( X 2 m X 1)0 þ 856676 (C.797)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].
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As a useful approximation, if ÿ , is approximately 1
2 , Equation C.797 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.798)ü � ( X 2 m X 1) (C.799)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.800)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time261.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.801)

ü �
( cjX )c 0 þ 856676

(C.802)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.475, to provide a least squares
approximation to the H parameter for the Coins Tossing Game. The superimposed least squares approximation on
the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.478897 for the near future, and 0.461551 for the distant future.

Figures C.474 and C.475 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.462. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.462, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.476 and C.477 was made using the -d option.

C.21.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.21.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.463. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.462. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Coins Tossing Game, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Coins Tossing Game, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

261To be precise, it is actually asymptotically proportional to � 1
2
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Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.462, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 062916 f 1)
ln (2)

A 0 { 088028 (C.803)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.462, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 073339 f 1)
ln (2)

A 0 { 102106 (C.804)

Note that if the mean is not constant in Figure C.462, this method will not provide accurate results.
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And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.461:

� V_X�Z A 0 { 063132 (C.805)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.461:

� V_X�Z A 0 { 061793 (C.806)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.21.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 061793 � (C.807)

therefore: Û
(U ) A 0 { 061793 (C.808)

and, tsshannon 0.061793 gives: Û
(0 { 645287) A 0 { 061793 (C.809)

therefore:

2 � (0 þ 645287) A 20 þ 061793 (C.810)A 1 { 043762 (C.811)A 4 { 376216% (C.812)

and:

2U m 1 A (2 L 0 { 645287) m 1 (C.813)A 0 { 290574 (C.814)A 29 { 057400% (C.815)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Coins
Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services
by 29.057400% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining 70.942600% will
be held in “reserve” with a 64.528700% chance of making twice the 29.057400% back, (and a 35.471300% chance
of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns, (per tosses,) of
4.376216%, or a doubling of its rate of revenue returns, (per tosses,) in 16.183063 tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
29.057400% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 4.376216%, per tosses, on average.

Note that the metrics presented in this section are representative of the Coins Tossing Game as an aggregate whole,
and may or may not be accurate representations for any particular participant in the environment. Of interest to the
participants in the environment would be a similar analysis of each product or service rendered in the marketplace.
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As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 29.057400% of its rate of revenue returns, (per tosses,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the Coins
Tossing Game’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank, and
the loan is repaid in full. Other tossess, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 4.376216% per tosses.

As another simple example, a company re-invests 29.057400% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 29.057400% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 4.376216% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 29.057400% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 29 { 057400, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 29 { 057400 percent for the second product, implying that the company should diversify its
product line262. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 29 { 057400%, and the investment in each product should be made at
a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of
products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Coins
Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 290574 . Note that this is a “theoretical”
value, since not all products are “typical,” and there may be strategic reasons, for example product leveraging, that
may increase the number of products above the optimum. However, most of the revenue should come from the optimal
number of products, since having more products will decrease the amount of the potential investment in each product,
and having less than the optimum number of products will increase the risk that many of the products could suffer a
“down market” concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal
“hedging of bets,” in product portfolio strategy, and considering the graph of the normalized increments presented
in Figure C.462, if the organization is running optimally, then these products will generate, at least in principle, one
standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are
approximations, and the values are an approximation to a, probably, complex process, and appropriate scrutiny should
be exercised before making specific projections. As yet another example of “product portfolio” management, consider
the issue of product mix. In this interpretation, 29.057400% of the product manufactured should be “proprietary,”
while the rest is “industry standard.” As yet another possibility, 29.057400% of the product manufactured should be
predatory into new markets, and the remainder in markets that are “traditional” for the company.

C.21.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Coins Tossing Game, and uses
the method outlined in Chapter 2, Section 2.6. Since the average, To}"~(� ��� , and the root mean square, c Q Z � ��� , of the

262The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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normalized increments of the Coins Tossing Game time series is 0.062916, and 0.205874respectively, the number of
companies participating in the market can be calculated by Equation 2.109 to be 1.484424.

If this value seems consistent number of companies in the Coins Tossing Game, within the assumptions outlined
in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the companies
participating in the Coins Tossing Game are operating optimally, and the “average” Shannon probability, u for each
participating company would be, using Equation 2.110, 0.625415, which would be the value which should be used in
Section C.21.5 for each participating company if market expansion was to be consistent with the rest of the industry.
However, if the Shannon probability derived in Section C.21.5 is greater than the average Shannon probability for
the companies participating in the Coins Tossing Game, as derived in this section, then the market would, possibly,
be exploitable with the fiscal strategy outlined in Section C.21.5. The maximum exploitability for the Coins Tossing
Game is derived in Section C.21.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Coins Tossing Game is 0.625415,
with several alternative solutions listed in the previous paragraph. However, these should be contrasted to the Shannon
probability that maximizes a company’s P&L which is 0.652802 in the Coins Tossing Game. In all cases, the fraction
of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.816)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Coins Tossing Game would tend to indicate that the companies participating in the market
have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.21.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.463.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.462. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Coins Tossing Game, and may,
or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.21.5, is derived from the Coins Tossing
Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be exploitable,
see Section C.21.9.

An additional exploitable strategy may be time itself. Equations C.793, C.797, and, C.795, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Coins Tossing Game, becomes
obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational necessity
in strategic planning and project management. Figures C.478, and, C.479 compare methods of approximation of the
“forecastability” of rate of revenue returns in the Coins Tossing Game for the near term and far term [Pet91, pp. 83-84],
respectively. As a general rule, caution must be exercised when making decisions that will span a time interval larger
than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond this time interval,
the chances increase that the competitive and market forces will alter the market environment in a possibly detrimental
unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development, manufacturing, and
distribution of products and services that are consistent with this temporal agenda. Automation of these processes, if
executed consistently with this agenda, should be considered a competitive advantage.
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In some sense, this temporal agenda defines the “average” product or service life cycle in the Coins Tossing Game.
When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate of revenue
returns for the product or service will change in a detrimental fashion. If it is assumed that a product or service life
cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals are equal,
the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Although probably not an accurate prediction of product or service life cycle, the technique
may be used as a conceptual approximation to the dynamics of “market windows.263” The conceptual approximation
will probably predict a “conservative” or “pessimistic” value in relation to actual markets.
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As an interesting interpretation of the data presented in Figure C.478, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over

263For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.795, 0 { 856676

� A 0 { 5 tossess of operations. Since the optimal amount of
inventory and, from Equation C.793, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.21.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.21.9. Figure C.480 represents a constructional
simulation of the time series data presented in Figure C.461. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.462. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.462 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.481
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.464.

C.21.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.21.3. One of the issues of analysis, as mentioned
in Section C.21.7, is to determine the maximum Shannon probability for the time series presented in Figure C.461.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.482 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.461. Figure C.483 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.461. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.645287, as derived in Section C.21.5 to 0.646667. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.461, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.461, constitutes classical Brownian motion,
then the Shannon probability can be calculated by counting the total number of tossess that the Coins Tossing Game
movement was positive, and dividing by the total number of timescales represented in the time series. This quotient is
0.645485, as compared with the predicted value from the program tsshannonmax of 0.646667.

C.21.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.463.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.462. These
values will be used in a fixed increment Brownian fractal analysis of the Coins Tossing Game, and may, or may not,
provide adequate accuracy for projections.
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deviation of 0.197024. This data is superimposed on
the data presented in Figure C.464. The area under
the four curves is identical.

The data in this section is presented in tabular form in sections D.21.6 and D.21.7. As a subjective evaluation of the
“quality” of the analysis of the Coins Tossing Game, from Chapter 3, Equation 3.8, and using the mean and root mean
square values of the normalized increments of the time series data presented in Figure C.461 from Figure C.462, and
the Shannon probability as calculated by counting the total number of tossess that the Coins Tossing Game movement
was positive, as presented in Section C.21.9:

u � BEDGFHGIKJ f 1

2
(C.817)

0 { 645485 � 0 þ 062916
0 þ 205874 f 1

2
(C.818)
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0 { 645485 � 0 { 652802 (C.819)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 645485 � 0 { 652802 � 0 { 646667 (C.820)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.21.5, should be
compared. The four methods used were the mean of Figure C.462, the constant in the least squares approximation to
Figure C.462, the least squares exponential approximation to Figure C.461, and the logarithmic returns of Figure C.461,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 088028 � 0 { 102106 � 0 { 063132 � 0 { 061793 (C.821)

It is implied in Section C.21.5, Subsection C.21.5 and in Section C.21.8 that, a Brownian motion with fixed
increments fractal may “model” the Coins Tossing Game. Using Equation 2.104 from Chapter 2, Section 2.5:
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c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.822)

0 { 205874 (2 L 0 { 645485 m 1) � 0 { 196353 (2 L 0 { 645485 m 1)

2 ó 0 { 645485 (1 m 0 { 645485)
(C.823)

0 { 205874 L 0 { 290970 � 0 { 196353 L 0 { 304129 (C.824)

0 { 059903 � 0 { 059717 (C.825)

and, equating to the mean:

0 { 062916 � 0 { 059903 � 0 { 059717 (C.826)

where, as in Equation C.819 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.461 from Figure C.462, and the Shannon probability as
calculated by counting the total number of tossess that the Coins Tossing Game movement was positive, as presented
in Section C.21.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value264, where the absolute value is presented in Figure C.463, and the root mean square value is
presented in Figure C.462:

0 { 169184 � 0 { 205874 (C.827)

Note, that if the Coins Tossing Game could be “modeled” as a Brownian motion with fixed increments fractal,
then the standard deviation of the absolute value of the normalized increments of the time series data presented in
Figure C.461 from Figure C.462 should be zero. It is 0 { 117504.

C.22 Non-optimal Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins-f265.
The data in this section is presented in tabular form in Section D.22. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Non-optimal Coins Tossing Game. This is included
for “theoretical” comparative purposes.

C.22.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.22.1. Figure C.484 is a graph of the time series data
for the Non-optimal Coins Tossing Game.

Figure C.485 is a graph of the normalized increments of the time series data presented in Figure C.484. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

264The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

265As a simulation model, the program tscoins was run to make a time series data file, with the following parameters:

tscoins -p 0.6 -f 0.03 300 > data

to make a time series of 300 elements, with a Shannon probability of 0.6 and a known non-optimal investment strategy. The data is by tosses.
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time series data.
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Figure C.485: Non-optimal Coins Tossing Game,
normalized increments of the time series data pre-
sented in Figure C.484. The mean is 0.009437
with a standard deviation of 0.029453. The formula
for the least squares approximation is 0 { 011001 fm 0 { 000010 X , and the root mean squared value is
0.030881. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000010, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

Figure C.486 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.485. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
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rate of revenue returns266.
Figure C.487 is the normalized histogram of the normalized increments of the time series data shown in Fig-

ure C.485. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.487.

Figure C.488 is the statistical estimate for the data presented in Figure C.485, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 566751, as derived in Section C.22.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.489 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.485. In principle, if the distribution of the normalized increments presented in Figure C.487
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.490 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.485. In principle, if the distribution of the normalized increments presented in Figure C.487 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.491 is the range of values of the time series shown in Figure C.484. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.491
would be a square root function267. Figure C.492 is the deterministic map of the normalized increments of the time
series data shown in Figure C.485. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.487 would seem to indicate that the time series data for the Non-optimal Coins Tossing Game represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.22.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change268. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

266The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

267Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.491 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

268The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.486: Non-optimal Coins Tossing Game, ab-
solute value of the normalized increments of the time
series data presented in Figure C.485. The mean
is 0.025378 with a standard deviation of 0.017626.
The formula for the least squares approximation is
0 { 025146 f 0 { 000002 X , and the root mean square
value, from Figure C.485, is 0.030881. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.485, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.487: Non-optimal Coins Tossing Game,
normalized histogram of the normalized increments
of the time series data shown in Figure C.485. The
data has a mean of 0.009437, with a standard devia-
tion of 0.029453. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 1.028000, with a critical
value of 42.557000.

Figure C.493 is the instantaneous value of the root mean square of the normalized increments for the Non-optimal
Coins Tossing Game, and Figure C.494 is the instantaneous Shannon probability for the normalized increments.
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For a mean of 0.009406, with a confidence level of 0.900000
that the error did not exceed 0.000941, 2917 samples would be required.
(With 300 samples, the estimated error is 0.002933 = 31.178526 percent.)

For a standard deviation of 0.030881, with a confidence level of 0.900000
that the error did not exceed 0.003088, 136 samples would be required.
(With 300 samples, the estimated error is 0.002074 = 6.715087 percent.)

Figure C.488: Non-optimal Coins Tossing Game, statistical estimates of the normalized increments of the time series
shown in Figure C.485. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.485.

C.22.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.22.4. Figure C.495 is a graph of the logistic
function estimates of the time series data for the Non-optimal Coins Tossing Game. The reader is cautioned that
these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies269. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.495 is a graph of the logistic function for the time series data presented in Figure C.484. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.485. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.485. Figure C.496 is the same graph, but
with the time scale expanded by a factor of two.

C.22.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.22.5. Figure C.497 is a graph of the Hurst coefficient
data time series data shown in Figure C.484. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.498 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.485. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.497 implies that the variance of the rate of revenue returns,
(per tosses,) in the Non-optimal Coins Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time270, X , U d X�i A b0c O�d 1 � ó 2 X�i which is

269For example, in Figures C.495 and C.496, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.22.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time

270It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
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Figure C.489: Non-optimal Coins Tossing Game,
normalized histogram of the first derivative of the
normalized increments of the time series data shown
in Figure C.485.
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Figure C.490: Non-optimal Coins Tossing Game,
normalized histogram of second derivative of the the
normalized increments of the time series data shown
in Figure C.485.

approximately 1 � ó X for X'ô 1 [Sch91, pp. 160]. Figures C.501, and, C.502 compare methods of approximation of the
“forecastability” of the rate of revenue returns in the Non-optimal Coins Tossing Game for the near term and far term,
respectively [Pet91, pp. 83-84]271. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data, presented in
Figure C.497, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.849887, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.828)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 849887 (C.829)

characteristic.)
271The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”

which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.491: Non-optimal Coins Tossing Game,
range of the time series data shown in Figure C.484.
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ü ( X 2 m X 1)1 þ 699774 (C.830)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past272. A Hurst coefficient of 0.849887, (for the near future, and 0.680509 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is
84.988700% [Pet91, pp. 66] for the near future, and 0.680509 for the distant future. Likewise, there is a 84.988700%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in

272Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.22.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Non-optimal Coins Tossing Game. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.493: Non-optimal Coins Tossing Game, in-
stantaneous value of the root mean square of the nor-
malized increments, provided by running the program
tsinstant with the -r option on the data presented in
Figure C.484.
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Figure C.494: Non-optimal Coins Tossing Game, in-
stantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.484.

a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 84.988700% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Non-optimal Coins Tossing Game are
over time, since the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.831)A 0 { 849887
�

(C.832)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.485,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 009437 L 100 percent, on the average, with a standard deviation of
0 { 029453 L 100 percent, and a root mean square error value of 0 { 030881 L 100 percent—small values for such a simple
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Figure C.495: Non-optimal Coins Tossing Game, lo-
gistic function estimates, provided by running the
tslsq program on the normalized increments presented
in Figure C.485 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.496: Non-optimal Coins Tossing Game, lo-
gistic function estimates of Figure C.495 with the time
scale expanded by a factor of two.

forecasting mechanism.
This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)

that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.833)ü ( X 2 m X 1)0 þ 849887 (C.834)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.834 reduces to, [Sch91, pp. 129]:
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� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.835)ü � ( X 2 m X 1) (C.836)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.837)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time273.

273To be precise, it is actually asymptotically proportional to � 1
2
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Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.838)

ü �
( cjX )c 0 þ 849887

(C.839)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.498, to provide a least squares approx-
imation to the H parameter for the Non-optimal Coins Tossing Game. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.566032 for the near future, and 0.580613 for the distant future.

Figures C.497 and C.498 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.485. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.485, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.499 and C.500 was made using the -d option.

C.22.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.22.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.486. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.485. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Non-optimal Coins Tossing Game, and may, or may not, provide
adequate accuracy for projections.

For an organization operating in the Non-optimal Coins Tossing Game, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.485, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 009437 f 1)
ln (2)

A 0 { 013551 (C.840)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.485, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 011001 f 1)
ln (2)

A 0 { 015784 (C.841)

Note that if the mean is not constant in Figure C.485, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.484:

� V_X�Z A 0 { 013218 (C.842)
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And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.484:

� V_X�Z A 0 { 012895 (C.843)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.22.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 012895 � (C.844)

therefore: Û
(U ) A 0 { 012895 (C.845)
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and, tsshannon 0.012895 gives: Û
(0 { 566751) A 0 { 012895 (C.846)

therefore:

2 � (0 þ 566751) A 20 þ 012895 (C.847)A 1 { 008978 (C.848)A 0 { 897820% (C.849)

and:

2U m 1 A (2 L 0 { 566751) m 1 (C.850)A 0 { 133502 (C.851)A 13 { 350200% (C.852)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Non-
optimal Coins Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environment, that is
to invest, every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 13.350200% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining 86.649800%
will be held in “reserve” with a 56.675100% chance of making twice the 13.350200% back, (and a 43.324900% chance
of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns, (per tosses,) of
0.897820%, or a doubling of its rate of revenue returns, (per tosses,) in 77.549438 tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
13.350200% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.897820%, per tosses, on average.

Note that the metrics presented in this section are representative of the Non-optimal Coins Tossing Game as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 13.350200% of its rate of revenue returns, (per tosses,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the
Non-optimal Coins Tossing Game’s environment, the company’s rate of revenue returns exceeds what was borrowed
from the bank, and the loan is repaid in full. Other tossess, the company must default, and the bank seizes a portion of
the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of
revenue returns at 0.897820% per tosses.

As another simple example, a company re-invests 13.350200% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 13.350200% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.897820% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 13.350200% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 13 { 350200, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 13 { 350200 percent for the second product, implying that the company should diversify its
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product line274. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 13 { 350200%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the Non-optimal Coins Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 133502 . Note
that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.485, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 13.350200% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 13.350200% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.22.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Non-optimal Coins Tossing Game,
and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~ � ��� , and the root mean square, c Q Z � �$� , of
the normalized increments of the Non-optimal Coins Tossing Game time series is 0.009437, and 0.030881respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 9.895808.

If this value seems consistent number of companies in the Non-optimal Coins Tossing Game, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the
companies participating in the Non-optimal Coins Tossing Game are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.548572, which would be the value
which should be used in Section C.22.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.22.5 is greater than the average
Shannon probability for the companies participating in the Non-optimal Coins Tossing Game, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.22.5. The maximum
exploitability for the Non-optimal Coins Tossing Game is derived in Section C.22.9, but it is probably of doubtful
practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Non-optimal Coins Tossing
Game is 0.548572, with several alternative solutions listed in the previous paragraph. However, these should be

274The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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contrasted to the Shannon probability that maximizes a company’s P&L which is 0.652796 in the Non-optimal Coins
Tossing Game. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.853)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Non-optimal Coins Tossing Game would tend to indicate that the companies participating
in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.22.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.486.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.485. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Non-optimal Coins Tossing
Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.22.5, is derived from the Non-optimal
Coins Tossing Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.22.9.

An additional exploitable strategy may be time itself. Equations C.830, C.834, and, C.832, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Non-optimal Coins Tossing
Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.501, and, C.502 compare methods
of approximation of the “forecastability” of rate of revenue returns in the Non-optimal Coins Tossing Game for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Non-optimal Coins
Tossing Game. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the
rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.275” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.501, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory

275For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.502: Non-optimal Coins Tossing Game,
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the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

levels that do not exceed, from Equation C.832, 0 { 849887
� A 0 { 5 tossess of operations. Since the optimal amount of

inventory and, from Equation C.830, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.22.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.22.9. Figure C.503 represents a constructional
simulation of the time series data presented in Figure C.484. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
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in Figure C.485. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.485 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.504
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.487.
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C.22.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.22.3. One of the issues of analysis, as mentioned
in Section C.22.7, is to determine the maximum Shannon probability for the time series presented in Figure C.484.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.505 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.484. Figure C.506 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.484. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.566751, as derived in Section C.22.5 to 0.646667. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.484, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.484, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of tossess that the Non-optimal Coins Tossing
Game movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.645485, as compared with the predicted value from the program tsshannonmax of 0.646667.

C.22.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.486.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.485. These
values will be used in a fixed increment Brownian fractal analysis of the Non-optimal Coins Tossing Game, and may,
or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.22.6 and D.22.7. As a subjective evaluation of
the “quality” of the analysis of the Non-optimal Coins Tossing Game, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.484 from
Figure C.485, and the Shannon probability as calculated by counting the total number of tossess that the Non-optimal
Coins Tossing Game movement was positive, as presented in Section C.22.9:

u � BEDGFHGIKJ f 1

2
(C.854)

0 { 645485 � 0 þ 009437
0 þ 030881 f 1

2
(C.855)

0 { 645485 � 0 { 652796 (C.856)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 645485 � 0 { 652796 � 0 { 646667 (C.857)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.22.5, should be
compared. The four methods used were the mean of Figure C.485, the constant in the least squares approximation to
Figure C.485, the least squares exponential approximation to Figure C.484, and the logarithmic returns of Figure C.484,
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derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 013551 � 0 { 015784 � 0 { 013218 � 0 { 012895 (C.858)

It is implied in Section C.22.5, Subsection C.22.5 and in Section C.22.8 that, a Brownian motion with fixed
increments fractal may “model” the Non-optimal Coins Tossing Game. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.859)

0 { 030881 (2 L 0 { 645485 m 1) � 0 { 029453 (2 L 0 { 645485 m 1)

2 ó 0 { 645485 (1 m 0 { 645485)
(C.860)

0 { 030881 L 0 { 290970 � 0 { 029453 L 0 { 304129 (C.861)
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0 { 008985 � 0 { 008958 (C.862)

and, equating to the mean:

0 { 009437 � 0 { 008985 � 0 { 008958 (C.863)

where, as in Equation C.856 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.484 from Figure C.485, and the Shannon probability as
calculated by counting the total number of tossess that the Non-optimal Coins Tossing Game movement was positive,
as presented in Section C.22.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value276, where the absolute value is presented in Figure C.486, and the root mean square value is
presented in Figure C.485:

0 { 025378 � 0 { 030881 (C.864)

Note, that if the Non-optimal Coins Tossing Game could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.484 from Figure C.485 should be zero. It is 0 { 017626.

C.23 Non-optimal Logistic Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins-b277.
The data in this section is presented in tabular form in Section D.23. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Non-optimal Logistic Coins Tossing Game. This
is included for “theoretical” comparative purposes.

C.23.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.23.1. Figure C.507 is a graph of the time series data
for the Non-optimal Logistic Coins Tossing Game.

Figure C.508 is a graph of the normalized increments of the time series data presented in Figure C.507. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.509 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.508. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the

276The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

277As a simulation model, the program tscoins was run to make a time series data file, with the following parameters:

tscoins -p -b 0.00000005 0.6 -b 0.03 1000 > data

to make a time series of 1000 elements, with a Shannon probability of 0.6 and a known non-optimal investment strategy. The non-linearity term of
the logistic function is 0 � 00000005. Otherwise, the first 300 elements of the simulation is approximately the same as in Section C.22. Note that there
is some possibility that the analytical techniques used could be used to determine the maturity of an industrial market. See Chapter 2, Section 2.8.
The data is by tosses.
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Figure C.507: Non-optimal Logistic Coins Tossing
Game, time series data.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n 
of

 C
um

ul
at

iv
e 

R
et

ur
ns

, G
ai

n/
Lo

ss

î

Time

Time Series Data

"data.tsfraction"
0.061302 + -0.000059 * t

0.032010
"data.tsfraction.tsrms"
"data.tsfraction.tsavg"

0.198114

Figure C.508: Non-optimal Logistic Coins Tossing
Game, normalized increments of the time series data
presented in Figure C.507. The mean is 0.032010
with a standard deviation of 0.195609. The formula
for the least squares approximation is 0 { 061302 fm 0 { 000059 X , and the root mean squared value is
0.198114. The graph, labeled “data.tsfraction.tsrms,”
is the running root mean square, and “data.tsfraction-
.tsavg” is the running average of the normalized in-
crements. This graph is the fraction of change in
the time series, as a function of time. Note that the
slope of the mean, -0.000059, is the coefficient of the
nonlinearity term in the normalized increments. See
Chapter 2, Section 2.8 for a possible application of
the logistic function to this data set.

absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns278.

278The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
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Figure C.510 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.508. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.
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Figure C.509: Non-optimal Logistic Coins Tossing
Game, absolute value of the normalized increments
of the time series data presented in Figure C.508.
The mean is 0.159477 with a standard deviation of
0.117600. The formula for the least squares approxi-
mation is 0 { 167886 f m 0 { 000017 X , and the root mean
square value, from Figure C.508, is 0.198114. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments pre-
sented in Figure C.508, superimposed here for conve-
nience. This graph is the absolute value of the fraction
of change in the time series, as a function of time.
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Figure C.510: Non-optimal Logistic Coins Tossing
Game, normalized histogram of the normalized incre-
ments of the time series data shown in Figure C.508.
The data has a mean of 0.032010, with a standard de-
viation of 0.195609. The area under the two curves is
identical. The ê 2 value of the observed and expected
values of the two curves is 0.367000, with a critical
value of 42.557000.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.510.

depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.511 is the statistical estimate for the data presented in Figure C.508, as derived by the program tsstatest,
which is briefly described in appendix B.

For a mean of 0.031978, with a confidence level of 0.900000
that the error did not exceed 0.003198, 10385 samples would be required.
(With 1000 samples, the estimated error is 0.010305 = 32.225289 percent.)

For a standard deviation of 0.198114, with a confidence level of 0.900000
that the error did not exceed 0.019811, 136 samples would be required.
(With 1000 samples, the estimated error is 0.007287 = 3.678005 percent.)

Figure C.511: Non-optimal Logistic Coins Tossing Game, statistical estimates of the normalized increments of the
time series shown in Figure C.508. The table was produced with the tsstatest program, and illustrates the size of the
data set required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on
the time series shown in Figure C.508.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 579290, as derived in Section C.23.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.512 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.508. In principle, if the distribution of the normalized increments presented in Figure C.510
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.513 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.508. In principle, if the distribution of the normalized increments presented in Figure C.510 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.514 is the range of values of the time series shown in Figure C.507. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.514
would be a square root function279. Figure C.515 is the deterministic map of the normalized increments of the time
series data shown in Figure C.508. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.510 would seem to indicate that the time series data for the Non-optimal Logistic Coins Tossing Game
represents a cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian
increments property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time
series data represents fractional Brownian motion.

C.23.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root

279Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.514 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.512: Non-optimal Logistic Coins Tossing
Game, normalized histogram of the first derivative
of the normalized increments of the time series data
shown in Figure C.508.
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Figure C.513: Non-optimal Logistic Coins Tossing
Game, normalized histogram of second derivative of
the the normalized increments of the time series data
shown in Figure C.508.

mean square of the instantaneous fraction of change280. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.516 is the instantaneous value of the root mean square of the normalized increments for the Non-optimal
Logistic Coins Tossing Game,and Figure C.517 is the instantaneous Shannon probability for the normalized increments.

C.23.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.23.4. Figure C.518 is a graph of the logistic
function estimates of the time series data for the Non-optimal Logistic Coins Tossing Game. The reader is cautioned
that these graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is
required for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require

280The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Game, deterministic map of the normalized incre-
ments of the time series data shown in Figure C.508.

intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies281. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.518 is a graph of the logistic function for the time series data presented in Figure C.507. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.508. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.508. Figure C.519 is the same graph, but
with the time scale expanded by a factor of two.

C.23.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.23.5. Figure C.520 is a graph of the Hurst coefficient
data time series data shown in Figure C.507. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

281For example, in Figures C.518 and C.519, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.23.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.516: Non-optimal Logistic Coins Tossing
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of the normalized increments, provided by running
the program tsinstant with the -r option on the data
presented in Figure C.507.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 100 200 300 400 500 600 700 800 900 1000

S
ha

nn
on

 P
ro

ba
bi

lit
yû

Time

Instantaneous Shannon Probability of Normalized Increments

"data.tsinstant-s"

Figure C.517: Non-optimal Logistic Coins Tossing
Game, instantaneous value of the Shannon probability
of the normalized increments, provided by running
the program tsinstant with the -s option on the data
presented in Figure C.507.

Figure C.521 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.508. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.520 implies that the variance of the rate of revenue returns,
(per tosses,) in the Non-optimal Logistic Coins Tossing Game, k d X 2 m X 1 i , over a period of time is proportional to the
period of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time282, X , U d X�i A b0c O�d 1 � ó 2 X�i which is
approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.524, and, C.525 compare methods of approximation of

282It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 585



C.23. NON-OPTIMAL LOGISTIC COINS TOSSING GAME

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 100 200 300 400 500 600 700 800 900 1000

R
ev

en
ue

 R
at

eí

Time

Discreet Logistic Function Time Series Data

"data"
"data.tsfraction.tslsq-p.tsdlogistic"

Figure C.518: Non-optimal Logistic Coins Tossing
Game, logistic function estimates, provided by run-
ning the tslsq program on the normalized increments
presented in Figure C.508 with the -p option. These
parameters were used as arguments to the tsdlogistic
program.
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Figure C.519: Non-optimal Logistic Coins Tossing
Game, logistic function estimates of Figure C.518
with the time scale expanded by a factor of two.

the “forecastability” of the rate of revenue returns in the Non-optimal Logistic Coins Tossing Game for the near term
and far term, respectively [Pet91, pp. 83-84]283. This seems to be a quantitative statement concerning “windows of
opportunity” in the rate of revenue returns, (per tosses.) The program tslsq was used on the Hurst coefficient data,
presented in Figure C.520, to provide a least squares approximation to the Hurst coefficient. The superimposed least
squares approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient
of 0.842100, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.865)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 842100 (C.866)

283The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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ü ( X 2 m X 1)1 þ 684200 (C.867)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per tosses,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past284. A Hurst coefficient of 0.842100, (for the near future, and 0.475809 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per tosses,) for any two consecutive tossess being the same is

284Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È � is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.23.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Non-optimal Logistic Coins Tossing Game. See
also [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation
issues.
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84.210000% [Pet91, pp. 66] for the near future, and 0.475809 for the distant future. Likewise, there is a 84.210000%
chance of the rate of revenue returns, (per tosses,) movements being the same in consecutive time periods—ie., if, in
a given tosses, the rate of revenue returns, (per tosses,) is increasing, there is a 84.210000% that the rate of revenue
returns, (per tosses,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per tosses,) for the Non-optimal Logistic Coins Tossing
Game are over time, since the probability of having g many consecutive tossess of the same agenda is ÿ � where ÿ is
the Hurst coefficient, or, letting the short term probability of having g many tossess of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.868)A 0 { 842100
�

(C.869)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.508,
if the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that
would be made by forecasting, month by month, that the next tosses’s rate of revenue returns would be the same as the
current tosses’s revenue rate. Interestingly, it is 0 { 032010 L 100 percent, on the average, with a standard deviation of
0 { 195609 L 100 percent, and a root mean square error value of 0 { 198114 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per tosses,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.870)ü ( X 2 m X 1)0 þ 842100 (C.871)

where � is the range of values in the increments of the rate of revenue returns, (per tosses.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per tosses,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per tosses) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.871 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.872)ü � ( X 2 m X 1) (C.873)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per tosses,) divided by the standard deviation of these values, � , can be anticipated to increase over time according to
the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.874)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per tosses,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time285.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

285To be precise, it is actually asymptotically proportional to � 1
2
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�
( X ) ü �

( c	X )c ý (C.875)

ü �
( cjX )c 0 þ 842100

(C.876)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.521, to provide a least squares
approximation to the H parameter for the Non-optimal Logistic Coins Tossing Game. The superimposed least squares
approximation on the original H parameter data is presented. By contrast, the H parameter, as derived by the
methodology outlined in [Cro95, pp. 249], is 0.476419 for the near future, and 0.456782 for the distant future.

Figures C.520 and C.521 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.508. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.508, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.522 and C.523 was made using the -d option.

C.23.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.23.2. This section derives various values based
on the “average” of the normalized increments presented in Figure C.509. These values are an approximation to a,
probably, complex process with a distribution shown in Figure C.508. These values will be used in a fixed increment
Brownian fractal analysis and simulation of the Non-optimal Logistic Coins Tossing Game, and may, or may not,
provide adequate accuracy for projections.

For an organization operating in the Non-optimal Logistic Coins Tossing Game, the fiscal strategy, commensurate
with the aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp.
270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.508, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 032010 f 1)
ln (2)

A 0 { 045457 (C.877)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.508, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 061302 f 1)
ln (2)

A 0 { 085835 (C.878)

Note that if the mean is not constant in Figure C.508, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.507:

� V_X�Z A 0 { 012612 (C.879)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.507:
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� V_X�Z A 0 { 018217 (C.880)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.23.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 018217 � (C.881)

therefore: Û
(U ) A 0 { 018217 (C.882)

and, tsshannon 0.018217 gives: Û
(0 { 579290) A 0 { 018217 (C.883)
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therefore:

2 � (0 þ 579290) A 20 þ 018217 (C.884)A 1 { 012707 (C.885)A 1 { 270712% (C.886)

and:

2U m 1 A (2 L 0 { 579290) m 1 (C.887)A 0 { 158580 (C.888)A 15 { 858000% (C.889)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Non-
optimal Logistic Coins Tossing Game executes a long term fiscal strategy, commensurate with the aggregate environ-
ment, that is to invest, every tosses, in sufficient additional resources and infrastructure, to increase the manufacturing
of goods and services by 15.858000% of its rate of revenue returns, (per tosses.) As a conceptual model, the remaining
84.142000% will be held in “reserve” with a 57.929000% chance of making twice the 15.858000% back, (and a
42.071000% chance of making 0.0,) in one tosses, on the average, for an average growth in its rate of revenue returns,
(per tosses,) of 1.270712%, or a doubling of its rate of revenue returns, (per tosses,) in 54.893781 tossess.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
15.858000% per tosses of the rate of revenue returns, (per tosses,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 1.270712%, per tosses, on average.

Note that the metrics presented in this section are representative of the Non-optimal Logistic Coins Tossing Game
as an aggregate whole, and may or may not be accurate representations for any particular participant in the environment.
Of interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 15.858000% of its rate of revenue returns, (per tosses,) to finance additional operations. In this
simple scenario, the company would use its revenue base as collateral for the loan. Some tossess, depending on the
Non-optimal Logistic Coins Tossing Game’s environment, the company’s rate of revenue returns exceeds what was
borrowed from the bank, and the loan is repaid in full. Other tossess, the company must default, and the bank seizes a
portion of the company’s revenue base to pay the delinquent loan. However, on the average, the company will expand
its rate of revenue returns at 1.270712% per tosses.

As another simple example, a company re-invests 15.858000% of its rate of revenue returns, (per tosses,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 15.858000% per tosses investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.270712% per tosses.

As an example of “product portfolio” management, suppose a company re-invests 15.858000% of its rate of
revenue returns, (per tosses,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 15 { 858000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 15 { 858000 percent for the second product, implying that the company should diversify its
product line286. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then

286The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
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the re-investment in both products should total the 15 { 858000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the Non-optimal Logistic Coins Tossing Game, as a standard bench mark, then the optimal number will be 1

0 þ 158580 .
Note that this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for
example product leveraging, that may increase the number of products above the optimum. However, most of the
revenue should come from the optimal number of products, since having more products will decrease the amount of
the potential investment in each product, and having less than the optimum number of products will increase the risk
that many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.508, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 15.858000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 15.858000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.23.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Non-optimal Logistic Coins Tossing
Game, and uses the method outlined in Chapter 2, Section 2.6. Since the average, To}	~�� �$� , and the root mean square,c Q Z � ��� , of the normalized increments of the Non-optimal Logistic Coins Tossing Game time series is 0.032010, and
0.198114respectively, the number of companies participating in the market can be calculated by Equation 2.109 to be
0.815559.

If this value seems consistent number of companies in the Non-optimal Logistic Coins Tossing Game, within
the assumptions outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect
evidence that the companies participating in the Non-optimal Logistic Coins Tossing Game are operating optimally,
and the “average” Shannon probability, u for each participating company would be, using Equation 2.110, 0.589457,
which would be the value which should be used in Section C.23.5 for each participating company if market expansion
was to be consistent with the rest of the industry. However, if the Shannon probability derived in Section C.23.5
is greater than the average Shannon probability for the companies participating in the Non-optimal Logistic Coins
Tossing Game, as derived in this section, then the market would, possibly, be exploitable with the fiscal strategy
outlined in Section C.23.5. The maximum exploitability for the Non-optimal Logistic Coins Tossing Game is derived
in Section C.23.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Non-optimal Logistic Coins
Tossing Game is 0.589457, with several alternative solutions listed in the previous paragraph. However, these should
be contrasted to the Shannon probability that maximizes a company’s P&L which is 0.580787 in the Non-optimal

term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,
�

, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È � is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the
Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Logistic Coins Tossing Game. In all cases, the fraction of the P&L that should be “wagered” on the future, O , should
be:

O A 2 uxm 1 (C.890)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Non-optimal Logistic Coins Tossing Game would tend to indicate that the companies
participating in the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.23.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.509.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.508. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Non-optimal Logistic Coins
Tossing Game, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.23.5, is derived from the Non-optimal
Logistic Coins Tossing Game metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy,
which may be exploitable, see Section C.23.9.

An additional exploitable strategy may be time itself. Equations C.867, C.871, and, C.869, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Non-optimal Logistic Coins
Tossing Game, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed
as an operational necessity in strategic planning and project management. Figures C.524, and, C.525 compare methods
of approximation of the “forecastability” of rate of revenue returns in the Non-optimal Logistic Coins Tossing Game for
the near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Non-optimal Logistic
Coins Tossing Game. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance
that the rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed
that a product or service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all
three life cycle intervals are equal, the product life cycle will be, approximately, three times the time interval where
the “forecastability” of rate of revenue returns drops below 50%. Although probably not an accurate prediction of
product or service life cycle, the technique may be used as a conceptual approximation to the dynamics of “market
windows.287” The conceptual approximation will probably predict a “conservative” or “pessimistic” value in relation
to actual markets.

As an interesting interpretation of the data presented in Figure C.524, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over

287For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.869, 0 { 842100

� A 0 { 5 tossess of operations. Since the optimal amount of
inventory and, from Equation C.867, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.23.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.23.9. Figure C.526 represents a constructional
simulation of the time series data presented in Figure C.507. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
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the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.508. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.508 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.527
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.510.
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C.23.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.23.3. One of the issues of analysis, as mentioned
in Section C.23.7, is to determine the maximum Shannon probability for the time series presented in Figure C.507.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.528 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.507. Figure C.529 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.507. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.579290, as derived in Section C.23.5 to 0.568000. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.507, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.507, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of tossess that the Non-optimal Logistic Coins
Tossing Game movement was positive, and dividing by the total number of timescales represented in the time series.
This quotient is 0.567568, as compared with the predicted value from the program tsshannonmax of 0.568000.

C.23.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.509.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.508. These
values will be used in a fixed increment Brownian fractal analysis of the Non-optimal Logistic Coins Tossing Game,
and may, or may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.23.6 and D.23.7. As a subjective evaluation of the
“quality” of the analysis of the Non-optimal Logistic Coins Tossing Game, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.507 from
Figure C.508, and the Shannon probability as calculated by counting the total number of tossess that the Non-optimal
Logistic Coins Tossing Game movement was positive, as presented in Section C.23.9:

u � BEDGFHGIKJ f 1

2
(C.891)

0 { 567568 � 0 þ 032010
0 þ 198114 f 1

2
(C.892)

0 { 567568 � 0 { 580787 (C.893)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 567568 � 0 { 580787 � 0 { 568000 (C.894)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.23.5, should be
compared. The four methods used were the mean of Figure C.508, the constant in the least squares approximation to
Figure C.508, the least squares exponential approximation to Figure C.507, and the logarithmic returns of Figure C.507,

Id: verification.tex,v 0.0 1995/11/20 04:38:13 john Exp 596



C.23. NON-OPTIMAL LOGISTIC COINS TOSSING GAME

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ax

im
um

 R
ev

en
ue

 R
at

e

"

Shannon Probability

Shannon Probability vs. Maximum Revenue Rate

"data.tsshannonmax"

Figure C.528: Non-optimal Logistic Coins Tossing
Game, maximum rate of revenue returns, per tosses,
vs. Shannon probability. The maximum rate of rev-
enue returns, per tosses, occurs at a Shannon proba-
bility of 0.568000.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 100 200 300 400 500 600 700 800 900 1000

R
ev

en
ue

 R
at

eí

Time

Time Series Data

"data"
"data.tsshannonmax-p.tsunfairbrownian-p"

Figure C.529: Non-optimal Logistic Coins Tossing
Game, maximum rate of revenue returns, per tosses,
at a Shannon probability, of 0.568000, corresponding
to a “wager” fraction of 0.136000.

derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 045457 � 0 { 085835 � 0 { 012612 � 0 { 018217 (C.895)

It is implied in Section C.23.5, Subsection C.23.5 and in Section C.23.8 that, a Brownian motion with fixed
increments fractal may “model” the Non-optimal Logistic Coins Tossing Game. Using Equation 2.104 from Chapter 2,
Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.896)

0 { 198114 (2 L 0 { 567568 m 1) � 0 { 195609 (2 L 0 { 567568 m 1)

2 ó 0 { 567568 (1 m 0 { 567568)
(C.897)

0 { 198114 L 0 { 135135 � 0 { 195609 L 0 { 136386 (C.898)
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0 { 026772 � 0 { 026678 (C.899)

and, equating to the mean:

0 { 032010 � 0 { 026772 � 0 { 026678 (C.900)

where, as in Equation C.893 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.507 from Figure C.508, and the Shannon probability as
calculated by counting the total number of tossess that the Non-optimal Logistic Coins Tossing Game movement was
positive, as presented in Section C.23.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value288, where the absolute value is presented in Figure C.509, and the root mean square value is
presented in Figure C.508:

0 { 159477 � 0 { 198114 (C.901)

Note, that if the Non-optimal Logistic Coins Tossing Game could be “modeled” as a Brownian motion with fixed
increments fractal, then the standard deviation of the absolute value of the normalized increments of the time series
data presented in Figure C.507 from Figure C.508 should be zero. It is 0 { 117600.

C.24 Simulated Industrial Market

For the analysis, the data was in the directory ../markets/tsmarket289.
The data in this section is presented in tabular form in Section D.24. Note that in this analysis, the rate of revenue

returns means the increase or decrease in the cumulative sum of the Simulated Industrial Market. This is included for
“theoretical” comparative purposes.

C.24.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.24.1. Figure C.530 is a graph of the time series data
for the Simulated Industrial Market.

Figure C.531 is a graph of the normalized increments of the time series data presented in Figure C.530. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.532 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.531. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the

288The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

289As a simulation model, the program tsmarket was run to make a time series data file, with the following parameters:

tsmarket -p 0.55 -c 11 300 > data

to make a time series of 300 elements, with a Shannon probability of 0.55, and 11 companies participating in the market, each with equal market
share, and operating optimally. The data is by months.

Id: fraction.tex,v 0.0 1995/11/20 04:38:13 john Exp 598



C.24. SIMULATED INDUSTRIAL MARKET

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300

R
ev

en
ue

 R
at

eí

Time

Time Series Data

"data"

Figure C.530: Simulated Industrial Market, time se-
ries data.
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Figure C.531: Simulated Industrial Market, normal-
ized increments of the time series data presented in
Figure C.530. The mean is 0.013109 with a stan-
dard deviation of 0.029243. The formula for the least
squares approximation is 0 { 013460 f m 0 { 000002 X ,
and the root mean squared value is 0.032003. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.000002, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns290.

290The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
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Figure C.533 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.531. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.
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Figure C.532: Simulated Industrial Market, abso-
lute value of the normalized increments of the time
series data presented in Figure C.531. The mean
is 0.025065 with a standard deviation of 0.019930.
The formula for the least squares approximation is
0 { 023976 f 0 { 000007 X , and the root mean square
value, from Figure C.531, is 0.032003. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.531, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.533: Simulated Industrial Market, normal-
ized histogram of the normalized increments of the
time series data shown in Figure C.531. The data
has a mean of 0.013109, with a standard deviation of
0.029243. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 1.229000, with a critical value of
42.557000.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.533.

depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.534 is the statistical estimate for the data presented in Figure C.531, as derived by the program tsstatest,
which is briefly described in appendix B.

For a mean of 0.013065, with a confidence level of 0.900000
that the error did not exceed 0.001307, 1624 samples would be required.
(With 300 samples, the estimated error is 0.003039 = 23.261392 percent.)

For a standard deviation of 0.032003, with a confidence level of 0.900000
that the error did not exceed 0.003200, 136 samples would be required.
(With 300 samples, the estimated error is 0.002149 = 6.715087 percent.)

Figure C.534: Simulated Industrial Market, statistical estimates of the normalized increments of the time series shown
in Figure C.531. The table was produced with the tsstatest program, and illustrates the size of the data set required for
a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.531.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 579097, as derived in Section C.24.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.535 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.531. In principle, if the distribution of the normalized increments presented in Figure C.533
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.536 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.531. In principle, if the distribution of the normalized increments presented in Figure C.533 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.537 is the range of values of the time series shown in Figure C.530. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.537
would be a square root function291. Figure C.538 is the deterministic map of the normalized increments of the time
series data shown in Figure C.531. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.533 would seem to indicate that the time series data for the Simulated Industrial Market represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.

C.24.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root

291Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.537 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.535: Simulated Industrial Market, normal-
ized histogram of the first derivative of the normal-
ized increments of the time series data shown in Fig-
ure C.531.
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Figure C.536: Simulated Industrial Market, normal-
ized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.531.

mean square of the instantaneous fraction of change292. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.539 is the instantaneous value of the root mean square of the normalized increments for the Simulated
Industrial Market, and Figure C.540 is the instantaneous Shannon probability for the normalized increments.

C.24.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.24.4. Figure C.541 is a graph of the logistic
function estimates of the time series data for the Simulated Industrial Market. The reader is cautioned that these
graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require

292The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.537: Simulated Industrial Market, range of
the time series data shown in Figure C.530.
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Figure C.538: Simulated Industrial Market, deter-
ministic map of the normalized increments of the time
series data shown in Figure C.531.

intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies293. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.541 is a graph of the logistic function for the time series data presented in Figure C.530. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.531. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.531. Figure C.542 is the same graph, but
with the time scale expanded by a factor of two.

C.24.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.24.5. Figure C.543 is a graph of the Hurst coefficient
data time series data shown in Figure C.530. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

293For example, in Figures C.541 and C.542, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.24.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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malized increments, provided by running the program
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Figure C.544 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.531. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.543 implies that the variance of the rate of revenue
returns, (per month,) in the Simulated Industrial Market, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time294, X , U d X�i A b0c O�d 1 � ó 2 X�i which is
approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.547, and, C.548 compare methods of approximation of

294It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µ ÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)
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were used as arguments to the tsdlogistic program.

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

R
ev

en
ue

 R
at

eí

Time

Discreet Logistic Function Time Series Data

"data"
"data.tsfraction.tslsq-p.tsdlogistic2"

Figure C.542: Simulated Industrial Market, logistic
function estimates of Figure C.541 with the time scale
expanded by a factor of two.

the “forecastability” of the rate of revenue returns in the Simulated Industrial Market for the near term and far term,
respectively [Pet91, pp. 83-84]295. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data, presented
in Figure C.543, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.848216, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.902)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 848216 (C.903)ü ( X 2 m X 1)1 þ 696432 (C.904)

295The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past296. A Hurst coefficient of 0.848216, (for the near future, and 0.786671 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
84.821600% [Pet91, pp. 66] for the near future, and 0.786671 for the distant future. Likewise, there is a 84.821600%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in

296Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.24.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Simulated Industrial Market. See also [Pet91, pp.
67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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a given month, the rate of revenue returns, (per month,) is increasing, there is a 84.821600% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the Simulated Industrial Market are over
time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.905)A 0 { 848216
�

(C.906)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.531, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 013109 L 100 percent, on the average, with a standard deviation of
0 { 029243 L 100 percent, and a root mean square error value of 0 { 032003 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.907)ü ( X 2 m X 1)0 þ 848216 (C.908)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.908 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.909)ü � ( X 2 m X 1) (C.910)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.911)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time297.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

297To be precise, it is actually asymptotically proportional to � 1
2
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�
( X ) ü �

( c	X )c ý (C.912)

ü �
( cjX )c 0 þ 848216

(C.913)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.544, to provide a least squares
approximation to the H parameter for the Simulated Industrial Market. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.554674 for the near future, and 0.563657 for the distant future.

Figures C.543 and C.544 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.531. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.531, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.545 and C.546 was made using the -d option.

C.24.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.24.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.532. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.531. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Simulated Industrial Market, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Simulated Industrial Market, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.531, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 013109 f 1)
ln (2)

A 0 { 018789 (C.914)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.531, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 013460 f 1)
ln (2)

A 0 { 019289 (C.915)

Note that if the mean is not constant in Figure C.531, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.530:

� V_X�Z A 0 { 017469 (C.916)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.530:

� V_X�Z A 0 { 018128 (C.917)
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eter, and is 0.497584 for the near term, and 0.495947
for the far term.

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.24.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 018128 � (C.918)

therefore: Û
(U ) A 0 { 018128 (C.919)

and, tsshannon 0.018128 gives: Û
(0 { 579097) A 0 { 018128 (C.920)

therefore:

2 � (0 þ 579097) A 20 þ 018128 (C.921)A 1 { 012645 (C.922)
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A 1 { 264465% (C.923)

and:

2U m 1 A (2 L 0 { 579097) m 1 (C.924)A 0 { 158194 (C.925)A 15 { 819400% (C.926)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Simulated
Industrial Market executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services
by 15.819400% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 84.180600% will
be held in “reserve” with a 57.909700% chance of making twice the 15.819400% back, (and a 42.090300% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
1.264465%, or a doubling of its rate of revenue returns, (per month,) in 55.163283 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
15.819400% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 1.264465%, per month, on average.

Note that the metrics presented in this section are representative of the Simulated Industrial Market as an aggregate
whole, and may or may not be accurate representations for any particular participant in the environment. Of interest to
the participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 15.819400% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the Simulated
Industrial Market’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank,
and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 1.264465% per month.

As another simple example, a company re-invests 15.819400% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 15.819400% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 1.264465% per month.

As an example of “product portfolio” management, suppose a company re-invests 15.819400% of its rate of revenue
returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the percentage
of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 15 { 819400, percent of the rate of revenue returns, andd 2 L 0 { 55 m 1 i L 15 { 819400percent for the second product, implying that the company should diversify its product line298.

298The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated revenue return
rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the re-investment
in both products should total the 15 { 819400%, and the investment in each product should be made at a ratio of
� 2 � 0 þ 65 � 1 �
� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of products that
can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Simulated Industrial
Market, as a standard bench mark, then the optimal number will be 1

0 þ 158194 . Note that this is a “theoretical” value, since
not all products are “typical,” and there may be strategic reasons, for example product leveraging, that may increase
the number of products above the optimum. However, most of the revenue should come from the optimal number of
products, since having more products will decrease the amount of the potential investment in each product, and having
less than the optimum number of products will increase the risk that many of the products could suffer a “down market”
concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal “hedging of
bets,” in product portfolio strategy, and considering the graph of the normalized increments presented in Figure C.531,
if the organization is running optimally, then these products will generate, at least in principle, one standard deviation,
approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are approximations,
and the values are an approximation to a, probably, complex process, and appropriate scrutiny should be exercised
before making specific projections. As yet another example of “product portfolio” management, consider the issue of
product mix. In this interpretation, 15.819400% of the product manufactured should be “proprietary,” while the rest
is “industry standard.” As yet another possibility, 15.819400% of the product manufactured should be predatory into
new markets, and the remainder in markets that are “traditional” for the company.

C.24.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Simulated Industrial Market, and
uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square, c Q Z � ��� , of
the normalized increments of the Simulated Industrial Market time series is 0.013109, and 0.032003respectively, the
number of companies participating in the market can be calculated by Equation 2.109 to be 12.799358.

If this value seems consistent number of companies in the Simulated Industrial Market, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that
the companies participating in the Simulated Industrial Market are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.557247, which would be the value
which should be used in Section C.24.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.24.5 is greater than the average
Shannon probability for the companies participating in the Simulated Industrial Market, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.24.5. The maximum
exploitability for the Simulated Industrial Market is derived in Section C.24.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Simulated Industrial Market is
0.557247, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.704809 in the Simulated Industrial Market. In
all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.927)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Simulated Industrial Market would tend to indicate that the companies participating in the
market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
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“increasing returns.”

C.24.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.532.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.531. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Simulated Industrial Market,
and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.24.5, is derived from the Simulated
Industrial Market metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be
exploitable, see Section C.24.9.

An additional exploitable strategy may be time itself. Equations C.904, C.908, and, C.906, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Simulated Industrial
Market, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.547, and, C.548 compare methods of
approximation of the “forecastability” of rate of revenue returns in the Simulated Industrial Market for the near term
and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making decisions
that will span a time interval larger than the time interval where the “forecastability” of rate of revenue returns drops
below 50%. Beyond this time interval, the chances increase that the competitive and market forces will alter the market
environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage in “timeliness”
of development, manufacturing, and distribution of products and services that are consistent with this temporal agenda.
Automation of these processes, if executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Simulated Industrial
Market. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate
of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.299” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.547, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.906, 0 { 848216

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.904, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.24.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.24.9. Figure C.549 represents a constructional
simulation of the time series data presented in Figure C.530. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.

299For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.531. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.531 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.550
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.533.
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Figure C.550: Simulated Industrial Market, normal-
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By comparison, the simulated data has a mean of
0.011169 with a standard deviation of 0.030041. This
data is superimposed on the data presented in Fig-
ure C.533. The area under the four curves is identical.

C.24.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.24.3. One of the issues of analysis, as mentioned
in Section C.24.7, is to determine the maximum Shannon probability for the time series presented in Figure C.530.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.551 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.530. Figure C.552 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.530. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.579097, as derived in Section C.24.5 to 0.676667. This process, essentially, extracts the random
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statistical data from the time series presented in Figure C.530, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.
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0.676667.
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Figure C.552: Simulated Industrial Market, maxi-
mum rate of revenue returns, per month, at a Shannon
probability, of 0.676667, corresponding to a “wager”
fraction of 0.353334.

If it is assumed that the time series data set, presented in Figure C.530, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the Simulated Industrial Market
movement was positive, and dividing by the total number of timescales represented in the time series. This quotient is
0.675585, as compared with the predicted value from the program tsshannonmax of 0.676667.

C.24.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.532.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.531. These
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values will be used in a fixed increment Brownian fractal analysis of the Simulated Industrial Market, and may, or may
not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.24.6 and D.24.7. As a subjective evaluation of the
“quality” of the analysis of the Simulated Industrial Market, from Chapter 3, Equation 3.8, and using the mean and root
mean square values of the normalized increments of the time series data presented in Figure C.530 from Figure C.531,
and the Shannon probability as calculated by counting the total number of months that the Simulated Industrial Market
movement was positive, as presented in Section C.24.9:

u � BEDGFHGIKJ f 1

2
(C.928)

0 { 675585 � 0 þ 013109
0 þ 032003 f 1

2
(C.929)

0 { 675585 � 0 { 704809 (C.930)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 675585 � 0 { 704809 � 0 { 676667 (C.931)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.24.5, should be
compared. The four methods used were the mean of Figure C.531, the constant in the least squares approximation to
Figure C.531, the least squares exponential approximation to Figure C.530, and the logarithmic returns of Figure C.530,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 018789 � 0 { 019289 � 0 { 017469 � 0 { 018128 (C.932)

It is implied in Section C.24.5, Subsection C.24.5 and in Section C.24.8 that, a Brownian motion with fixed
increments fractal may “model” the Simulated Industrial Market. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.933)

0 { 032003 (2 L 0 { 675585 m 1) � 0 { 029243 (2 L 0 { 675585 m 1)

2 ó 0 { 675585 (1 m 0 { 675585)
(C.934)

0 { 032003 L 0 { 351171 � 0 { 029243 L 0 { 375057 (C.935)

0 { 011239 � 0 { 010968 (C.936)

and, equating to the mean:

0 { 013109 � 0 { 011239 � 0 { 010968 (C.937)

where, as in Equation C.930 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.530 from Figure C.531, and the Shannon probability as
calculated by counting the total number of months that the Simulated Industrial Market movement was positive, as
presented in Section C.24.9.
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As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value300, where the absolute value is presented in Figure C.532, and the root mean square value is
presented in Figure C.531:

0 { 025065 � 0 { 032003 (C.938)

Note, that if the Simulated Industrial Market could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.530 from Figure C.531 should be zero. It is 0 { 019930.

C.25 Discreet Logistic Function

For the analysis, the data was in the directory ../markets/tsdlogistic301.
The data in this section is presented in tabular form in Section D.25. This is included for “theoretical” comparative

purposes—of particular interest is the deterministic map in Figure C.561.

C.25.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.25.1. Figure C.553 is a graph of the time series data
for the Discreet Logistic Function.

Figure C.554 is a graph of the normalized increments of the time series data presented in Figure C.553. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.555 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.554. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns302.

Figure C.556 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.554. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.556.

Figure C.557 is the statistical estimate for the data presented in Figure C.554, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 656864, as derived in Section C.25.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set

300The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

301As a simulation model, the program tsdlogistic was run to make a time series data file, with the following parameters:

tsdlogistic 4 1 315 | awk ’if (1 3 0 � 0 
54j»6-70o� 1’ > data

to make a time series of 300 elements, with no element equal to zero. The data is by months.
302The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the

normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.553: Discreet Logistic Function, time series
data.
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Figure C.554: Discreet Logistic Function, normal-
ized increments of the time series data presented in
Figure C.553. The mean is 0.962687 with a stan-
dard deviation of 1.398261. The formula for the least
squares approximation is 1 { 244560 f m 0 { 001892 X ,
and the root mean squared value is 1.695689. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, -0.001892, is the coefficient of the nonlinear-
ity term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.558 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.554. In principle, if the distribution of the normalized increments presented in Figure C.556
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Figure C.555: Discreet Logistic Function, absolute
value of the normalized increments of the time series
data presented in Figure C.554. The mean is 1.384386
with a standard deviation of 0.980842. The formula
for the least squares approximation is 1 { 643432 fm 0 { 001739 X , and the root mean square value, from
Figure C.554, is 1.695689. The graph, labeled “data-
.tsfraction.tsrms,” is the running root mean square,
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the normalized increments presented in Figure C.554,
superimposed here for convenience. This graph is the
absolute value of the fraction of change in the time
series, as a function of time.
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Figure C.556: Discreet Logistic Function, normal-
ized histogram of the normalized increments of the
time series data shown in Figure C.554. The data
has a mean of 0.962687, with a standard deviation of
1.398261. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 11.091000, with a critical value of
42.557000.

is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.559 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.554. In principle, if the distribution of the normalized increments presented in Figure C.556 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.
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For a mean of 0.959478, with a confidence level of 0.900000
that the error did not exceed 0.095948, 846 samples would be required.
(With 300 samples, the estimated error is 0.161032 = 16.783318 percent.)

For a standard deviation of 1.695689, with a confidence level of 0.900000
that the error did not exceed 0.169569, 136 samples would be required.
(With 300 samples, the estimated error is 0.113867 = 6.715087 percent.)

Figure C.557: Discreet Logistic Function, statistical estimates of the normalized increments of the time series shown
in Figure C.554. The table was produced with the tsstatest program, and illustrates the size of the data set required for
a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time series shown
in Figure C.554.

Figure C.560 is the range of values of the time series shown in Figure C.553. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.560
would be a square root function303. Figure C.561 is the deterministic map of the normalized increments of the time
series data shown in Figure C.554. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

Figure C.556 would seem to indicate that the time series data for the Discreet Logistic Function does not represent a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to discount the assumption that the time series data
represents fractional Brownian motion.

C.25.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
mean square of the instantaneous fraction of change304. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.562 is the instantaneous value of the root mean square of the normalized increments for the Discreet
Logistic Function, and Figure C.563 is the instantaneous Shannon probability for the normalized increments.

C.25.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.25.4. Figure C.564 is a graph of the logistic
function estimates of the time series data for the Discreet Logistic Function. The reader is cautioned that these
graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require

303Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.560 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.

304The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Figure C.558: Discreet Logistic Function, normal-
ized histogram of the first derivative of the normal-
ized increments of the time series data shown in Fig-
ure C.554.
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Figure C.559: Discreet Logistic Function, normal-
ized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.554.

intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies305. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.564 is a graph of the logistic function for the time series data presented in Figure C.553. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.554. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.554. Figure C.565 is the same graph, but
with the time scale expanded by a factor of two.

C.25.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.25.5. Figure C.566 is a graph of the Hurst coefficient
data time series data shown in Figure C.553. The slope of the graph is the Hurst coefficient. The data for this figure

305For example, in Figures C.564 and C.565, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.25.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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was produced by the program tshurst, which is described briefly in Appendix B.
Figure C.567 is a graph of the H parameter data for the normalized increments of the time series data shown in

Figure C.554. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.
The approximately linear slope of the graph in Figure C.566 implies that the variance of the rate of revenue

returns, (per month,) in the Discreet Logistic Function, k d X 2 m X 1 i , over a period of time is proportional to the period
of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time306, X , U d X�i A b0c O�d 1 ��ó 2 X�i which is
approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.570, and, C.571 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the Discreet Logistic Function for the near term and far term,

306It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äöË÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)
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Figure C.563: Discreet Logistic Function, instanta-
neous value of the Shannon probability of the nor-
malized increments, provided by running the program
tsinstant with the -s option on the data presented in
Figure C.553.

respectively [Pet91, pp. 83-84]307. This seems to be a quantitative statement concerning “windows of opportunity”
in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data, presented
in Figure C.566, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.614199, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.939)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 614199 (C.940)ü ( X 2 m X 1)1 þ 228398 (C.941)

307The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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function estimates, provided by running the tslsq pro-
gram on the normalized increments presented in Fig-
ure C.554 with the -p option. These parameters were
used as arguments to the tsdlogistic program.
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Figure C.565: Discreet Logistic Function, logistic
function estimates of Figure C.564 with the time scale
expanded by a factor of two.

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past308. A Hurst coefficient of 0.614199, (for the near future, and 0.122234 for the distant future.) implies
that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
61.419900% [Pet91, pp. 66] for the near future, and 0.122234 for the distant future. Likewise, there is a 61.419900%

308Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,�
, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient

is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.25.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Discreet Logistic Function. See also [Pet91, pp. 67,
83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.567: Discreet Logistic Function, H param-
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chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 61.419900% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the Discreet Logistic Function are over
time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:

U B ( g ) A ÿ � (C.942)A 0 { 614199
�

(C.943)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.554, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 962687 L 100 percent, on the average, with a standard deviation of
1 { 398261 L 100 percent, and a root mean square error value of 1 { 695689 L 100 percent—small values for such a simple
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forecasting mechanism.
This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)

that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.944)ü ( X 2 m X 1)0 þ 614199 (C.945)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.945 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.946)ü � ( X 2 m X 1) (C.947)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.948)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time309.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.949)

ü �
( cjX )c 0 þ 614199

(C.950)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.567, to provide a least squares
approximation to the H parameter for the Discreet Logistic Function. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is -0.001844 for the near future, and 0.004883 for the distant future.

Figures C.566 and C.567 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.554. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.554, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.568 and C.569 was made using the -d option.

309To be precise, it is actually asymptotically proportional to � 1
2
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for the far term.

C.25.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.25.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.555. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.554. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Discreet Logistic Function, and may, or may not, provide adequate accuracy for
projections.

For an organization operating in the Discreet Logistic Function, the fiscal strategy, commensurate with the aggregate
environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in
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Chapter B, and is presented in Figure C.554, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 962687 f 1)
ln (2)

A 0 { 972830 (C.951)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.554, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

� V_X�Z A ln (1 { 244560 f 1)
ln (2)

A 1 { 166433 (C.952)

Note that if the mean is not constant in Figure C.554, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.553:

� V_X�Z A 0 { 008341 (C.953)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.553:

� V_X�Z A 0 { 072212 (C.954)

Calculation of Shannon Probability

Ideally, all of the values presented in Section C.25.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 072212 � (C.955)

therefore: Û
(U ) A 0 { 072212 (C.956)

and, tsshannon 0.072212 gives: Û
(0 { 656864) A 0 { 072212 (C.957)

therefore:

2 � (0 þ 656864) A 20 þ 072212 (C.958)A 1 { 051327 (C.959)A 5 { 132739% (C.960)

and:

2U m 1 A (2 L 0 { 656864) m 1 (C.961)A 0 { 313728 (C.962)A 31 { 372800% (C.963)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Discreet
Logistic Function executes a long term fiscal strategy, commensurate with the aggregate environment, that is to invest,
every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and services
by 31.372800% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 68.627200% will
be held in “reserve” with a 65.686400% chance of making twice the 31.372800% back, (and a 34.313600% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
5.132739%, or a doubling of its rate of revenue returns, (per month,) in 13.848114 months.
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Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
31.372800% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the
rate of revenue returns would be expected to increase by 5.132739%, per month, on average.

Note that the metrics presented in this section are representative of the Discreet Logistic Function as an aggregate
whole, and may or may not be accurate representations for any particular participant in the environment. Of interest to
the participants in the environment would be a similar analysis of each product or service rendered in the marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 31.372800% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the Discreet
Logistic Function’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank,
and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 5.132739% per month.

As another simple example, a company re-invests 31.372800% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
return on the investment will exceed the 31.372800% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 5.132739% per month.

As an example of “product portfolio” management, suppose a company re-invests 31.372800% of its rate of
revenue returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose
that the company has two products, and a fractal analysis of the individual product rate of revenue return time series
indicates that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then
the percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 31 { 372800, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 31 { 372800 percent for the second product, implying that the company should diversify its
product line310. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then the
re-investment in both products should total the 31 { 372800%, and the investment in each product should be made at
a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number of
products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for the Discreet
Logistic Function, as a standard bench mark, then the optimal number will be 1

0 þ 313728 . Note that this is a “theoretical”
value, since not all products are “typical,” and there may be strategic reasons, for example product leveraging, that
may increase the number of products above the optimum. However, most of the revenue should come from the optimal
number of products, since having more products will decrease the amount of the potential investment in each product,
and having less than the optimum number of products will increase the risk that many of the products could suffer a
“down market” concurrently, impacting the rate of revenue returns. As another interesting interpretation of the optimal
“hedging of bets,” in product portfolio strategy, and considering the graph of the normalized increments presented
in Figure C.554, if the organization is running optimally, then these products will generate, at least in principle, one
standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate of revenue returns. Naturally, these are
approximations, and the values are an approximation to a, probably, complex process, and appropriate scrutiny should
be exercised before making specific projections. As yet another example of “product portfolio” management, consider

310The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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the issue of product mix. In this interpretation, 31.372800% of the product manufactured should be “proprietary,”
while the rest is “industry standard.” As yet another possibility, 31.372800% of the product manufactured should be
predatory into new markets, and the remainder in markets that are “traditional” for the company.

C.25.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Discreet Logistic Function, and
uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~�� ��� , and the root mean square, c Q Z � ��� , of
the normalized increments of the Discreet Logistic Function time series is 0.962687, and 1.695689respectively, the
number of companies participating in the market can be calculated by Equation 2.109 to be 0.334806.

If this value seems consistent number of companies in the Discreet Logistic Function, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that
the companies participating in the Discreet Logistic Function are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.990583, which would be the value
which should be used in Section C.25.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.25.5 is greater than the average
Shannon probability for the companies participating in the Discreet Logistic Function, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.25.5. The maximum
exploitability for the Discreet Logistic Function is derived in Section C.25.9, but it is probably of doubtful practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Discreet Logistic Function is
0.990583, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.783863 in the Discreet Logistic Function. In all
cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.964)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Discreet Logistic Function would tend to indicate that the companies participating in the
market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.25.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.555.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.554. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Discreet Logistic Function,
and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.25.5, is derived from the Discreet
Logistic Function metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may be
exploitable, see Section C.25.9.

An additional exploitable strategy may be time itself. Equations C.941, C.945, and, C.943, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Discreet Logistic Function,
becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an operational
necessity in strategic planning and project management. Figures C.570, and, C.571 compare methods of approximation
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of the “forecastability” of rate of revenue returns in the Discreet Logistic Function for the near term and far term [Pet91,
pp. 83-84], respectively. As a general rule, caution must be exercised when making decisions that will span a time
interval larger than the time interval where the “forecastability” of rate of revenue returns drops below 50%. Beyond
this time interval, the chances increase that the competitive and market forces will alter the market environment in a
possibly detrimental unanticipated fashion. Obviously, there is significant advantage in “timeliness” of development,
manufacturing, and distribution of products and services that are consistent with this temporal agenda. Automation of
these processes, if executed consistently with this agenda, should be considered a competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Discreet Logistic
Function. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the rate
of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
the technique may be used as a conceptual approximation to the dynamics of “market windows.311” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.

As an interesting interpretation of the data presented in Figure C.570, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.943, 0 { 614199

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.941, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing
processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.25.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.25.9. Figure C.572 represents a constructional
simulation of the time series data presented in Figure C.553. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.554. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.554 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.573
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.556.

C.25.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.25.3. One of the issues of analysis, as mentioned
in Section C.25.7, is to determine the maximum Shannon probability for the time series presented in Figure C.553.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.574 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum

311For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.
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Figure C.570: Discreet Logistic Function, “forecasta-
bility” of near term rate of revenue returns. Although
the error function is the most accurate, for the near
term, ÿ � A 0 { 614199 � may be used as a reliable met-
ric of “forecastability” of the rate of revenue returns.
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Figure C.571: Discreet Logistic Function, “forecasta-
bility” of far term rate of revenue returns. Although
the error function is the most accurate, for the far
term, 1! � may be used as a reliable metric of “fore-
castability” of the rate of revenue returns.

Shannon probability for the time series data presented in Figure C.553. Figure C.575 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.553. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.656864, as derived in Section C.25.5 to 0.666667. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.553, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.553, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the Discreet Logistic Function
movement was positive, and dividing by the total number of timescales represented in the time series. This quotient is
0.665552, as compared with the predicted value from the program tsshannonmax of 0.666667.

Id: verification.tex,v 0.0 1995/11/20 04:38:13 john Exp 632



C.25. DISCREET LOGISTIC FUNCTION

-1e+63

0

1e+63

2e+63

3e+63

4e+63

5e+63

6e+63

7e+63

8e+63

9e+63

0 50 100 150 200 250 300

R
ev

en
ue

 R
at

eí

Time

Time Series Data

"data"
"tsunfairbrownian-f"

Figure C.572: Discreet Logistic Function, Time se-
ries data, empirical and simulated, using the program
tsunfairbrownian with f = 1.695689. This data is
superimposed on the data presented in Figure C.553.

0

1

2

3

4

5

6

7

8

9

-5 -4 -3 -2 -1 0 1 2 3 4 5

N
or

m
al

iz
ed

 F
re

qu
en

cy

3 Sigma Standard Deviation

Normal Distribution of Increments

"data.tsfraction.tsnormal-s30"
"data.tsfraction.tsnormal-s30-f"

"tsunfairbrownian-f.tsfraction.tsnormal-s30"
"tsunfairbrownian-f.tsfraction.tsnormal-s30-f"

Figure C.573: Discreet Logistic Function, normal-
ized histogram of the normalized increments of the
time series data shown in Figure C.572, empirical
and simulated. The empirical data has a mean of
0.962687, with a standard deviation of 1.398261.
By comparison, the simulated data has a mean of
0.556782 with a standard deviation of 1.603622. This
data is superimposed on the data presented in Fig-
ure C.556. The area under the four curves is identical.

C.25.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.555.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.554. These
values will be used in a fixed increment Brownian fractal analysis of the Discreet Logistic Function, and may, or may
not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.25.6 and D.25.7. As a subjective evaluation of the
“quality” of the analysis of the Discreet Logistic Function, from Chapter 3, Equation 3.8, and using the mean and root
mean square values of the normalized increments of the time series data presented in Figure C.553 from Figure C.554,
and the Shannon probability as calculated by counting the total number of months that the Discreet Logistic Function
movement was positive, as presented in Section C.25.9:
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u � BEDGFHGIKJ f 1

2
(C.965)

0 { 665552 � 0 þ 962687
1 þ 695689 f 1

2
(C.966)

0 { 665552 � 0 { 783863 (C.967)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:

0 { 665552 � 0 { 783863 � 0 { 666667 (C.968)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.25.5, should be
compared. The four methods used were the mean of Figure C.554, the constant in the least squares approximation to
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Figure C.554, the least squares exponential approximation to Figure C.553, and the logarithmic returns of Figure C.553,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 972830 � 1 { 166433 � 0 { 008341 � 0 { 072212 (C.969)

It is implied in Section C.25.5, Subsection C.25.5 and in Section C.25.8 that, a Brownian motion with fixed
increments fractal may “model” the Discreet Logistic Function. Using Equation 2.104 from Chapter 2, Section 2.5:

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.970)

1 { 695689 (2 L 0 { 665552 m 1) � 1 { 398261 (2 L 0 { 665552 m 1)

2 ó 0 { 665552 (1 m 0 { 665552)
(C.971)

1 { 695689 L 0 { 331104 � 1 { 398261 L 0 { 350896 (C.972)

0 { 561449 � 0 { 490644 (C.973)

and, equating to the mean:

0 { 962687 � 0 { 561449 � 0 { 490644 (C.974)

where, as in Equation C.967 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.553 from Figure C.554, and the Shannon probability as
calculated by counting the total number of months that the Discreet Logistic Function movement was positive, as
presented in Section C.25.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value312, where the absolute value is presented in Figure C.555, and the root mean square value is
presented in Figure C.554:

1 { 384386 � 1 { 695689 (C.975)

Note, that if the Discreet Logistic Function could be “modeled” as a Brownian motion with fixed increments fractal,
then the standard deviation of the absolute value of the normalized increments of the time series data presented in
Figure C.553 from Figure C.554 should be zero. It is 0 { 980842.

C.26 Simulated Equity Market Index

For the analysis, the data was in the directory ../markets/tsgaussian.tsmath.tsmath.tsunfraction313.
The program tsunfraction, which is described briefly in appendix B, provides the inverse function of the program

tsunfraction. This allows a time series that contains normalized increments to be constructed, and then, cumulative
summed into a fractal time series by the program tsunfraction.

312The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

313As a simulation model, the programs tsgaussian, tsmath, and tsunfraction were run to make a time series data file, with the following parameters:

tsgaussian 5000 | tsmath -t -m 0.01 | tsmath -t -a 0.0003 | tsunfraction > data

to make a time series of 5000 elements, with a Shannon probability of 0 � 515, to demonstrate an alternative method of constructing fractal time
series. The average of the normalized increments is 0 � 0003, and the root mean square value of the normalize increments is 0 � 01, which is “typical”
for an equity market time series. The data is by months.
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The data in this section is presented in tabular form in Section D.26. Note that in this analysis, the rate of revenue
returns means the increase or decrease in the cumulative sum of the Simulated Equity Market Index. This is included
for “theoretical” comparative purposes.

C.26.1 Time Series Increments Analysis

The data in this section is presented in tabular form in Section D.26.1. Figure C.576 is a graph of the time series data
for the Simulated Equity Market Index.

Figure C.577 is a graph of the normalized increments of the time series data presented in Figure C.576. The data
presented was made by running the program tsfraction on the time series data. The program tsfraction is described
briefly in Appendix B, and subtracts the previous value from the next value, dividing this difference by the previous
value, for each element in the time series data. The new time series contains the instantaneous change in the rate of
revenue returns, divided by the magnitude of the instantaneous rate of revenue returns.

Figure C.578 is a graph of the absolute value of the normalized increments of the time series data presented in
Figure C.577. The data presented was made by running the Unix utility sed(1) on the normalized increments time
series data to remove the negative signs. This is an absolute value procedure. The resulting time series contains the
absolute value of the instantaneous change in the rate of revenue returns, divided by the magnitude of the instantaneous
rate of revenue returns314.

Figure C.579 is the normalized histogram of the normalized increments of the time series data shown in Fig-
ure C.577. The abscissa is 3 é limits, and the area under the two curves is identical. The data for this figure was
produced by the program tsnormal, which is described briefly in Appendix B.

The program tsXsquared, which is briefly described in appendix B, was used to derive the ê 2 statistics for the data
presented in Figure C.579.

Figure C.580 is the statistical estimate for the data presented in Figure C.577, as derived by the program tsstatest,
which is briefly described in appendix B.

Note that the data set size estimations, as produced by the tsstatest program, are probably very conservative,
depending on the magnitude of the Shannon probability, u A 0 { 511475, as derived in Section C.26.5. See Chapter 2,
Section 2.7 for possible alternative methodologies for addressing the analysis of fractal time series with limited data set
sizes. Depending on the magnitude of the Shannon probability, u , these estimates can be several orders of magnitude
too high.

Figure C.581 is the normalized histogram of the first derivative of the normalized increments of the time series
data shown in Figure C.577. In principle, if the distribution of the normalized increments presented in Figure C.579
is Gaussian in nature, this distribution would be similar to “white noise,” as presented in appendix B, Figure B.41.
The data was generated by the tsderivative program, which is briefly described in appendix B. Figure C.582 is
the normalized histogram of the second derivative of the normalized increments of the time series data shown in
Figure C.577. In principle, if the distribution of the normalized increments presented in Figure C.579 is an integrated
Gaussian distribution in nature, this distribution would be similar to “white noise,” as presented in appendix B,
Figure B.41.

Figure C.583 is the range of values of the time series shown in Figure C.576. The horizontal axis is time into
the future. In principle, if the time series was characterized as fractional Brownian motion the graph in Figure C.583
would be a square root function315. Figure C.584 is the deterministic map of the normalized increments of the time
series data shown in Figure C.577. The deterministic map is useful for determining if a time series was created by a
deterministic mechanism. This, essentially, maps each element in the time series with the previous element in the time
series. See, [PJS92, pp. 745].

314The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

315Note that the “roughness,” or “sawtooth” characteristics of the graph in Figure C.583 are a computational artifact—caused by not using the -m
option to the program tshurst, which is computationally inefficient.
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Figure C.576: Simulated Equity Market Index, time
series data.
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Figure C.577: Simulated Equity Market Index, nor-
malized increments of the time series data presented
in Figure C.576. The mean is 0.000312 with a stan-
dard deviation of 0.009885. The formula for the
least squares approximation is 0 { 000354 f 0 { 000000 X ,
and the root mean squared value is 0.009889. The
graph, labeled “data.tsfraction.tsrms,” is the running
root mean square, and “data.tsfraction.tsavg” is the
running average of the normalized increments. This
graph is the fraction of change in the time series,
as a function of time. Note that the slope of the
mean, 0.000000, is the coefficient of the nonlinearity
term in the normalized increments. See Chapter 2,
Section 2.8 for a possible application of the logistic
function to this data set.

Figure C.579 would seem to indicate that the time series data for the Simulated Equity Market Index represents a
cumulative sum/integration of a random process that has a Gaussian distribution, (ie., satisfies the Gaussian increments
property of fractional Brownian motion [Cro95, pp. 250],) tending to justify the assumption that the time series data
represents fractional Brownian motion.
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Figure C.578: Simulated Equity Market Index, abso-
lute value of the normalized increments of the time
series data presented in Figure C.577. The mean
is 0.007914 with a standard deviation of 0.005930.
The formula for the least squares approximation is
0 { 007715 f 0 { 000000 X , and the root mean square
value, from Figure C.577, is 0.009889. The graph, la-
beled “data.tsfraction.tsrms,” is the running root mean
square, and “data.tsfraction.tsavg” is the running av-
erage of the normalized increments presented in Fig-
ure C.577, superimposed here for convenience. This
graph is the absolute value of the fraction of change
in the time series, as a function of time.
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Figure C.579: Simulated Equity Market Index, nor-
malized histogram of the normalized increments of
the time series data shown in Figure C.577. The data
has a mean of 0.000312, with a standard deviation of
0.009885. The area under the two curves is identical.
The ê 2 value of the observed and expected values of
the two curves is 0.213000, with a critical value of
42.557000.

C.26.2 Instantaneous Analysis of Normalized Increments

The program tsinstant, which is briefly described in Appendix B, is for finding the instantaneous fraction of change
in a time series. The value of a sample in the time series is subtracted from the previous sample in the time series,
and divided by the value of the previous sample. As explained in Chapter 2, Sections 2.1, 2.3.3, 2.5, 2.6 and, 2.6.1
for Brownian motion, random walk fractals, the absolute value of the instantaneous fraction of change is also the root
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For a mean of 0.000312, with a confidence level of 0.900000
that the error did not exceed 0.000031, 271515 samples would be required.
(With 5001 samples, the estimated error is 0.000230 = 73.683071 percent.)

For a standard deviation of 0.009889, with a confidence level of 0.900000
that the error did not exceed 0.000989, 136 samples would be required.
(With 5001 samples, the estimated error is 0.000163 = 1.644689 percent.)

Figure C.580: Simulated Equity Market Index, statistical estimates of the normalized increments of the time series
shown in Figure C.577. The table was produced with the tsstatest program, and illustrates the size of the data set
required for a confidence level of 90%, with an error estimate of � 10%, or alternately, the error estimate on the time
series shown in Figure C.577.

mean square of the instantaneous fraction of change316. Squaring this value is the average of the instantaneous fraction
of change, and adding unity to the absolute value of the instantaneous fraction of change, and dividing by two, is the
Shannon probability of the instantaneous fraction of change.

Figure C.585 is the instantaneous value of the root mean square of the normalized increments for the Simulated
Equity Market Index, and Figure C.586 is the instantaneous Shannon probability for the normalized increments.

C.26.3 Logistic Analysis

The data in this section is presented in tabular form in Section D.26.4. Figure C.587 is a graph of the logistic
function estimates of the time series data for the Simulated Equity Market Index. The reader is cautioned that these
graphs are constructed using the method suggested in Chapter 2, Section 2.8 and enormous precision is required
for adequate prediction of the logistic function, [Mod92]. Particularly, the non-linear term will usually require
intervention to produce a practical fit to the data. In addition, there are numerical stability issues with logistic function
methodologies317. The methodology should be regarded as “fragile.” It is included for completeness.

Figure C.587 is a graph of the logistic function for the time series data presented in Figure C.576. The data
presented was made by running the program tsdlogistic, which is described briefly in Appendix B, on the parameters
extracted from the time series data as suggested in Figure C.577. The program tslsq was used to derive the constant
and the slope of the normalized increments of the data presented in Figure C.577. Figure C.588 is the same graph, but
with the time scale expanded by a factor of two.

C.26.4 Hurst Coefficient Analysis

The data in this section is presented in tabular form in Section D.26.5. Figure C.589 is a graph of the Hurst coefficient
data time series data shown in Figure C.576. The slope of the graph is the Hurst coefficient. The data for this figure
was produced by the program tshurst, which is described briefly in Appendix B.

Figure C.590 is a graph of the H parameter data for the normalized increments of the time series data shown in
Figure C.577. The data for this figure was produced by the program tshcalc, which is described briefly in Appendix B.

The approximately linear slope of the graph in Figure C.589 implies that the variance of the rate of revenue returns,
(per month,) in the Simulated Equity Market Index, k d X 2 m X 1 i , over a period of time is proportional to the period

316The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.

317For example, in Figures C.587 and C.588, if the non-linear term, ð , was greater than zero, it was set to zero to produce the graphs. See
Section D.26.4 for the actual derived values. In other cases, the magnitude of ð was too large, resulting in a graph that was decreasing as a function
of time
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Figure C.581: Simulated Equity Market Index, nor-
malized histogram of the first derivative of the nor-
malized increments of the time series data shown in
Figure C.577.
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Figure C.582: Simulated Equity Market Index, nor-
malized histogram of second derivative of the the nor-
malized increments of the time series data shown in
Figure C.577.

of time raised to twice the Hurst coefficient [Fed88, pp. 180], [Cro95, pp. 246]. This seems to be a quantitative
statement concerning how fast, and to what degree, the rate of revenue returns’ state of affairs can change over a
period of time. An additional implication, for Hurst coefficients sufficiently close to 0.5, is that the probability of the
state of affairs repeating sometime in the future goes down with increasing time318, X , U d X�i A b0c O�d 1 � ó 2 X�i which is
approximately 1 � ó X for X�ô 1 [Sch91, pp. 160]. Figures C.593, and, C.594 compare methods of approximation of
the “forecastability” of the rate of revenue returns in the Simulated Equity Market Index for the near term and far term,
respectively [Pet91, pp. 83-84]319. This seems to be a quantitative statement concerning “windows of opportunity”

318It can be shown that the number of expected market “high” and “low” transitions, ¸ , scales with the square root of time, or ¸äö ÷ � , meaning
that the cumulative distribution of the probability, È , of the duration of a market’s “high” or “low” exceeding a given time interval, � , is proportional
to the reciprocal of the square root of the time interval, ÈÏö 1 µE÷ � , (or, conversely, that the probability of the duration of a market’s “high” or
“low” exceeding a given time interval is proportional to the reciprocal of the time interval raised to the power 3 µ 2, ie., ÈÂö 1 µø� 3 ù 2, [Sch91, pp.
153]. What this means is that a histogram of the “zero free” run-lengths of a market being “high” or “low,” over a long time, would have a 1 µø� 3 ù 2
characteristic.)

319The author is not comfortable with Peters’ interpretation. For example, if the algorithm explained in [Pet91, pp. 82] is used on “white noise”
which, by definition, never has any correlations, the short term Hurst coefficient, and thus the “forecastability,” is still near unity—a bit of an enigma.
This can be verified with the tswhite and tshurst programs, which are briefly described in Appendix B.
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Figure C.583: Simulated Equity Market Index, range
of the time series data shown in Figure C.576.
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Figure C.584: Simulated Equity Market Index, de-
terministic map of the normalized increments of the
time series data shown in Figure C.577.

in the rate of revenue returns, (per month.) The program tslsq was used on the Hurst coefficient data, presented
in Figure C.589, to provide a least squares approximation to the Hurst coefficient. The superimposed least squares
approximation with on original Hurst coefficient data is presented. The time series data has a Hurst coefficient of
0.841512, so that:

k ( X 2 m X 1) ü ( X 2 m X 1)2 � ý (C.976)k ( X 2 m X 1) ü ( X 2 m X 1)2 � 0 þ 841512 (C.977)ü ( X 2 m X 1)1 þ 683024 (C.978)

where k d X 2 m X 1 i is the variance of the increments of the rate of revenue returns, (per month,) over the time intervalX
2 m X 1, [Fed88, pp. 177], [PJS92, pp. 494]. If ÿÔÃ 1

2 , then the time series is termed as being characterized by
“fractional Brownian motion [Fed88, pp. 170].”

In some sense, the Hurst coefficient is a quantitative expression of the “forecastability” of the future based on
the past320. A Hurst coefficient of 0.841512, (for the near future, and 0.426071 for the distant future.) implies

320Actually, in general, when summing fractal entities, the method used should be a root mean square process, dependent on the Hurst Coefficient,

Id: hurst.tex,v 0.0 1995/11/20 04:38:13 john Exp 641



C.26. SIMULATED EQUITY MARKET INDEX

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
M

Sú

Time

Instantaneous Root Mean Square of Normalized Increments

"data.tsinstant-r"
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malized increments, provided by running the program
tsinstant with the -r option on the data presented in
Figure C.576.
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Figure C.586: Simulated Equity Market Index, in-
stantaneous value of the Shannon probability of the
normalized increments, provided by running the pro-
gram tsinstant with the -s option on the data presented
in Figure C.576.

that the likelihood of the rate of revenue returns, (per month,) for any two consecutive months being the same is
84.151200% [Pet91, pp. 66] for the near future, and 0.426071 for the distant future. Likewise, there is a 84.151200%
chance of the rate of revenue returns, (per month,) movements being the same in consecutive time periods—ie., if, in
a given month, the rate of revenue returns, (per month,) is increasing, there is a 84.151200% that the rate of revenue
returns, (per month,) will increase in the following period, also. In some sense, this is a quantitative statement on how
“predictable,” or “forecastable” the rate of revenue returns, (per month,) for the Simulated Equity Market Index are
over time, since the probability of having g many consecutive months of the same agenda is ÿ � where ÿ is the Hurst
coefficient, or, letting the short term probability of having g many months of the same market agenda, U B , is:
�

, where È �¢�� ¢�� � �^È �1 ¤�È �2 ¤ ©�©�© , where È�� is the fractal entities. For a Brownian motion, or random walk type of fractal the Hurst Coefficient
is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process is linear. For
the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed a Brownian
motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process, “near term”
and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	���
Ú� 0 � 5 © ln 	���
 , or when ln 	���
Ú� 2, or �h� 7 � 389 �����
See Section C.26.5 for the particulars on using Hurst Coefficient to sum fractal process’ for the Simulated Equity Market Index. See also [Pet91,
pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square summation issues.
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Figure C.587: Simulated Equity Market Index, logis-
tic function estimates, provided by running the tslsq
program on the normalized increments presented in
Figure C.577 with the -p option. These parameters
were used as arguments to the tsdlogistic program.
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Figure C.588: Simulated Equity Market Index, logis-
tic function estimates of Figure C.587 with the time
scale expanded by a factor of two.

U B ( g ) A ÿ � (C.979)A 0 { 841512
�

(C.980)

As an interesting interpretation of the normalized increments of the time series data presented in Figure C.577, if
the vertical axis is multiplied by 100, to convert to percent, then the graph represents the error, in percent, that would
be made by forecasting, month by month, that the next month’s rate of revenue returns would be the same as the
current month’s revenue rate. Interestingly, it is 0 { 000312 L 100 percent, on the average, with a standard deviation of
0 { 009885 L 100 percent, and a root mean square error value of 0 { 009889 L 100 percent—small values for such a simple
forecasting mechanism.

This is, essentially, a statement of the range of values, in the increments of the rate of revenue returns, (per month,)
that is to be expected over the time interval, X 2 m X 1, � D , [Fed88, pp. 178], [Ç93, pp. 172]:

� D ( X 2 m X 1) ü ( X 2 m X 1) ý (C.981)
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Figure C.589: Simulated Equity Market Index, Hurst
coefficient data for the normalized increments of the
time series data shown in Figure C.577. The slope of
the graph is the Hurst coefficient.
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Figure C.590: Simulated Equity Market Index, H
parameter data for the normalized increments of the
time series data shown in Figure C.577 The slope of
the graph is the H parameter.

ü ( X 2 m X 1)0 þ 841512 (C.982)

where � is the range of values in the increments of the rate of revenue returns, (per month.) A Hurst coefficient, ÿ ,
that is much larger than 1

2 , (but less than 1,) implies a strongly non-Gaussian distribution in the increments of the rate
of revenue returns, (per month,) [Fed88, pp. 152, 194], and a Hurst coefficient near 1

2 implies that the increments
of the rate of revenue returns, (per month) is characteristic of an independent process [Fed88, pp. 195]. Extreme
caution should be exercised in using Markov statistics in any analysis where the Hurst coefficient is not 1

2 , [Cro95, pp.
124], [Pet91, pp. 106].

As a useful approximation, if ÿ , is approximately 1
2 , Equation C.982 reduces to, [Sch91, pp. 129]:

� ( X 2 m X 1) ü d X 2 m X 1 i 1
2 (C.983)ü � ( X 2 m X 1) (C.984)

In the case where the Hurst coefficient, ÿ , is 1
2 , the range of values in the increments of the rate of revenue returns,

(per month,) divided by the standard deviation of these values, � , can be anticipated to increase over time according
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to the following relation, [Fed88, pp. 154], [Sch91, pp. 129]:

� ( X 2 m X 1)
� ü ( X 2 m X 1)

1
2 (C.985)

which is a useful conceptual approximation, since it involves only the square root function—if the range and the
standard deviation of the increments of the rate of revenue returns, (per month,) are known, (and ÿ'� 1

2 ,) then the
expected change in � � , will increase with the square root of time321.

Another useful approximation when rescaling processes that are characterize by Brownian motion, (ie., whenÿ�� 1
2 ,) is that:

�
( X ) ü �

( c	X )c ý (C.986)

ü �
( cjX )c 0 þ 841512

(C.987)

Where
� d X�i is the process characterized by Brownian motion, and c is a scaling factor, [PJS92, pp. 494].

The program tslsq was used on the H parameter data, presented in Figure C.590, to provide a least squares approx-
imation to the H parameter for the Simulated Equity Market Index. The superimposed least squares approximation
on the original H parameter data is presented. By contrast, the H parameter, as derived by the methodology outlined
in [Cro95, pp. 249], is 0.504966 for the near future, and 0.507959 for the distant future.

Figures C.589 and C.590 represent Hurst coefficient and H parameter data that are derived from the normalized
increments, shown in Figure C.577. In this case, the data is considered a normalized derivative of the time series data
presented in Figure C.577, instead of a cumulative sum. The program, tshurst, is described briefly in appendix B, and
the data for figures C.591 and C.592 was made using the -d option.

C.26.5 Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.26.2. This section derives various values based on the
“average” of the normalized increments presented in Figure C.578. These values are an approximation to a, probably,
complex process with a distribution shown in Figure C.577. These values will be used in a fixed increment Brownian
fractal analysis and simulation of the Simulated Equity Market Index, and may, or may not, provide adequate accuracy
for projections.

For an organization operating in the Simulated Equity Market Index, the fiscal strategy, commensurate with the
aggregate environment, can be derived as follows [Sch91, pp. 128, pp 151], [Rez94, pp. 450], [Pie80, pp. 270]:

Logarithmic Returns

The logarithmic returns can be calculated by various means. Four will be presented here, for comparison.
The logarithmic returns, in bits, � V.X�Z , as computed from the mean, by the program tsnormal, which is described in

Chapter B, and is presented in Figure C.577, and Equation 2.17 from Section 2.3.2 in Chapter 2:

� V_X�Z A ln (0 { 000312 f 1)
ln (2)

A 0 { 000450 (C.988)

By comparison, the logarithmic returns, in bits, � V.X�Z , as computed from the constant in the least squares approximation,
using the program tslsq, which is briefly described in Chapter B, as presented in Figure C.577, and Equation 2.17 from
Section 2.3.2 in Chapter 2:

321To be precise, it is actually asymptotically proportional to � 1
2
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Figure C.591: Simulated Equity Market Index, tradi-
tional Hurst coefficient data for the time series data
shown in Figure C.576. The slope of the graph is the
Hurst coefficient, and is 0.841611 for the near term,
and 0.440756 for the far term.
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Figure C.592: Simulated Equity Market Index, tradi-
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in Figure C.576 The slope of the graph is the H param-
eter, and is 0.499701 for the near term, and 0.501820
for the far term.

� V_X�Z A ln (0 { 000354 f 1)
ln (2)

A 0 { 000511 (C.989)

Note that if the mean is not constant in Figure C.577, this method will not provide accurate results.
And by yet another comparison, using the program tslsq, which is briefly described in Chapter B, with the -e -p options,
to provide a formula for the least squares exponential fit to the time series data set presented in Figure C.576:

� V_X�Z A 0 { 000330 (C.990)

And finally, by comparison, from the tslogreturns program, which is briefly described in Chapter B, with the -p option,
to provide a formula for the logarithmic returns of the time series data set presented in Figure C.576:

� V_X�Z A 0 { 000380 (C.991)
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Calculation of Shannon Probability

Ideally, all of the values presented in Section C.26.5 would be equal. Using the logarithmic returns provided by the
tslogreturns program, to be consistent with [Pet91, pp. 81]

20 þ 000380 � (C.992)

therefore: Û
(U ) A 0 { 000380 (C.993)

and, tsshannon 0.000380 gives: Û
(0 { 511475) A 0 { 000380 (C.994)

therefore:

2 � (0 þ 511475) A 20 þ 000380 (C.995)A 1 { 000263 (C.996)A 0 { 026343% (C.997)

and:

2U m 1 A (2 L 0 { 511475) m 1 (C.998)A 0 { 022950 (C.999)A 2 { 295000% (C.1000)

Presuming the simplified assumptions outlined in Section 1.1, the “typical” organization operating in the Simulated
Equity Market Index executes a long term fiscal strategy, commensurate with the aggregate environment, that is to
invest, every month, in sufficient additional resources and infrastructure, to increase the manufacturing of goods and
services by 2.295000% of its rate of revenue returns, (per month.) As a conceptual model, the remaining 97.705000%
will be held in “reserve” with a 51.147500% chance of making twice the 2.295000% back, (and a 48.852500% chance
of making 0.0,) in one month, on the average, for an average growth in its rate of revenue returns, (per month,) of
0.026343%, or a doubling of its rate of revenue returns, (per month,) in 2631.578947 months.

Example Fixed Increment Approximation Fiscal Strategies

A possible metric on the effectiveness of long term fiscal management could possibly be that if an investment of
2.295000% per month of the rate of revenue returns, (per month,) is made in resources and infrastructure, then the rate
of revenue returns would be expected to increase by 0.026343%, per month, on average.

Note that the metrics presented in this section are representative of the Simulated Equity Market Index as an
aggregate whole, and may or may not be accurate representations for any particular participant in the environment. Of
interest to the participants in the environment would be a similar analysis of each product or service rendered in the
marketplace.

As a simple illustrative example, a company operating in this environment might obtain a credit line from a bank
that is equal to 2.295000% of its rate of revenue returns, (per month,) to finance additional operations. In this simple
scenario, the company would use its revenue base as collateral for the loan. Some months, depending on the Simulated
Equity Market Index’s environment, the company’s rate of revenue returns exceeds what was borrowed from the bank,
and the loan is repaid in full. Other months, the company must default, and the bank seizes a portion of the company’s
revenue base to pay the delinquent loan. However, on the average, the company will expand its rate of revenue returns
at 0.026343% per month.

As another simple example, a company re-invests 2.295000% of its rate of revenue returns, (per month,) in
development, marketing, sales, and distribution of new products. Although some products will be successful and the
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return on the investment will exceed the 2.295000% per month investment, others will not. However, on the average,
the company will expand it gross rate of revenue returns at 0.026343% per month.

As an example of “product portfolio” management, suppose a company re-invests 2.295000% of its rate of revenue
returns, (per month,) in development, marketing, sales, and distribution of new products. Further suppose that the
company has two products, and a fractal analysis of the individual product rate of revenue return time series indicates
that one product has a Shannon probability of 0.65, and the other has a Shannon probability of 0.55. Then the
percentage of re-investment in the first product would be d 2 L 0 { 65 m 1 i L 2 { 295000, percent of the rate of revenue
returns, and d 2 L 0 { 55 m 1 i L 2 { 295000 percent for the second product, implying that the company should diversify its
product line322. Note that this is a “bet hedging” metric methodology, and assumes that the products have uncorrelated
revenue return rates. If this re-investment methodology is not feasible, perhaps for strategic financial reasons, then
the re-investment in both products should total the 2 { 295000%, and the investment in each product should be made
at a ratio of � 2 � 0 þ 65 � 1 �

� 2 � 0 þ 55 � 1 � A 3 : 1, respectively. Note that this “bet hedging” can be used to define the optimal number
of products that can be supported on the rate of revenue returns. If it assumed that all products are “typical” for
the Simulated Equity Market Index, as a standard bench mark, then the optimal number will be 1

0 þ 022950 . Note that
this is a “theoretical” value, since not all products are “typical,” and there may be strategic reasons, for example
product leveraging, that may increase the number of products above the optimum. However, most of the revenue
should come from the optimal number of products, since having more products will decrease the amount of the
potential investment in each product, and having less than the optimum number of products will increase the risk that
many of the products could suffer a “down market” concurrently, impacting the rate of revenue returns. As another
interesting interpretation of the optimal “hedging of bets,” in product portfolio strategy, and considering the graph of
the normalized increments presented in Figure C.577, if the organization is running optimally, then these products will
generate, at least in principle, one standard deviation, approximately 0 { 8413 A 84 { 13% of the future growth in rate
of revenue returns. Naturally, these are approximations, and the values are an approximation to a, probably, complex
process, and appropriate scrutiny should be exercised before making specific projections. As yet another example of
“product portfolio” management, consider the issue of product mix. In this interpretation, 2.295000% of the product
manufactured should be “proprietary,” while the rest is “industry standard.” As yet another possibility, 2.295000% of
the product manufactured should be predatory into new markets, and the remainder in markets that are “traditional”
for the company.

C.26.6 Number of Companies

This section evaluates the approximate, or “average,” number of companies in the Simulated Equity Market Index, and
uses the method outlined in Chapter 2, Section 2.6. Since the average, Te}	~ � ��� , and the root mean square, c Q Z � ��� , of
the normalized increments of the Simulated Equity Market Index time series is 0.000312, and 0.009889respectively,
the number of companies participating in the market can be calculated by Equation 2.109 to be 3.190435.

If this value seems consistent number of companies in the Simulated Equity Market Index, within the assumptions
outlined in Chapter 2, Section 2.6, then it would seem that there is some circumstantial or indirect evidence that the
companies participating in the Simulated Equity Market Index are operating optimally, and the “average” Shannon
probability, u for each participating company would be, using Equation 2.110, 0.508832, which would be the value
which should be used in Section C.26.5 for each participating company if market expansion was to be consistent with
the rest of the industry. However, if the Shannon probability derived in Section C.26.5 is greater than the average

322The astute reader would note that the linear addition was used to add the contribution to development of each product. This is a “near
term” interpretation. Actually, in general, the method used should be a root mean square process, dependent on the Hurst Coefficient,

�
, whereÈ �¢�� ¢�� � � È �1 ¤È �2 ¤^©5©�© , where È�� is the contribution to each individual product. For a Brownian motion, or random walk type of fractal the

Hurst Coefficient is a function of time into the future. For the “near term,” the Hurst coefficient is very near unity, meaning the summation process
is linear. For the “long term,”

� ì 0 � 5, or a standard root mean square summation process should be used. If
�

is 0 � 5 then the market is termed
a Brownian motion, or random walk process. If it is larger than 0.5, it is termed fractional Brownian motion process. For a random walk process,
“near term” and “far term” are quantitatively differentiated on the Hurst Coefficient graph where 1 ¦ ln 	 ��
'� 0 � 5 © ln 	���
 , or when ln 	 ��
'� 2, or��� 7 � 389 ����� See [Pet91, pp. 67, 83-84] and [Sch91, pp. 129, 159] for particulars on the implications of the Hurst Coefficient and root mean square
summation issues.
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Shannon probability for the companies participating in the Simulated Equity Market Index, as derived in this section,
then the market would, possibly, be exploitable with the fiscal strategy outlined in Section C.26.5. The maximum
exploitability for the Simulated Equity Market Index is derived in Section C.26.9, but it is probably of doubtful
practicality.

Note that these optimizations would maximize a company’s market growth. Since there are probably many
companies competing in the market place, this would not necessarily maximize a company’s P&L, as described in
Chapter 2, Section 2.6.1. The Shannon probability that maximizes market share in the Simulated Equity Market Index
is 0.508832, with several alternative solutions listed in the previous paragraph. However, these should be contrasted to
the Shannon probability that maximizes a company’s P&L which is 0.515775 in the Simulated Equity Market Index.
In all cases, the fraction of the P&L that should be “wagered” on the future, O , should be:

O A 2 uxm 1 (C.1001)

where u is the particular Shannon probability chosen optimize a particular fiscal strategy. Interestingly, the measured
Shannon probability of the Simulated Equity Market Index would tend to indicate that the companies participating in
the market have chosen a fiscal strategy that optimizes market growth, as opposed to capital growth.

As interesting interpretation of these exploitive issues, since all three fiscal strategies will result in exponential
market growth for every company participating in the market, is that they may represent, perhaps, an example of
“increasing returns.”

C.26.7 Fixed Increment Approximation for Operational Strategy

.
This section derives various values based on the “average” of the normalized increments presented in Figure C.578.

These values are an approximation to a, probably, complex process with a distribution shown in Figure C.577. These
values will be used in a fixed increment Brownian fractal analysis and simulation of the Simulated Equity Market
Index, and may, or may not, provide adequate accuracy for projections.

It should be noted that the analysis of fiscal strategy, presented in Section C.26.5, is derived from the Simulated
Equity Market Index metrics and may, or may not, be maximally optimal. For the optimal fiscal strategy, which may
be exploitable, see Section C.26.9.

An additional exploitable strategy may be time itself. Equations C.978, C.982, and, C.980, are, essentially, metrics
on how fast a decision, which is based on information concerning the current status of the Simulated Equity Market
Index, becomes obsolete. Obviously, how long a decision is expected to remain relevant should be addressed as an
operational necessity in strategic planning and project management. Figures C.593, and, C.594 compare methods
of approximation of the “forecastability” of rate of revenue returns in the Simulated Equity Market Index for the
near term and far term [Pet91, pp. 83-84], respectively. As a general rule, caution must be exercised when making
decisions that will span a time interval larger than the time interval where the “forecastability” of rate of revenue
returns drops below 50%. Beyond this time interval, the chances increase that the competitive and market forces will
alter the market environment in a possibly detrimental unanticipated fashion. Obviously, there is significant advantage
in “timeliness” of development, manufacturing, and distribution of products and services that are consistent with this
temporal agenda. Automation of these processes, if executed consistently with this agenda, should be considered a
competitive advantage.

In some sense, this temporal agenda defines the “average” product or service life cycle in the Simulated Equity
Market Index. When the “forecastability” of rate of revenue returns drops below 50%, there is an even chance that the
rate of revenue returns for the product or service will change in a detrimental fashion. If it is assumed that a product or
service life cycle consists of a ramp up, a maintenence interval, and a ramp down, then, if all three life cycle intervals
are equal, the product life cycle will be, approximately, three times the time interval where the “forecastability” of rate
of revenue returns drops below 50%. Although probably not an accurate prediction of product or service life cycle,
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the technique may be used as a conceptual approximation to the dynamics of “market windows.323” The conceptual
approximation will probably predict a “conservative” or “pessimistic” value in relation to actual markets.
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Figure C.593: Simulated Equity Market Index, “fore-
castability” of near term rate of revenue returns. Al-
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Figure C.594: Simulated Equity Market Index, “fore-
castability” of far term rate of revenue returns. Al-
though the error function is the most accurate, for
the far term, 1! � may be used as a reliable metric of
“forecastability” of the rate of revenue returns.

As an interesting interpretation of the data presented in Figure C.593, there may be, perhaps, some applicability
to such operational agendas as inventory control. Maintaining too little inventory, obviously, will create a situation
where the organization can not exploit market expansion, and maintaining too much inventory, likewise, would over
extend the company, creating unnecessary losses when the market contracts. The company should maintain inventory
levels that do not exceed, from Equation C.980, 0 { 841512

� A 0 { 5 months of operations. Since the optimal amount of
inventory and, from Equation C.978, the variance of change in the rate of revenue returns in the future can be calculated,
there may, perhaps, be some applicability to a forecasting methodology that can be incorporated into other areas of
operations research, for example the linear algebras using simplex methodologies for optimization of manufacturing

323For example, consider the market for table salt. Since it has inelastic supply and demand curves, and is a necessary requirement for life, it
would be expected that the Hurst coefficient would be very near unity—ignoring competitive pressures in the market. The predictability of the table
salt market would, therefore, be expected to be relatively good, over time.

Id: simulation.tex,v 0.0 1995/11/20 04:38:13 john Exp 650



C.26. SIMULATED EQUITY MARKET INDEX

processes. Traditionally, these forecasts are made by the sales department, and are subject to various subjective biases.

C.26.8 Simulation of Fixed Increment Approximation for Fiscal Strategy

The data in this section is presented in tabular form in Section D.26.9. Figure C.595 represents a constructional
simulation of the time series data presented in Figure C.576. The program tsunfairbrownian, which is briefly described
in appendix B, was used in the reconstruction. The reconstructed data is superimposed on the original time series data.
The program, tsunfairbrownian, essentially, constructs the new time series as a Brownian fractal with fixed increments—
the value of the fixed increment is derived from the root mean square average of the normalized increments presented
in Figure C.577. The “quality” of such a reconstruction should be subject to adequate scepticism and scrutiny since, in
all probability, the normalized increments presented in Figure C.577 represent a relatively complex process, that may
not be “modeled” with such a simple methodology.

As a further comparison of the the constructional simulation with the original time series data, Figure C.596
presents a normalized histogram of the normalized increments of the reconstructed time series, superimposed on the
normalized histogram presented in Figure C.579.

C.26.9 Simulation of Fixed Increment Approximation for Optimally Maximal Fiscal Strat-
egy

The data in this section is presented in tabular form in Section D.26.3. One of the issues of analysis, as mentioned
in Section C.26.7, is to determine the maximum Shannon probability for the time series presented in Figure C.576.
Potentially, this could be exploited with an aggressive fiscal strategy. Figure C.597 is a graph of the output of the
tsshannonmax program, which is described briefly in appendix B. The maximum of this function is the maximum
Shannon probability for the time series data presented in Figure C.576. Figure C.598 was constructed using tsunfair-
brownian program, which is also described in appendix B, with the maximum Shannon probability, and the time series
data presented in Figure C.576. This represents a “what if” the investment strategy was changed from a Shannon
probability of 0.511475, as derived in Section C.26.5 to 0.516297. This process, essentially, extracts the random
statistical data from the time series presented in Figure C.576, and constructs a new time series, using the random
statistical data, with a different investment strategy. The program, tsunfairbrownian, essentially, constructs the new
time series as a Brownian fractal with fixed increments. The “quality” of such a reconstruction should be subject
to adequate scepticism and scrutiny since, in all probability, the increments in the original data represent a relatively
complex process, that may not be “modeled” with such a simple methodology.

If it is assumed that the time series data set, presented in Figure C.576, constitutes classical Brownian motion, then
the Shannon probability can be calculated by counting the total number of months that the Simulated Equity Market
Index movement was positive, and dividing by the total number of timescales represented in the time series. This
quotient is 0.516200, as compared with the predicted value from the program tsshannonmax of 0.516297.

C.26.10 Qualitative Verification of Fixed Increment Approximation Analysis

This section evaluates various values based on the “average” of the normalized increments presented in Figure C.578.
These values are an approximation to a, probably, complex process with a distribution shown in Figure C.577. These
values will be used in a fixed increment Brownian fractal analysis of the Simulated Equity Market Index, and may, or
may not, provide adequate accuracy for projections.

The data in this section is presented in tabular form in sections D.26.6 and D.26.7. As a subjective evaluation
of the “quality” of the analysis of the Simulated Equity Market Index, from Chapter 3, Equation 3.8, and using the
mean and root mean square values of the normalized increments of the time series data presented in Figure C.576 from
Figure C.577, and the Shannon probability as calculated by counting the total number of months that the Simulated
Equity Market Index movement was positive, as presented in Section C.26.9:
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u � BEDGFHGIKJ f 1

2
(C.1002)

0 { 516200 � 0 þ 000312
0 þ 009889 f 1

2
(C.1003)

0 { 516200 � 0 { 515775 (C.1004)

and comparing these values to the Shannon probability, as found by the tsshannonmax program, which iterates for a
maximum:
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0 { 516200 � 0 { 515775 � 0 { 516297 (C.1005)

In addition, the different methods of calculating the logarithmic returns, presented in Section C.26.5, should be
compared. The four methods used were the mean of Figure C.577, the constant in the least squares approximation to
Figure C.577, the least squares exponential approximation to Figure C.576, and the logarithmic returns of Figure C.576,
derived as the mean of the logarithms of the quotients of the increments. The values for each of the methods are,
respectively:

0 { 000450 � 0 { 000511 � 0 { 000330 � 0 { 000380 (C.1006)

It is implied in Section C.26.5, Subsection C.26.5 and in Section C.26.8 that, a Brownian motion with fixed
increments fractal may “model” the Simulated Equity Market Index. Using Equation 2.104 from Chapter 2, Section 2.5:

Id: verification.tex,v 0.0 1995/11/20 04:38:13 john Exp 653



C.26. SIMULATED EQUITY MARKET INDEX

c Q Z (2 u|m 1) � é (2 u|m 1)

2 ó u (1 mÏu )
(C.1007)

0 { 009889 (2 L 0 { 516200 m 1) � 0 { 009885 (2 L 0 { 516200 m 1)

2 ó 0 { 516200 (1 m 0 { 516200)
(C.1008)

0 { 009889 L 0 { 032400 � 0 { 009885 L 0 { 032417 (C.1009)

0 { 000320 � 0 { 000320 (C.1010)

and, equating to the mean:

0 { 000312 � 0 { 000320 � 0 { 000320 (C.1011)

where, as in Equation C.1004 using the mean, root mean square, and standard deviation values of the normalized
increments of the time series data presented in Figure C.576 from Figure C.577, and the Shannon probability as
calculated by counting the total number of months that the Simulated Equity Market Index movement was positive, as
presented in Section C.26.9.

As a final qualitative comparison, the absolute value of the normalized increments should be the same as the
root mean square value324, where the absolute value is presented in Figure C.578, and the root mean square value is
presented in Figure C.577:

0 { 007914 � 0 { 009889 (C.1012)

Note, that if the Simulated Equity Market Index could be “modeled” as a Brownian motion with fixed increments
fractal, then the standard deviation of the absolute value of the normalized increments of the time series data presented
in Figure C.576 from Figure C.577 should be zero. It is 0 { 005930.

324The absolute value of the normalized increments, when averaged, is related to the root mean square of the increments by a constant. If the
normalized increments are a fixed increment, the constant is unity. If the normalized increments have a Gaussian distribution, the constant is ì 0 � 8
depending on the accuracy of of “fit” to a Gaussian distribution.
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Appendix D

Condensed Fractal Analysis of Various
Market Segments in the North American
Electronics Industry

This appendix presents, in condensed tabular form, the numerical metrics that were derived in appendix C.

D.1 North American Integrated Circuit Market

For the analysis, the data was in the directory ../markets/ic.namerica1.
The data in this section is presented in Section C.1.

D.1.1 North American Integrated Circuit Market, normalized increments

The data in table D.1 is condensed from Section C.1.1.

Table D.1: North American Integrated Circuit Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.045132 0.075442 0.087396 0.042616 0.000081 0.070147 0.052548 0.087396 0.081978 -0.000382

D.1.2 North American Integrated Circuit Market, Logarithmic Returns, in Bits

The data in table D.2 is condensed from Section C.1.5.

D.1.3 North American Integrated Circuit Market, Shannon probabilities

The data in table D.3 is condensed from sections C.1.5 and C.1.10.
1Data from the Semiconductor Industry Association, 1979—1994, by quarters, in millions of dollars, US.
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D.1. NORTH AMERICAN INTEGRATED CIRCUIT MARKET

Table D.2: North American Integrated Circuit Market, Logarithmic Returns, in Bits.
Calculated from Table D.1 From program:

Mean Least squares tslsq tslogreturns

0.063685 0.060208 0.046835 0.058857

Table D.3: North American Integrated Circuit Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.746032 0.758204 0.750000 0.641843

D.1.4 North American Integrated Circuit Market, Logistic Analysis

The data in table D.4 is condensed from Section C.1.32.

Table D.4: North American Integrated Circuit Market, Logistic Analysis, á � Azá ��� 1 « T f9� L á ��� 1 ¯ .� :
0.042616 0.000081

D.1.5 North American Integrated Circuit Market, Hurst Coefficients and H Parameters

The data in table D.5 is condensed from Section C.1.4.

Table D.5: North American Integrated Circuit Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.997635 0.720515 0.809622 0.831476

D.1.6 North American Integrated Circuit Market, verification of the increments

The data in table D.7 is condensed from Section C.1.11.

D.1.7 North American Integrated Circuit Market, verification of the increments

The data in table D.8 is condensed from Section C.1.11.
2Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.1. NORTH AMERICAN INTEGRATED CIRCUIT MARKET

Table D.6: North American Integrated Circuit Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.993773 0.705810 0.763288 0.564390

Table D.7: North American Integrated Circuit Market, verification the of the increments, the mean, é is the standard
deviation from table D.1, 0.075442, and u is the maximum Shannon probability from table D.3, 0.746032. In principle,
the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.045132 0.043004 0.042642

Table D.8: North American Integrated Circuit Market, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate4.

Mean of the rms
absolute value

0.070147 0.087396

D.1.8 North American Integrated Circuit Market, D 2 values of the increments

The data in table D.9 is condensed from Section C.4.

Table D.9: North American Integrated Circuit Market, ê 2 values of the increments. In principle, if the distribution of
the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

6.219000 42.557000

D.1.9 North American Integrated Circuit Market, time series data, empirical and simulated

The data in table D.10 is condensed from Section C.1.9.

D.1.10 North American Integrated Circuit Market, number of participating companies

The data in table D.11 is condensed from Section C.1.6.

D.1.11 North American Integrated Circuit Market, Shannon probability optimizations

The data in table D.12 is condensed from Section C.1.6.
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D.2. WORLD SEMICONDUCTOR MARKET

Table D.10: North American Integrated Circuit Market, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.045132 0.075442 0.042288 0.077108

Table D.11: North American Integrated Circuit Market, number of participating companies.
Number Shannon probability
5.908830 0.606221

Table D.12: North American Integrated Circuit Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.758204 0.606221

D.2 World Semiconductor Market

For the analysis, the data was in the directory ../markets/semiconductors.world5.
The data in this section is presented in Section C.1.

D.2.1 World Semiconductor Market, normalized increments

The data in table D.13 is condensed from Section C.1.1.

Table D.13: World Semiconductor Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.044437 0.064421 0.077739 0.039513 0.000197 0.061981 0.047389 0.077739 0.078868 -0.000675

D.2.2 World Semiconductor Market, Logarithmic Returns, in Bits

The data in table D.14 is condensed from Section C.1.5.

D.2.3 World Semiconductor Market, Shannon probabilities

The data in table D.15 is condensed from sections C.1.5 and C.1.10.
5Data from the Semiconductor Industry Association, 1982—1994, by quarters, in millions of dollars, US.
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D.2. WORLD SEMICONDUCTOR MARKET

Table D.14: World Semiconductor Market, Logarithmic Returns, in Bits.
Calculated from Table D.13 From program:

Mean Least squares tslsq tslogreturns

0.062725 0.055908 0.053777 0.058816

Table D.15: World Semiconductor Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.823529 0.785809 0.826923 0.641794

D.2.4 World Semiconductor Market, Logistic Analysis

The data in table D.16 is condensed from Section C.1.36.

Table D.16: World Semiconductor Market, Logistic Analysis, á � Axá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.039513 0.000197

D.2.5 World Semiconductor Market, Hurst Coefficients and H Parameters

The data in table D.17 is condensed from Section C.1.4.

Table D.17: World Semiconductor Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

1.025249 0.725956 0.739148 0.781920

D.2.6 World Semiconductor Market, verification of the increments

The data in table D.19 is condensed from Section C.1.11.

D.2.7 World Semiconductor Market, verification of the increments

The data in table D.20 is condensed from Section C.1.11.
6Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.2. WORLD SEMICONDUCTOR MARKET

Table D.18: World Semiconductor Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

1.028920 0.644727 0.749932 0.492932

Table D.19: World Semiconductor Market, verification the of the increments, the mean, é is the standard deviation
from table D.13, 0.064421, and u is the maximum Shannon probability from table D.15, 0.823529. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.044437 0.050302 0.054672

Table D.20: World Semiconductor Market, verification the of increments. In principle, the mean of the absolute value
of the increments and the root mean square of the increments should equate8.

Mean of the rms
absolute value

0.061981 0.077739

D.2.8 World Semiconductor Market, D 2 values of the increments

The data in table D.21 is condensed from Section C.4.

Table D.21: World Semiconductor Market, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

9.194000 42.557000

D.2.9 World Semiconductor Market, time series data, empirical and simulated

The data in table D.22 is condensed from Section C.1.9.

D.2.10 World Semiconductor Market, number of participating companies

The data in table D.23 is condensed from Section C.1.6.

D.2.11 World Semiconductor Market, Shannon probability optimizations

The data in table D.24 is condensed from Section C.1.6.
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D.3. NORTH AMERICAN SEMICONDUCTOR MARKET

Table D.22: World Semiconductor Market, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.044437 0.064421 0.049753 0.060339

Table D.23: World Semiconductor Market, number of participating companies.
Number Shannon probability
7.353038 0.605400

Table D.24: World Semiconductor Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.785809 0.605400

D.3 North American Semiconductor Market

For the analysis, the data was in the directory ../markets/semiconductors.namerica9.
The data in this section is presented in Section C.1.

D.3.1 North American Semiconductor Market, normalized increments

The data in table D.25 is condensed from Section C.1.1.

Table D.25: North American Semiconductor Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.040216 0.069677 0.079970 0.032989 0.000233 0.064520 0.047627 0.079970 0.072161 -0.000246

D.3.2 North American Semiconductor Market, Logarithmic Returns, in Bits

The data in table D.26 is condensed from Section C.1.5.

D.3.3 North American Semiconductor Market, Shannon probabilities

The data in table D.27 is condensed from sections C.1.5 and C.1.10.
9Data from the Semiconductor Industry Association, 1979—1994, by quarters, in millions of dollars, US.
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D.3. NORTH AMERICAN SEMICONDUCTOR MARKET

Table D.26: North American Semiconductor Market, Logarithmic Returns, in Bits.
Calculated from Table D.25 From program:

Mean Least squares tslsq tslogreturns

0.056883 0.046825 0.042107 0.052703

Table D.27: North American Semiconductor Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.746032 0.751444 0.750000 0.634320

D.3.4 North American Semiconductor Market, Logistic Analysis

The data in table D.28 is condensed from Section C.1.310.

Table D.28: North American Semiconductor Market, Logistic Analysis, á � Azá �5� 1 « T f9� L á �5� 1 ¯ .� :
0.032989 0.000233

D.3.5 North American Semiconductor Market, Hurst Coefficients and H Parameters

The data in table D.29 is condensed from Section C.1.4.

Table D.29: North American Semiconductor Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.998014 0.714241 0.808008 0.815409

D.3.6 North American Semiconductor Market, verification of the increments

The data in table D.31 is condensed from Section C.1.11.

D.3.7 North American Semiconductor Market, verification of the increments

The data in table D.32 is condensed from Section C.1.11.
10Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.3. NORTH AMERICAN SEMICONDUCTOR MARKET

Table D.30: North American Semiconductor Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.991765 0.694731 0.766148 0.571832

Table D.31: North American Semiconductor Market, verification the of the increments, the mean, é is the standard
deviation from table D.25, 0.069677, and u is the maximum Shannon probability from table D.27, 0.746032. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.040216 0.039350 0.039383

Table D.32: North American Semiconductor Market, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate12.

Mean of the rms
absolute value

0.064520 0.079970

D.3.8 North American Semiconductor Market, D 2 values of the increments

The data in table D.33 is condensed from Section C.4.

Table D.33: North American Semiconductor Market, ê 2 values of the increments. In principle, if the distribution of
the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

7.163000 42.557000

D.3.9 North American Semiconductor Market, time series data, empirical and simulated

The data in table D.34 is condensed from Section C.1.9.

D.3.10 North American Semiconductor Market, number of participating companies

The data in table D.35 is condensed from Section C.1.6.

D.3.11 North American Semiconductor Market, Shannon probability optimizations

The data in table D.36 is condensed from Section C.1.6.
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D.4. UNITED STATES ELECTRONIC COMPONENT SHIPMENTS

Table D.34: North American Semiconductor Market, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.040216 0.069677 0.038695 0.070556

Table D.35: North American Semiconductor Market, number of participating companies.
Number Shannon probability
6.288465 0.600270

Table D.36: North American Semiconductor Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.751444 0.600270

D.4 United States Electronic Component Shipments

For the analysis, the data was in the directory ../markets/electronic.components.shipments13.
The data in this section is presented in Section C.1.

D.4.1 United States Electronic Component Shipments, normalized increments

The data in table D.37 is condensed from Section C.1.1.

Table D.37: United States Electronic Component Shipments, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.009362 0.028297 0.029736 0.010583 -0.000013 0.022871 0.019053 0.029736 0.022658 0.000002

D.4.2 United States Electronic Component Shipments, Logarithmic Returns, in Bits

The data in table D.38 is condensed from Section C.1.5.

D.4.3 United States Electronic Component Shipments, Shannon probabilities

The data in table D.39 is condensed from sections C.1.5 and C.1.10.
13Data from the United States Department of Commerce, 1979—1994, by months, in millions of dollars, US.
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D.4. UNITED STATES ELECTRONIC COMPONENT SHIPMENTS

Table D.38: United States Electronic Component Shipments, Logarithmic Returns, in Bits.
Calculated from Table D.37 From program:

Mean Least squares tslsq tslogreturns

0.013444 0.015188 0.010340 0.012810

Table D.39: United States Electronic Component Shipments, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.656250 0.657419 0.658031 0.566532

D.4.4 United States Electronic Component Shipments, Logistic Analysis

The data in table D.40 is condensed from Section C.1.314.

Table D.40: United States Electronic Component Shipments, Logistic Analysis, á � A|á ��� 1 « T fG� L á ��� 1 ¯ .� :
0.010583 -0.000013

D.4.5 United States Electronic Component Shipments, Hurst Coefficients and H Parameters

The data in table D.41 is condensed from Section C.1.4.

Table D.41: United States Electronic Component Shipments, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.755693 0.621033 0.211156 0.520759

D.4.6 United States Electronic Component Shipments, verification of the increments

The data in table D.43 is condensed from Section C.1.11.

D.4.7 United States Electronic Component Shipments, verification of the increments

The data in table D.44 is condensed from Section C.1.11.
14Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.4. UNITED STATES ELECTRONIC COMPONENT SHIPMENTS

Table D.42: United States Electronic Component Shipments, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.759013 0.677966 0.281132 0.513545

Table D.43: United States Electronic Component Shipments, verification the of the increments, the mean, é is the
standard deviation from table D.37, 0.028297, and u is the maximum Shannon probability from table D.39, 0.656250.
In principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.009362 0.009292 0.009309

Table D.44: United States Electronic Component Shipments, verification the of increments. In principle, the mean of
the absolute value of the increments and the root mean square of the increments should equate16.

Mean of the rms
absolute value

0.022871 0.029736

D.4.8 United States Electronic Component Shipments, D 2 values of the increments

The data in table D.45 is condensed from Section C.4.

Table D.45: United States Electronic Component Shipments, ê 2 values of the increments. In principle, if the
distribution of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the
critical value. E 2 Critical Value

4.711000 42.557000

D.4.9 United States Electronic Component Shipments, time series data, empirical and sim-
ulated

The data in table D.46 is condensed from Section C.1.9.

D.4.10 United States Electronic Component Shipments, number of participating companies

The data in table D.47 is condensed from Section C.1.6.
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D.5. UNITED STATES ELECTRONIC COMPONENT PRODUCTION

Table D.46: United States Electronic Component Shipments, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.009362 0.028297 0.009185 0.028356

Table D.47: United States Electronic Component Shipments, number of participating companies.
Number Shannon probability

10.587747 0.548379

D.4.11 United States Electronic Component Shipments, Shannon probability optimizations

The data in table D.48 is condensed from Section C.1.6.

Table D.48: United States Electronic Component Shipments, Shannon probability optimization.
optimize capital growth optimize market growth

0.657419 0.548379

D.5 United States Electronic Component Production

For the analysis, the data was in the directory ../markets/electronic.components.production17.
The data in this section is presented in Section C.1.

D.5.1 United States Electronic Component Production, normalized increments

The data in table D.49 is condensed from Section C.1.1.

Table D.49: United States Electronic Component Production, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.008198 0.015216 0.017247 0.003048 0.000058 0.013756 0.010433 0.017247 0.013871 -0.000001

17Data from the United States Department of Commerce, 1980—1994, by months, as an index, 1987 = 100.
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D.5. UNITED STATES ELECTRONIC COMPONENT PRODUCTION

D.5.2 United States Electronic Component Production, Logarithmic Returns, in Bits

The data in table D.50 is condensed from Section C.1.5.

Table D.50: United States Electronic Component Production, Logarithmic Returns, in Bits.
Calculated from Table D.49 From program:

Mean Least squares tslsq tslogreturns

0.011779 0.004391 0.009588 0.011551

D.5.3 United States Electronic Component Production, Shannon probabilities

The data in table D.51 is condensed from sections C.1.5 and C.1.10.

Table D.51: United States Electronic Component Production, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.754190 0.737665 0.755556 0.563187

D.5.4 United States Electronic Component Production, Logistic Analysis

The data in table D.52 is condensed from Section C.1.318.

Table D.52: United States Electronic Component Production, Logistic Analysis, á � ARá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.003048 0.000058

D.5.5 United States Electronic Component Production, Hurst Coefficients and H Parame-
ters

The data in table D.53 is condensed from Section C.1.4.

D.5.6 United States Electronic Component Production, verification of the increments

The data in table D.55 is condensed from Section C.1.11.
18Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.5. UNITED STATES ELECTRONIC COMPONENT PRODUCTION

Table D.53: United States Electronic Component Production, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.866652 0.776445 0.840517 0.906252

Table D.54: United States Electronic Component Production, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.869086 0.736363 0.757204 0.798198

Table D.55: United States Electronic Component Production, verification the of the increments, the mean, é is the
standard deviation from table D.49, 0.015216, and u is the maximum Shannon probability from table D.51, 0.754190.
In principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.008198 0.008768 0.008983

D.5.7 United States Electronic Component Production, verification of the increments

The data in table D.56 is condensed from Section C.1.11.

Table D.56: United States Electronic Component Production, verification the of increments. In principle, the mean of
the absolute value of the increments and the root mean square of the increments should equate20.

Mean of the rms
absolute value

0.013756 0.017247

D.5.8 United States Electronic Component Production, D 2 values of the increments

The data in table D.57 is condensed from Section C.4.

D.5.9 United States Electronic Component Production, time series data, empirical and
simulated

The data in table D.58 is condensed from Section C.1.9.

D.5.10 United States Electronic Component Production, number of participatingcompanies

The data in table D.59 is condensed from Section C.1.6.
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D.6. UNITED STATES ELECTRONICS MARKET

Table D.57: United States Electronic Component Production, ê 2 values of the increments. In principle, if the
distribution of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the
critical value. E 2 Critical Value

6.808000 42.557000

Table D.58: United States Electronic Component Production, time series data, empirical and simulated, analysis of
the normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.008198 0.015216 0.008720 0.014922

Table D.59: United States Electronic Component Production, number of participating companies.
Number Shannon probability

27.560100 0.545271

D.5.11 United States Electronic Component Production, Shannon probability optimizations

The data in table D.60 is condensed from Section C.1.6.

Table D.60: United States Electronic Component Production, Shannon probability optimization.
optimize capital growth optimize market growth

0.737665 0.545271

D.6 United States Electronics Market

For the analysis, the data was in the directory ../markets/electronics21.
The data in this section is presented in Section C.1.

D.6.1 United States Electronics Market, normalized increments

The data in table D.61 is condensed from Section C.1.1.

D.6.2 United States Electronics Market, Logarithmic Returns, in Bits

The data in table D.62 is condensed from Section C.1.5.
21Data from the United States Department of Commerce, 1980—1994, by months, in millions of dollars, US.
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D.6. UNITED STATES ELECTRONICS MARKET

Table D.61: United States Electronics Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.007862 0.062079 0.062404 0.008318 -0.000005 0.048513 0.039361 0.062404 0.061949 -0.000150

Table D.62: United States Electronics Market, Logarithmic Returns, in Bits.
Calculated from Table D.61 From program:

Mean Least squares tslsq tslogreturns

0.011298 0.011951 0.007056 0.008559

D.6.3 United States Electronics Market, Shannon probabilities

The data in table D.63 is condensed from sections C.1.5 and C.1.10.

Table D.63: United States Electronics Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.522222 0.562993 0.524862 0.554410

D.6.4 United States Electronics Market, Logistic Analysis

The data in table D.64 is condensed from Section C.1.322.

Table D.64: United States Electronics Market, Logistic Analysis, á � ARá �5� 1 « T fF� L á �5� 1 ¯ .� :
0.008318 -0.000005

D.6.5 United States Electronics Market, Hurst Coefficients and H Parameters

The data in table D.65 is condensed from Section C.1.4.
22Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.6. UNITED STATES ELECTRONICS MARKET

Table D.65: United States Electronics Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.684410 0.399911 -0.009123 0.143328

Table D.66: United States Electronics Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.688302 0.479826 0.028290 0.111538

D.6.6 United States Electronics Market, verification of the increments

The data in table D.67 is condensed from Section C.1.11.

Table D.67: United States Electronics Market, verification the of the increments, the mean, é is the standard deviation
from table D.61, 0.062079, and u is the maximum Shannon probability from table D.63, 0.522222. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.007862 0.002774 0.002762

D.6.7 United States Electronics Market, verification of the increments

The data in table D.68 is condensed from Section C.1.11.

Table D.68: United States Electronics Market, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate24.

Mean of the rms
absolute value

0.048513 0.062404

D.6.8 United States Electronics Market, D 2 values of the increments

The data in table D.69 is condensed from Section C.4.

D.6.9 United States Electronics Market, time series data, empirical and simulated

The data in table D.70 is condensed from Section C.1.9.
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D.7. UNITED STATES OFFICE COMPUTER MARKET

Table D.69: United States Electronics Market, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

2.817000 42.557000

Table D.70: United States Electronics Market, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.007862 0.062079 0.003138 0.062500

D.6.10 United States Electronics Market, number of participating companies

The data in table D.71 is condensed from Section C.1.6.

Table D.71: United States Electronics Market, number of participating companies.
Number Shannon probability
2.018869 0.544334

D.6.11 United States Electronics Market, Shannon probability optimizations

The data in table D.72 is condensed from Section C.1.6.

Table D.72: United States Electronics Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.562993 0.544334

D.7 United States Office Computer Market

For the analysis, the data was in the directory ../markets/computer.office25.
The data in this section is presented in Section C.1.

D.7.1 United States Office Computer Market, normalized increments

The data in table D.73 is condensed from Section C.1.1.
25Data from the United States Department of Commerce, 1982—1994, by months, as an index, 1987 = 100.
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Table D.73: United States Office Computer Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.016771 0.028983 0.033404 0.023041 -0.000081 0.024562 0.022713 0.033404 0.038289 -0.000178

D.7.2 United States Office Computer Market, Logarithmic Returns, in Bits

The data in table D.74 is condensed from Section C.1.5.

Table D.74: United States Office Computer Market, Logarithmic Returns, in Bits.
Calculated from Table D.73 From program:

Mean Least squares tslsq tslogreturns

0.023995 0.032864 0.019653 0.023266

D.7.3 United States Office Computer Market, Shannon probabilities

The data in table D.75 is condensed from sections C.1.5 and C.1.10.

Table D.75: United States Office Computer Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.780645 0.751033 0.782051 0.589554

D.7.4 United States Office Computer Market, Logistic Analysis

The data in table D.76 is condensed from Section C.1.326.

Table D.76: United States Office Computer Market, Logistic Analysis, á � Azá �5� 1 « T f9� L á ��� 1 ¯ .� :
0.023041 -0.000081

26Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than
zero, it was set to zero to produce the graphs in Section C.1.3.
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D.7.5 United States Office Computer Market, Hurst Coefficients and H Parameters

The data in table D.77 is condensed from Section C.1.4.

Table D.77: United States Office Computer Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.888451 0.723276 0.720944 0.774674

Table D.78: United States Office Computer Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.881397 0.760996 0.458834 0.557545

D.7.6 United States Office Computer Market, verification of the increments

The data in table D.79 is condensed from Section C.1.11.

Table D.79: United States Office Computer Market, verification the of the increments, the mean, é is the standard
deviation from table D.73, 0.028983, and u is the maximum Shannon probability from table D.75, 0.780645. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.016771 0.018749 0.019656

D.7.7 United States Office Computer Market, verification of the increments

The data in table D.80 is condensed from Section C.1.11.

Table D.80: United States Office Computer Market, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate28.

Mean of the rms
absolute value

0.024562 0.033404

D.7.8 United States Office Computer Market, D 2 values of the increments

The data in table D.81 is condensed from Section C.4.
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Table D.81: United States Office Computer Market, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

8.722000 42.557000

D.7.9 United States Office Computer Market, time series data, empirical and simulated

The data in table D.82 is condensed from Section C.1.9.

Table D.82: United States Office Computer Market, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.016771 0.028983 0.018654 0.027800

D.7.10 United States Office Computer Market, number of participating companies

The data in table D.83 is condensed from Section C.1.6.

Table D.83: United States Office Computer Market, number of participating companies.
Number Shannon probability

15.030105 0.564751

D.7.11 United States Office Computer Market, Shannon probability optimizations

The data in table D.84 is condensed from Section C.1.6.

Table D.84: United States Office Computer Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.751033 0.564751

D.8 United States Information Systems Market

For the analysis, the data was in the directory ../markets/information.systems29.

29Data from the United States Department of Commerce, 1979—1994, by months, in millions of dollars, US.
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The data in this section is presented in Section C.1.

D.8.1 United States Information Systems Market, normalized increments

The data in table D.85 is condensed from Section C.1.1.

Table D.85: United States Information Systems Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.008052 0.038579 0.039311 0.010041 -0.000021 0.029745 0.025769 0.039311 0.035145 -0.000057

D.8.2 United States Information Systems Market, Logarithmic Returns, in Bits

The data in table D.86 is condensed from Section C.1.5.

Table D.86: United States Information Systems Market, Logarithmic Returns, in Bits.
Calculated from Table D.85 From program:

Mean Least squares tslsq tslogreturns

0.011570 0.014414 0.007623 0.010456

D.8.3 United States Information Systems Market, Shannon probabilities

The data in table D.87 is condensed from sections C.1.5 and C.1.10.

Table D.87: United States Information Systems Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.602094 0.602414 0.604167 0.560125

D.8.4 United States Information Systems Market, Logistic Analysis

The data in table D.88 is condensed from Section C.1.330.

D.8.5 United States Information Systems Market, Hurst Coefficients and H Parameters

The data in table D.89 is condensed from Section C.1.4.
30Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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Table D.88: United States Information Systems Market, Logistic Analysis, á � ARá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.010041 -0.000021

Table D.89: United States Information Systems Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.710108 0.633980 0.138822 0.419126

Table D.90: United States Information Systems Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.707509 0.659558 0.095368 0.365324

D.8.6 United States Information Systems Market, verification of the increments

The data in table D.91 is condensed from Section C.1.11.

Table D.91: United States Information Systems Market, verification the of the increments, the mean, é is the standard
deviation from table D.85, 0.038579, and u is the maximum Shannon probability from table D.87, 0.602094. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.008052 0.008027 0.008047

D.8.7 United States Information Systems Market, verification of the increments

The data in table D.92 is condensed from Section C.1.11.

Table D.92: United States Information Systems Market, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate32.

Mean of the rms
absolute value

0.029745 0.039311
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D.8.8 United States Information Systems Market, D 2 values of the increments

The data in table D.93 is condensed from Section C.4.

Table D.93: United States Information Systems Market, ê 2 values of the increments. In principle, if the distribution
of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

2.862000 42.557000

D.8.9 United States Information Systems Market, time series data, empirical and simulated

The data in table D.94 is condensed from Section C.1.9.

Table D.94: United States Information Systems Market, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.008052 0.038579 0.007862 0.038619

D.8.10 United States Information Systems Market, number of participating companies

The data in table D.95 is condensed from Section C.1.6.

Table D.95: United States Information Systems Market, number of participating companies.
Number Shannon probability
5.210454 0.544866

D.8.11 United States Information Systems Market, Shannon probability optimizations

The data in table D.96 is condensed from Section C.1.6.

Table D.96: United States Information Systems Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.602414 0.544866
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D.9 Dow Jones Average

For the analysis, the data was in the directory ../markets/dj33.
The data in this section is presented in Section C.1.

D.9.1 Dow Jones Average, normalized increments

The data in table D.97 is condensed from Section C.1.1.

Table D.97: Dow Jones Average, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.008836 0.034803 0.035806 0.009746 -0.000011 0.025721 0.024985 0.035806 0.032502 -0.000082

D.9.2 Dow Jones Average, Logarithmic Returns, in Bits

The data in table D.98 is condensed from Section C.1.5.

Table D.98: Dow Jones Average, Logarithmic Returns, in Bits.
Calculated from Table D.97 From program:

Mean Least squares tslsq tslogreturns

0.012692 0.013992 0.014084 0.011753

D.9.3 Dow Jones Average, Shannon probabilities

The data in table D.99 is condensed from sections C.1.5 and C.1.10.

Table D.99: Dow Jones Average, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.634731 0.623387 0.636905 0.563735

D.9.4 Dow Jones Average, Logistic Analysis

The data in table D.100 is condensed from Section C.1.334.
33Data from Dow Jones News Information Retrieval Service, 1981—1994, by months, as an index.
34Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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Table D.100: Dow Jones Average, Logistic Analysis, á � ARá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.009746 -0.000011

D.9.5 Dow Jones Average, Hurst Coefficients and H Parameters

The data in table D.101 is condensed from Section C.1.4.

Table D.101: Dow Jones Average, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.891560 0.566146 0.668492 0.504399

Table D.102: Dow Jones Average, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.894610 0.680456 0.674751 0.565142

D.9.6 Dow Jones Average, verification of the increments

The data in table D.103 is condensed from Section C.1.11.

Table D.103: Dow Jones Average, verification the of the increments, the mean, é is the standard deviation from
table D.97, 0.034803, and u is the maximum Shannon probability from table D.99, 0.634731. In principle, the values
should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.008836 0.009648 0.009738

D.9.7 Dow Jones Average, verification of the increments

The data in table D.104 is condensed from Section C.1.11.

D.9.8 Dow Jones Average, D 2 values of the increments

The data in table D.105 is condensed from Section C.4.
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Table D.104: Dow Jones Average, verification the of increments. In principle, the mean of the absolute value of the
increments and the root mean square of the increments should equate36.

Mean of the rms
absolute value

0.025721 0.035806

Table D.105: Dow Jones Average, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

8.043000 42.557000

D.9.9 Dow Jones Average, time series data, empirical and simulated

The data in table D.106 is condensed from Section C.1.9.

Table D.106: Dow Jones Average, time series data, empirical and simulated, analysis of the normalized increments.
Empirical Simulated

Mean Standard Mean Standard
deviation deviation

0.008836 0.034803 0.009922 0.034508

D.9.10 Dow Jones Average, number of participating companies

The data in table D.107 is condensed from Section C.1.6.

Table D.107: Dow Jones Average, number of participating companies.
Number Shannon probability
6.891981 0.547000

D.9.11 Dow Jones Average, Shannon probability optimizations

The data in table D.108 is condensed from Section C.1.6.

D.10 Cirrus Logic Stock

For the analysis, the data was in the directory ../markets/crus37.

37Data from ftp://ftp.ai.mit.edu/pub/stocks/results/, by days, in dollars, US.
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Table D.108: Dow Jones Average, Shannon probability optimization.
optimize capital growth optimize market growth

0.623387 0.547000

The data in this section is presented in Section C.1.

D.10.1 Cirrus Logic Stock, normalized increments

The data in table D.109 is condensed from Section C.1.1.

Table D.109: Cirrus Logic Stock, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.002031 0.046039 0.046012 0.010587 -0.000054 0.030075 0.034876 0.046012 0.023205 0.000043

D.10.2 Cirrus Logic Stock, Logarithmic Returns, in Bits

The data in table D.110 is condensed from Section C.1.5.

Table D.110: Cirrus Logic Stock, Logarithmic Returns, in Bits.
Calculated from Table D.109 From program:

Mean Least squares tslsq tslogreturns

0.002927 0.015194 0.001768 0.001313

D.10.3 Cirrus Logic Stock, Shannon probabilities

The data in table D.111 is condensed from sections C.1.5 and C.1.10.

Table D.111: Cirrus Logic Stock, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.575000 0.522070 0.576324 0.521329

Id: tables.tex,v 0.0 1995/11/20 04:38:13 john Exp 683



D.10. CIRRUS LOGIC STOCK

D.10.4 Cirrus Logic Stock, Logistic Analysis

The data in table D.112 is condensed from Section C.1.338.

Table D.112: Cirrus Logic Stock, Logistic Analysis, á � Axá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.010587 -0.000054

D.10.5 Cirrus Logic Stock, Hurst Coefficients and H Parameters

The data in table D.113 is condensed from Section C.1.4.

Table D.113: Cirrus Logic Stock, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.887589 0.706220 0.490165 0.502378

Table D.114: Cirrus Logic Stock, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.887433 0.678733 0.498817 0.493070

D.10.6 Cirrus Logic Stock, verification of the increments

The data in table D.115 is condensed from Section C.1.11.

Table D.115: Cirrus Logic Stock, verification the of the increments, the mean, é is the standard deviation from
table D.109, 0.046039, and u is the maximum Shannon probability from table D.111, 0.575000. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.002031 0.006902 0.006985

38Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than
zero, it was set to zero to produce the graphs in Section C.1.3.
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D.10.7 Cirrus Logic Stock, verification of the increments

The data in table D.116 is condensed from Section C.1.11.

Table D.116: Cirrus Logic Stock, verification the of increments. In principle, the mean of the absolute value of the
increments and the root mean square of the increments should equate40.

Mean of the rms
absolute value

0.030075 0.046012

D.10.8 Cirrus Logic Stock, D 2 values of the increments

The data in table D.117 is condensed from Section C.4.

Table D.117: Cirrus Logic Stock, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

4.817000 42.557000

D.10.9 Cirrus Logic Stock, time series data, empirical and simulated

The data in table D.118 is condensed from Section C.1.9.

Table D.118: Cirrus Logic Stock, time series data, empirical and simulated, analysis of the normalized increments.
Empirical Simulated

Mean Standard Mean Standard
deviation deviation

0.002031 0.046039 0.007068 0.045537

D.10.10 Cirrus Logic Stock, number of participating companies

The data in table D.119 is condensed from Section C.1.6.

Table D.119: Cirrus Logic Stock, number of participating companies.
Number Shannon probability
0.959329 0.522533
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D.10.11 Cirrus Logic Stock, Shannon probability optimizations

The data in table D.120 is condensed from Section C.1.6.

Table D.120: Cirrus Logic Stock, Shannon probability optimization.
optimize capital growth optimize market growth

0.522070 0.522533

D.11 United States Gross Domestic Product

For the analysis, the data was in the directory ../markets/us.gdp41.
The data in this section is presented in Section C.1.

D.11.1 United States Gross Domestic Product, normalized increments

The data in table D.121 is condensed from Section C.1.1.

Table D.121: United States Gross Domestic Product, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.005789 0.008347 0.010103 0.003515 0.000073 0.008280 0.005836 0.010103 0.009628 -0.000044

D.11.2 United States Gross Domestic Product, Logarithmic Returns, in Bits

The data in table D.122 is condensed from Section C.1.5.

Table D.122: United States Gross Domestic Product, Logarithmic Returns, in Bits.
Calculated from Table D.121 From program:

Mean Least squares tslsq tslogreturns

0.008328 0.005062 0.008994 0.008149

D.11.3 United States Gross Domestic Product, Shannon probabilities

The data in table D.123 is condensed from sections C.1.5 and C.1.10.
41Data from the United States Department of Commerce, 1979—1994, by months, in billions of 1987 dollars, US.
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Table D.123: United States Gross Domestic Product, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.857143 0.786499 0.859375 0.553093

D.11.4 United States Gross Domestic Product, Logistic Analysis

The data in table D.124 is condensed from Section C.1.342.

Table D.124: United States Gross Domestic Product, Logistic Analysis, á � A|á ��� 1 « T f9� L á ��� 1 ¯ .� :
0.003515 0.000073

D.11.5 United States Gross Domestic Product, Hurst Coefficients and H Parameters

The data in table D.125 is condensed from Section C.1.4.

Table D.125: United States Gross Domestic Product, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.935237 0.858488 0.742580 0.657280

Table D.126: United States Gross Domestic Product, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.935962 0.846454 0.727413 0.624175

D.11.6 United States Gross Domestic Product, verification of the increments

The data in table D.127 is condensed from Section C.1.11.

D.11.7 United States Gross Domestic Product, verification of the increments

The data in table D.128 is condensed from Section C.1.11.
42Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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Table D.127: United States Gross Domestic Product, verification the of the increments, the mean, é is the standard
deviation from table D.121, 0.008347, and u is the maximum Shannon probability from table D.123, 0.857143. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.005789 0.007216 0.008519

Table D.128: United States Gross Domestic Product, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate44.

Mean of the rms
absolute value

0.008280 0.010103

D.11.8 United States Gross Domestic Product, D 2 values of the increments

The data in table D.129 is condensed from Section C.4.

Table D.129: United States Gross Domestic Product, ê 2 values of the increments. In principle, if the distribution of
the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

8.124000 42.557000

D.11.9 United States Gross Domestic Product, time series data, empirical and simulated

The data in table D.130 is condensed from Section C.1.9.

Table D.130: United States Gross Domestic Product, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.005789 0.008347 0.007170 0.007176

D.11.10 United States Gross Domestic Product, number of participating companies

The data in table D.131 is condensed from Section C.1.6.
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Table D.131: United States Gross Domestic Product, number of participating companies.
Number Shannon probability

56.715641 0.538043

D.11.11 United States Gross Domestic Product, Shannon probability optimizations

The data in table D.132 is condensed from Section C.1.6.

Table D.132: United States Gross Domestic Product, Shannon probability optimization.
optimize capital growth optimize market growth

0.786499 0.538043

D.12 United States Employment Figures

For the analysis, the data was in the directory ../markets/us.employment45.
The data in this section is presented in Section C.1.

D.12.1 United States Employment Figures, normalized increments

The data in table D.133 is condensed from Section C.1.1.

Table D.133: United States Employment Figures, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.001327 0.002254 0.002611 0.000929 0.000004 0.002171 0.001454 0.002611 0.002656 -0.000005

D.12.2 United States Employment Figures, Logarithmic Returns, in Bits

The data in table D.134 is condensed from Section C.1.5.

D.12.3 United States Employment Figures, Shannon probabilities

The data in table D.135 is condensed from sections C.1.5 and C.1.10.
45Data from the United States Bureau of Labor and Statistics, 1980—1994, by months, in thousands of persons.
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Table D.134: United States Employment Figures, Logarithmic Returns, in Bits.
Calculated from Table D.133 From program:

Mean Least squares tslsq tslogreturns

0.001913 0.001340 0.002205 0.001900

Table D.135: United States Employment Figures, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.758242 0.754117 0.759563 0.525655

D.12.4 United States Employment Figures, Logistic Analysis

The data in table D.136 is condensed from Section C.1.346.

Table D.136: United States Employment Figures, Logistic Analysis, á � Azá �5� 1 « T f9� L á �5� 1 ¯ .� :
0.000929 0.000004

D.12.5 United States Employment Figures, Hurst Coefficients and H Parameters

The data in table D.137 is condensed from Section C.1.4.

Table D.137: United States Employment Figures, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.879967 0.986346 0.833184 0.856829

D.12.6 United States Employment Figures, verification of the increments

The data in table D.139 is condensed from Section C.1.11.

D.12.7 United States Employment Figures, verification of the increments

The data in table D.140 is condensed from Section C.1.11.
46Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.12. UNITED STATES EMPLOYMENT FIGURES

Table D.138: United States Employment Figures, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.880810 0.978765 0.824760 0.847150

Table D.139: United States Employment Figures, verification the of the increments, the mean, é is the standard
deviation from table D.133, 0.002254, and u is the maximum Shannon probability from table D.135, 0.758242. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.001327 0.001349 0.001360

Table D.140: United States Employment Figures, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate48.

Mean of the rms
absolute value

0.002171 0.002611

D.12.8 United States Employment Figures, D 2 values of the increments

The data in table D.141 is condensed from Section C.4.

Table D.141: United States Employment Figures, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

4.227000 42.557000

D.12.9 United States Employment Figures, time series data, empirical and simulated

The data in table D.142 is condensed from Section C.1.9.

D.12.10 United States Employment Figures, number of participating companies

The data in table D.143 is condensed from Section C.1.6.

D.12.11 United States Employment Figures, Shannon probability optimizations

The data in table D.144 is condensed from Section C.1.6.
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D.13. UNITED STATES LEADING ECONOMIC INDICATORS

Table D.142: United States Employment Figures, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.001327 0.002254 0.001342 0.002246

Table D.143: United States Employment Figures, number of participating companies.
Number Shannon probability

194.651242 0.518214

Table D.144: United States Employment Figures, Shannon probability optimization.
optimize capital growth optimize market growth

0.754117 0.518214

D.13 United States Leading Economic Indicators

For the analysis, the data was in the directory ../markets/us.indicators49.
The data in this section is presented in Section C.1.

D.13.1 United States Leading Economic Indicators, normalized increments

The data in table D.145 is condensed from Section C.1.1.

Table D.145: United States Leading Economic Indicators, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.000733 0.005089 0.005128 0.000683 0.000001 0.003869 0.003375 0.005128 0.006230 -0.000027

D.13.2 United States Leading Economic Indicators, Logarithmic Returns, in Bits

The data in table D.146 is condensed from Section C.1.5.

D.13.3 United States Leading Economic Indicators, Shannon probabilities

The data in table D.147 is condensed from sections C.1.5 and C.1.10.
49Data from the United States Department of Commerce, 1980—1994, by months, as an index of 1987 = 100.
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D.13. UNITED STATES LEADING ECONOMIC INDICATORS

Table D.146: United States Leading Economic Indicators, Logarithmic Returns, in Bits.
Calculated from Table D.145 From program:

Mean Least squares tslsq tslogreturns

0.001057 0.000985 0.001105 0.001033

Table D.147: United States Leading Economic Indicators, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.620112 0.571470 0.622222 0.518919

D.13.4 United States Leading Economic Indicators, Logistic Analysis

The data in table D.148 is condensed from Section C.1.350.

Table D.148: United States Leading Economic Indicators, Logistic Analysis, á � ARá �5� 1 « T fF� L á �5� 1 ¯ .� :
0.000683 0.000001

D.13.5 United States Leading Economic Indicators, Hurst Coefficients and H Parameters

The data in table D.149 is condensed from Section C.1.4.

Table D.149: United States Leading Economic Indicators, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.931126 0.714236 0.746931 0.651345

D.13.6 United States Leading Economic Indicators, verification of the increments

The data in table D.151 is condensed from Section C.1.11.

D.13.7 United States Leading Economic Indicators, verification of the increments

The data in table D.152 is condensed from Section C.1.11.
50Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.13. UNITED STATES LEADING ECONOMIC INDICATORS

Table D.150: United States Leading Economic Indicators, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.930925 0.708761 0.727710 0.653283

Table D.151: United States Leading Economic Indicators, verification the of the increments, the mean, é is the standard
deviation from table D.145, 0.005089, and u is the maximum Shannon probability from table D.147, 0.620112. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.000733 0.001232 0.001259

Table D.152: United States Leading Economic Indicators, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate52.

Mean of the rms
absolute value

0.003869 0.005128

D.13.8 United States Leading Economic Indicators, D 2 values of the increments

The data in table D.153 is condensed from Section C.4.

Table D.153: United States Leading Economic Indicators, ê 2 values of the increments. In principle, if the distribution
of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

4.790000 42.557000

D.13.9 United States Leading Economic Indicators, time series data, empirical and simu-
lated

The data in table D.154 is condensed from Section C.1.9.

D.13.10 United States Leading Economic Indicators, number of participating companies

The data in table D.155 is condensed from Section C.1.6.

D.13.11 United States Leading Economic Indicators, Shannon probability optimizations

The data in table D.156 is condensed from Section C.1.6.
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D.14. UNITED STATES M2

Table D.154: United States Leading Economic Indicators, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.000733 0.005089 0.001210 0.004997

Table D.155: United States Leading Economic Indicators, number of participating companies.
Number Shannon probability

27.874555 0.513537

Table D.156: United States Leading Economic Indicators, Shannon probability optimization.
optimize capital growth optimize market growth

0.571470 0.513537

D.14 United States M2

For the analysis, the data was in the directory ../markets/us.m253.
The data in this section is presented in Section C.1.

D.14.1 United States M2, normalized increments

The data in table D.157 is condensed from Section C.1.1.

Table D.157: United States M2, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.001492 0.004594 0.004817 0.004922 -0.000041 0.003529 0.003289 0.004817 0.005573 -0.000025

D.14.2 United States M2, Logarithmic Returns, in Bits

The data in table D.158 is condensed from Section C.1.5.

D.14.3 United States M2, Shannon probabilities

The data in table D.159 is condensed from sections C.1.5 and C.1.10.
53Data from the United States Federal Reserve Board, 1980—1994, by months, in billions of 1987 dollars, US.
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D.14. UNITED STATES M2

Table D.158: United States M2, Logarithmic Returns, in Bits.
Calculated from Table D.157 From program:

Mean Least squares tslsq tslogreturns

0.002151 0.007084 0.002294 0.002123

Table D.159: United States M2, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.568862 0.654868 0.571429 0.527119

D.14.4 United States M2, Logistic Analysis

The data in table D.160 is condensed from Section C.1.354.

Table D.160: United States M2, Logistic Analysis, á � ARá �5� 1 « T fF� L á �5� 1 ¯ .� :
0.004922 -0.000041

D.14.5 United States M2, Hurst Coefficients and H Parameters

The data in table D.161 is condensed from Section C.1.4.

Table D.161: United States M2, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.956159 0.917851 0.827824 0.788208

D.14.6 United States M2, verification of the increments

The data in table D.163 is condensed from Section C.1.11.

D.14.7 United States M2, verification of the increments

The data in table D.164 is condensed from Section C.1.11.
54Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.14. UNITED STATES M2

Table D.162: United States M2, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.955812 0.915770 0.830650 0.789119

Table D.163: United States M2, verification the of the increments, the mean, é is the standard deviation from
table D.157, 0.004594, and u is the maximum Shannon probability from table D.159, 0.568862. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.001492 0.000663 0.000639

Table D.164: United States M2, verification the of increments. In principle, the mean of the absolute value of the
increments and the root mean square of the increments should equate56.

Mean of the rms
absolute value

0.003529 0.004817

D.14.8 United States M2, D 2 values of the increments

The data in table D.165 is condensed from Section C.4.

Table D.165: United States M2, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

3.176000 42.557000

D.14.9 United States M2, time series data, empirical and simulated

The data in table D.166 is condensed from Section C.1.9.

D.14.10 United States M2, number of participating companies

The data in table D.167 is condensed from Section C.1.6.

D.14.11 United States M2, Shannon probability optimizations

The data in table D.168 is condensed from Section C.1.6.
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D.15. UNITED STATES TREASURY BILL RETURNS

Table D.166: United States M2, time series data, empirical and simulated, analysis of the normalized increments.
Empirical Simulated

Mean Standard Mean Standard
deviation deviation

0.001492 0.004594 0.000696 0.004781

Table D.167: United States M2, number of participating companies.
Number Shannon probability

64.300675 0.519313

Table D.168: United States M2, Shannon probability optimization.
optimize capital growth optimize market growth

0.654868 0.519313

D.15 United States Treasury Bill Returns

For the analysis, the data was in the directory ../markets/us.tbill57.
The data in this section is presented in Section C.1.

D.15.1 United States Treasury Bill Returns, normalized increments

The data in table D.169 is condensed from Section C.1.1.

Table D.169: United States Treasury Bill Returns, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.005895 0.002409 0.006365 0.009310 -0.000041 0.005895 0.002409 0.006365 0.009310 -0.000041

D.15.2 United States Treasury Bill Returns, Logarithmic Returns, in Bits

The data in table D.170 is condensed from Section C.1.5.

D.15.3 United States Treasury Bill Returns, Shannon probabilities

The data in table D.171 is condensed from sections C.1.5 and C.1.10.
57Data from the United States Federal Reserve Board, 1980—1994, by months, in percent. The time series, which was Treasury Bill rate of

returns, in percent per year, was converted to cumulative growth per month by converting each element in the time series to a fraction, dividing by
12, and adding 1. The previous value of cumulative returns was multiplied by this number for the next value of cumulative returns.
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D.15. UNITED STATES TREASURY BILL RETURNS

Table D.170: United States Treasury Bill Returns, Logarithmic Returns, in Bits.
Calculated from Table D.169 From program:

Mean Least squares tslsq tslogreturns

0.008480 0.013369 0.008215 0.008425

Table D.171: United States Treasury Bill Returns, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.999990 0.963079 1.000000 0.553983

D.15.4 United States Treasury Bill Returns, Logistic Analysis

The data in table D.172 is condensed from Section C.1.358.

Table D.172: United States Treasury Bill Returns, Logistic Analysis, á � Azá �5� 1 « T fF� L á ��� 1 ¯ .� :
0.009310 -0.000041

D.15.5 United States Treasury Bill Returns, Hurst Coefficients and H Parameters

The data in table D.173 is condensed from Section C.1.4.

Table D.173: United States Treasury Bill Returns, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

1.086831 0.918814 0.988674 0.963522

D.15.6 United States Treasury Bill Returns, verification of the increments

The data in table D.175 is condensed from Section C.1.11.

D.15.7 United States Treasury Bill Returns, verification of the increments

The data in table D.176 is condensed from Section C.1.11.
58Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.15. UNITED STATES TREASURY BILL RETURNS

Table D.174: United States Treasury Bill Returns, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

1.074084 0.953633 0.977441 0.938902

Table D.175: United States Treasury Bill Returns, verification the of the increments, the mean, é is the standard
deviation from table D.169, 0.002409, and u is the maximum Shannon probability from table D.171, 0.999990. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.005895 0.006365 0.380891

Table D.176: United States Treasury Bill Returns, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate60.

Mean of the rms
absolute value

0.005895 0.006365

D.15.8 United States Treasury Bill Returns, D 2 values of the increments

The data in table D.177 is condensed from Section C.4.

Table D.177: United States Treasury Bill Returns, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

7.453000 42.557000

D.15.9 United States Treasury Bill Returns, time series data, empirical and simulated

The data in table D.178 is condensed from Section C.1.9.

D.15.10 United States Treasury Bill Returns, number of participating companies

The data in table D.179 is condensed from Section C.1.6.

D.15.11 United States Treasury Bill Returns, Shannon probability optimizations

The data in table D.180 is condensed from Section C.1.6.

Id: tables.tex,v 0.0 1995/11/20 04:38:13 john Exp 700



D.16. COIN TOSSING GAME

Table D.178: United States Treasury Bill Returns, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.005895 0.002409 0.006365 0.000000

Table D.179: United States Treasury Bill Returns, number of participating companies.
Number Shannon probability

145.508041 0.538389

Table D.180: United States Treasury Bill Returns, Shannon probability optimization.
optimize capital growth optimize market growth

0.963079 0.538389

D.16 Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin61.
The data in this section is presented in Section C.1.

D.16.1 Coin Tossing Game, normalized increments

The data in table D.181 is condensed from Section C.1.1.

Table D.181: Coin Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.020736 0.199256 0.200000 0.013699 0.000047 0.200000 0.000001 0.200000 0.200000 0.000000

D.16.2 Coin Tossing Game, Logarithmic Returns, in Bits

The data in table D.182 is condensed from Section C.1.5.

D.16.3 Coin Tossing Game, Shannon probabilities

The data in table D.183 is condensed from sections C.1.5 and C.1.10.
61As a simulation model, the program tscoin was run to make a time series data file. The data is by tosses.
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D.16. COIN TOSSING GAME

Table D.182: Coin Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.181 From program:

Mean Least squares tslsq tslogreturns

0.029610 0.019629 0.001451 0.000874

Table D.183: Coin Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.551839 0.551840 0.553333 0.517402

D.16.4 Coin Tossing Game, Logistic Analysis

The data in table D.184 is condensed from Section C.1.362.

Table D.184: Coin Tossing Game, Logistic Analysis, á � Azá �5� 1 « T fF� L á ��� 1 ¯ .� :
0.013699 0.000047

D.16.5 Coin Tossing Game, Hurst Coefficients and H Parameters

The data in table D.185 is condensed from Section C.1.4.

Table D.185: Coin Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.853212 0.506256 0.438467 0.420986

D.16.6 Coin Tossing Game, verification of the increments

The data in table D.187 is condensed from Section C.1.11.

D.16.7 Coin Tossing Game, verification of the increments

The data in table D.188 is condensed from Section C.1.11.
62Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.16. COIN TOSSING GAME

Table D.186: Coin Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.858532 0.571735 0.476668 0.479198

Table D.187: Coin Tossing Game, verification the of the increments, the mean, é is the standard deviation from
table D.181, 0.199256, and u is the maximum Shannon probability from table D.183, 0.551839. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.020736 0.020736 0.020771

Table D.188: Coin Tossing Game, verification the of increments. In principle, the mean of the absolute value of the
increments and the root mean square of the increments should equate64.

Mean of the rms
absolute value

0.200000 0.200000

D.16.8 Coin Tossing Game, D 2 values of the increments

The data in table D.189 is condensed from Section C.4.

Table D.189: Coin Tossing Game, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

117.483000 42.557000

D.16.9 Coin Tossing Game, time series data, empirical and simulated

The data in table D.190 is condensed from Section C.1.9.

D.16.10 Coin Tossing Game, number of participating companies

The data in table D.191 is condensed from Section C.1.6.

D.16.11 Coin Tossing Game, Shannon probability optimizations

The data in table D.192 is condensed from Section C.1.6.
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D.17. NON OPTIMAL COIN TOSSING GAME

Table D.190: Coin Tossing Game, time series data, empirical and simulated, analysis of the normalized increments.
Empirical Simulated

Mean Standard Mean Standard
deviation deviation

0.020736 0.199256 0.020134 0.199319

Table D.191: Coin Tossing Game, number of participating companies.
Number Shannon probability
0.518400 0.572000

Table D.192: Coin Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.551840 0.572000

D.17 Non Optimal Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tsunfairbrownian65.
The data in this section is presented in Section C.1.

D.17.1 Non Optimal Coin Tossing Game, normalized increments

The data in table D.193 is condensed from Section C.1.1.

Table D.193: Non Optimal Coin Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.011477 0.027765 0.030000 0.007028 0.000030 0.030000 0.000000 0.030000 0.030000 0.000000

D.17.2 Non Optimal Coin Tossing Game, Logarithmic Returns, in Bits

The data in table D.194 is condensed from Section C.1.5.

D.17.3 Non Optimal Coin Tossing Game, Shannon probabilities

The data in table D.195 is condensed from sections C.1.5 and C.1.10.
65As a simulation model, the program tscoin was run to make a time series data file. The data is by tossess.
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D.17. NON OPTIMAL COIN TOSSING GAME

Table D.194: Non Optimal Coin Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.193 From program:

Mean Least squares tslsq tslogreturns

0.016464 0.010104 0.014992 0.015859

Table D.195: Non Optimal Coin Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.691275 0.691283 0.692308 0.574001

D.17.4 Non Optimal Coin Tossing Game, Logistic Analysis

The data in table D.196 is condensed from Section C.1.366.

Table D.196: Non Optimal Coin Tossing Game, Logistic Analysis, á � ARá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.007028 0.000030

D.17.5 Non Optimal Coin Tossing Game, Hurst Coefficients and H Parameters

The data in table D.197 is condensed from Section C.1.4.

Table D.197: Non Optimal Coin Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.836828 0.737672 0.635389 0.792153

D.17.6 Non Optimal Coin Tossing Game, verification of the increments

The data in table D.199 is condensed from Section C.1.11.

D.17.7 Non Optimal Coin Tossing Game, verification of the increments

The data in table D.200 is condensed from Section C.1.11.
66Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.17. NON OPTIMAL COIN TOSSING GAME

Table D.198: Non Optimal Coin Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.821860 0.541955 0.439904 0.478377

Table D.199: Non Optimal Coin Tossing Game, verification the of the increments, the mean, é is the standard deviation
from table D.193, 0.027765, and u is the maximum Shannon probability from table D.195, 0.691275. In principle,
the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.011477 0.011477 0.011496

Table D.200: Non Optimal Coin Tossing Game, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate68.

Mean of the rms
absolute value

0.030000 0.030000

D.17.8 Non Optimal Coin Tossing Game, D 2 values of the increments

The data in table D.201 is condensed from Section C.4.

Table D.201: Non Optimal Coin Tossing Game, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

130.435000 42.557000

D.17.9 Non Optimal Coin Tossing Game, time series data, empirical and simulated

The data in table D.202 is condensed from Section C.1.9.

D.17.10 Non Optimal Coin Tossing Game, number of participating companies

The data in table D.203 is condensed from Section C.1.6.

D.17.11 Non Optimal Coin Tossing Game, Shannon probability optimizations

The data in table D.204 is condensed from Section C.1.6.
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Table D.202: Non Optimal Coin Tossing Game, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.011477 0.027765 0.011414 0.027791

Table D.203: Non Optimal Coin Tossing Game, number of participating companies.
Number Shannon probability

12.752222 0.553565

Table D.204: Non Optimal Coin Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.691283 0.553565

D.18 Time Sampled Non Optimal Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tsunfairbrownian.tssample69.
The data in this section is presented in Section C.1.

D.18.1 Time Sampled Non Optimal Coin Tossing Game, normalized increments

The data in table D.205 is condensed from Section C.1.1.

Table D.205: Time Sampled Non Optimal Coin Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.179112 0.221159 0.284303 0.152372 0.000180 0.233375 0.162645 0.284303 0.214675 0.000126

D.18.2 Time Sampled Non Optimal Coin Tossing Game, Logarithmic Returns, in Bits

The data in table D.206 is condensed from Section C.1.5.

D.18.3 Time Sampled Non Optimal Coin Tossing Game, Shannon probabilities

The data in table D.207 is condensed from sections C.1.5 and C.1.10.
69As a simulation model, the program tscoin was run to make a time series data file. The data is by tosses.
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D.18. TIME SAMPLED NON OPTIMAL COIN TOSSING GAME

Table D.206: Time Sampled Non Optimal Coin Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.205 From program:

Mean Least squares tslsq tslogreturns

0.237701 0.204607 0.210487 0.210768

Table D.207: Time Sampled Non Optimal Coin Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.805369 0.815002 0.806020 0.763464

D.18.4 Time Sampled Non Optimal Coin Tossing Game, Logistic Analysis

The data in table D.208 is condensed from Section C.1.370.

Table D.208: Time Sampled Non Optimal Coin Tossing Game, Logistic Analysis, á � ARá ��� 1 « T fF� L á ��� 1 ¯ .� :
0.152372 0.000180

D.18.5 Time Sampled Non Optimal Coin Tossing Game, Hurst Coefficients and H Parame-
ters

The data in table D.209 is condensed from Section C.1.4.

Table D.209: Time Sampled Non Optimal Coin Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.869484 0.734095 1.147782 1.057144

D.18.6 Time Sampled Non Optimal Coin Tossing Game, verification of the increments

The data in table D.211 is condensed from Section C.1.11.
70Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.18. TIME SAMPLED NON OPTIMAL COIN TOSSING GAME

Table D.210: Time Sampled Non Optimal Coin Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.857884 0.519188 0.506773 0.511544

Table D.211: Time Sampled Non Optimal Coin Tossing Game, verification the of the increments, the mean, é is
the standard deviation from table D.205, 0.221159, and u is the maximum Shannon probability from table D.207,
0.805369. In principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.179112 0.173635 0.170579

D.18.7 Time Sampled Non Optimal Coin Tossing Game, verification of the increments

The data in table D.212 is condensed from Section C.1.11.

Table D.212: Time Sampled Non Optimal Coin Tossing Game, verification the of increments. In principle, the mean
of the absolute value of the increments and the root mean square of the increments should equate72.

Mean of the rms
absolute value

0.233375 0.284303

D.18.8 Time Sampled Non Optimal Coin Tossing Game, D 2 values of the increments

The data in table D.213 is condensed from Section C.4.

Table D.213: Time Sampled Non Optimal Coin Tossing Game, ê 2 values of the increments. In principle, if the
distribution of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the
critical value. E 2 Critical Value

51.060000 42.557000

D.18.9 Time Sampled Non Optimal Coin Tossing Game, time series data, empirical and
simulated

The data in table D.214 is condensed from Section C.1.9.
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Table D.214: Time Sampled Non Optimal Coin Tossing Game, time series data, empirical and simulated, analysis of
the normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.179112 0.221159 0.173262 0.225788

D.18.10 Time Sampled Non Optimal Coin Tossing Game, number of participating compa-
nies

The data in table D.215 is condensed from Section C.1.6.

Table D.215: Time Sampled Non Optimal Coin Tossing Game, number of participating companies.
Number Shannon probability
2.215959 0.711608

D.18.11 Time Sampled Non Optimal Coin Tossing Game, Shannon probability optimiza-
tions

The data in table D.216 is condensed from Section C.1.6.

Table D.216: Time Sampled Non Optimal Coin Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.815002 0.711608

D.19 Time Sampled Coin Tossing Game

For the analysis, the data was in the directory ../markets/tscoin.tssample73.
The data in this section is presented in Section C.1.

D.19.1 Time Sampled Coin Tossing Game, normalized increments

The data in table D.217 is condensed from Section C.1.1.

D.19.2 Time Sampled Coin Tossing Game, Logarithmic Returns, in Bits

The data in table D.218 is condensed from Section C.1.5.
73As a simulation model, the program tscoin was run to make a time series data file. The data is by tosses.
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D.19. TIME SAMPLED COIN TOSSING GAME

Table D.217: Time Sampled Coin Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.027085 0.205494 0.206930 -0.019736 0.000314 0.171592 0.115850 0.206930 0.158506 0.000088

Table D.218: Time Sampled Coin Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.217 From program:

Mean Least squares tslsq tslogreturns

0.038556 -0.028758 0.011235 0.009520

D.19.3 Time Sampled Coin Tossing Game, Shannon probabilities

The data in table D.219 is condensed from sections C.1.5 and C.1.10.

Table D.219: Time Sampled Coin Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.548495 0.565445 0.550000 0.557377

D.19.4 Time Sampled Coin Tossing Game, Logistic Analysis

The data in table D.220 is condensed from Section C.1.374.

Table D.220: Time Sampled Coin Tossing Game, Logistic Analysis, á � Azá ��� 1 « T fF� L á �5� 1 ¯ .� :
-0.019736 0.000314

D.19.5 Time Sampled Coin Tossing Game, Hurst Coefficients and H Parameters

The data in table D.221 is condensed from Section C.1.4.
74Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.1.3.
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D.19. TIME SAMPLED COIN TOSSING GAME

Table D.221: Time Sampled Coin Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.835189 0.604532 0.593239 0.537758

Table D.222: Time Sampled Coin Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.829636 0.611530 0.507390 0.493320

D.19.6 Time Sampled Coin Tossing Game, verification of the increments

The data in table D.223 is condensed from Section C.1.11.

Table D.223: Time Sampled Coin Tossing Game, verification the of the increments, the mean, é is the standard
deviation from table D.217, 0.205494, and u is the maximum Shannon probability from table D.219, 0.548495. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.027085 0.020070 0.020025

D.19.7 Time Sampled Coin Tossing Game, verification of the increments

The data in table D.224 is condensed from Section C.1.11.

Table D.224: Time Sampled Coin Tossing Game, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate76.

Mean of the rms
absolute value

0.171592 0.206930

D.19.8 Time Sampled Coin Tossing Game, D 2 values of the increments

The data in table D.225 is condensed from Section C.4.

D.19.9 Time Sampled Coin Tossing Game, time series data, empirical and simulated

The data in table D.226 is condensed from Section C.1.9.
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D.20. SIMULATED SHANNON PROBABILITY OF 0.6

Table D.225: Time Sampled Coin Tossing Game, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

46.304000 42.557000

Table D.226: Time Sampled Coin Tossing Game, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.027085 0.205494 0.020832 0.206224

D.19.10 Time Sampled Coin Tossing Game, number of participating companies

The data in table D.227 is condensed from Section C.1.6.

Table D.227: Time Sampled Coin Tossing Game, number of participating companies.
Number Shannon probability
0.632531 0.582288

D.19.11 Time Sampled Coin Tossing Game, Shannon probability optimizations

The data in table D.228 is condensed from Section C.1.6.

Table D.228: Time Sampled Coin Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.565445 0.582288

D.20 Simulated Shannon Probability of 0.6

For the analysis, the data was in the directory ../markets/tsunfairbrownian.exponential77.
The data in this section is presented in Section C.1.

D.20.1 Simulated Shannon Probability of 0.6, normalized increments

The data in table D.229 is condensed from Section C.1.1.
77As a simulation model, the program tsunfairbrownian was run to make a time series data file. The data is by time unitss.
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D.20. SIMULATED SHANNON PROBABILITY OF 0.6

Table D.229: Simulated Shannon Probability of 0.6, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.039968 0.195985 0.200000 0.039872 0.000000 0.200000 0.000000 0.200000 0.200000 0.000000

D.20.2 Simulated Shannon Probability of 0.6, Logarithmic Returns, in Bits

The data in table D.230 is condensed from Section C.1.5.

Table D.230: Simulated Shannon Probability of 0.6, Logarithmic Returns, in Bits.
Calculated from Table D.229 From program:

Mean Least squares tslsq tslogreturns

0.056539 0.056406 0.029049 0.028997

D.20.3 Simulated Shannon Probability of 0.6, Shannon probabilities

The data in table D.231 is condensed from sections C.1.5 and C.1.10.

Table D.231: Simulated Shannon Probability of 0.6, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.599920 0.599920 0.600000 0.599910

D.20.4 Simulated Shannon Probability of 0.6, Logistic Analysis

The data in table D.232 is condensed from Section C.1.378.

Table D.232: Simulated Shannon Probability of 0.6, Logistic Analysis, á � ARá �5� 1 « T fF� L á �5� 1 ¯ .� :
0.039872 0.000000

78Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than
zero, it was set to zero to produce the graphs in Section C.1.3.
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D.20. SIMULATED SHANNON PROBABILITY OF 0.6

D.20.5 Simulated Shannon Probability of 0.6, Hurst Coefficients and H Parameters

The data in table D.233 is condensed from Section C.1.4.

Table D.233: Simulated Shannon Probability of 0.6, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.539904 0.668253 -0.130047 0.142002

Table D.234: Simulated Shannon Probability of 0.6, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.526347 0.029183 -0.196343 -2.732599

D.20.6 Simulated Shannon Probability of 0.6, verification of the increments

The data in table D.235 is condensed from Section C.1.11.

Table D.235: Simulated Shannon Probability of 0.6, verification the of the increments, the mean, é is the standard
deviation from table D.229, 0.195985, and u is the maximum Shannon probability from table D.231, 0.599920. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.039968 0.039968 0.039972

D.20.7 Simulated Shannon Probability of 0.6, verification of the increments

The data in table D.236 is condensed from Section C.1.11.

Table D.236: Simulated Shannon Probability of 0.6, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate80.

Mean of the rms
absolute value

0.200000 0.200000

D.20.8 Simulated Shannon Probability of 0.6, D 2 values of the increments

The data in table D.237 is condensed from Section C.4.
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D.21. COINS TOSSING GAME

Table D.237: Simulated Shannon Probability of 0.6, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

131.562000 42.557000

D.20.9 Simulated Shannon Probability of 0.6, time series data, empirical and simulated

The data in table D.238 is condensed from Section C.1.9.

Table D.238: Simulated Shannon Probability of 0.6, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.039968 0.195985 0.040016 0.195976

D.20.10 Simulated Shannon Probability of 0.6, number of participating companies

The data in table D.239 is condensed from Section C.1.6.

Table D.239: Simulated Shannon Probability of 0.6, number of participating companies.
Number Shannon probability
0.999200 0.599960

D.20.11 Simulated Shannon Probability of 0.6, Shannon probability optimizations

The data in table D.240 is condensed from Section C.1.6.

Table D.240: Simulated Shannon Probability of 0.6, Shannon probability optimization.
optimize capital growth optimize market growth

0.599920 0.599960

D.21 Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins81.

81As a simulation model, the program tscoins was run to make a time series data file. The data is by tosses.
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D.21. COINS TOSSING GAME

The data in this section is presented in Section C.21.

D.21.1 Coins Tossing Game, normalized increments

The data in table D.241 is condensed from Section C.21.1.

Table D.241: Coins Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.062916 0.196353 0.205874 0.073339 -0.000070 0.169184 0.117504 0.205874 0.167643 0.000010

D.21.2 Coins Tossing Game, Logarithmic Returns, in Bits

The data in table D.242 is condensed from Section C.21.5.

Table D.242: Coins Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.241 From program:

Mean Least squares tslsq tslogreturns

0.088028 0.102106 0.063132 0.061793

D.21.3 Coins Tossing Game, Shannon probabilities

The data in table D.243 is condensed from sections C.21.5 and C.21.9.

Table D.243: Coins Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.645485 0.652802 0.646667 0.645287

D.21.4 Coins Tossing Game, Logistic Analysis

The data in table D.244 is condensed from Section C.21.382.

D.21.5 Coins Tossing Game, Hurst Coefficients and H Parameters

The data in table D.245 is condensed from Section C.21.4.
82Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.21.3.
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D.21. COINS TOSSING GAME

Table D.244: Coins Tossing Game, Logistic Analysis, á � A|á ��� 1 « T fG� L á ��� 1 ¯ .� :
0.073339 -0.000070

Table D.245: Coins Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.856676 0.642211 0.478897 0.461551

Table D.246: Coins Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.850254 0.452008 0.475303 0.494985

D.21.6 Coins Tossing Game, verification of the increments

The data in table D.247 is condensed from Section C.21.10.

Table D.247: Coins Tossing Game, verification the of the increments, the mean, é is the standard deviation from
table D.241, 0.196353, and u is the maximum Shannon probability from table D.243, 0.645485. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.062916 0.059903 0.059717

D.21.7 Coins Tossing Game, verification of the increments

The data in table D.248 is condensed from Section C.21.10.

Table D.248: Coins Tossing Game, verification the of increments. In principle, the mean of the absolute value of the
increments and the root mean square of the increments should equate84.

Mean of the rms
absolute value

0.169184 0.205874
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D.21.8 Coins Tossing Game, D 2 values of the increments

The data in table D.249 is condensed from Section C.464.

Table D.249: Coins Tossing Game, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

1.028000 42.557000

D.21.9 Coins Tossing Game, time series data, empirical and simulated

The data in table D.250 is condensed from Section C.21.8.

Table D.250: Coins Tossing Game, time series data, empirical and simulated, analysis of the normalized increments.
Empirical Simulated

Mean Standard Mean Standard
deviation deviation

0.062916 0.196353 0.060795 0.197024

D.21.10 Coins Tossing Game, number of participating companies

The data in table D.251 is condensed from Section C.21.6.

Table D.251: Coins Tossing Game, number of participating companies.
Number Shannon probability
1.484424 0.625415

D.21.11 Coins Tossing Game, Shannon probability optimizations

The data in table D.252 is condensed from Section C.21.6.

Table D.252: Coins Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.652802 0.625415
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D.22 Non Optimal Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins-f85.
The data in this section is presented in Section C.22.

D.22.1 Non Optimal Coins Tossing Game, normalized increments

The data in table D.253 is condensed from Section C.22.1.

Table D.253: Non Optimal Coins Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.009437 0.029453 0.030881 0.011001 -0.000010 0.025378 0.017626 0.030881 0.025146 0.000002

D.22.2 Non Optimal Coins Tossing Game, Logarithmic Returns, in Bits

The data in table D.254 is condensed from Section C.22.5.

Table D.254: Non Optimal Coins Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.253 From program:

Mean Least squares tslsq tslogreturns

0.013551 0.015784 0.013218 0.012895

D.22.3 Non Optimal Coins Tossing Game, Shannon probabilities

The data in table D.255 is condensed from sections C.22.5 and C.22.9.

Table D.255: Non Optimal Coins Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.645485 0.652796 0.646667 0.566751

D.22.4 Non Optimal Coins Tossing Game, Logistic Analysis

The data in table D.256 is condensed from Section C.22.386.
85As a simulation model, the program tscoins was run to make a time series data file. The data is by tosses.
86Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.22.3.
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Table D.256: Non Optimal Coins Tossing Game, Logistic Analysis, á � Azá ��� 1 « T fF� L á �5� 1 ¯ .� :
0.011001 -0.000010

D.22.5 Non Optimal Coins Tossing Game, Hurst Coefficients and H Parameters

The data in table D.257 is condensed from Section C.22.4.

Table D.257: Non Optimal Coins Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.849887 0.680509 0.566032 0.580613

Table D.258: Non Optimal Coins Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.850253 0.452008 0.475303 0.494985

D.22.6 Non Optimal Coins Tossing Game, verification of the increments

The data in table D.259 is condensed from Section C.22.10.

Table D.259: Non Optimal Coins Tossing Game, verification the of the increments, the mean, é is the standard
deviation from table D.253, 0.029453, and u is the maximum Shannon probability from table D.255, 0.645485. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.009437 0.008985 0.008958

D.22.7 Non Optimal Coins Tossing Game, verification of the increments

The data in table D.260 is condensed from Section C.22.10.

D.22.8 Non Optimal Coins Tossing Game, D 2 values of the increments

The data in table D.261 is condensed from Section C.487.
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Table D.260: Non Optimal Coins Tossing Game, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate88.

Mean of the rms
absolute value

0.025378 0.030881

Table D.261: Non Optimal Coins Tossing Game, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

1.028000 42.557000

D.22.9 Non Optimal Coins Tossing Game, time series data, empirical and simulated

The data in table D.262 is condensed from Section C.22.8.

Table D.262: Non Optimal Coins Tossing Game, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.009437 0.029453 0.009119 0.029553

D.22.10 Non Optimal Coins Tossing Game, number of participating companies

The data in table D.263 is condensed from Section C.22.6.

Table D.263: Non Optimal Coins Tossing Game, number of participating companies.
Number Shannon probability
9.895808 0.548572

D.22.11 Non Optimal Coins Tossing Game, Shannon probability optimizations

The data in table D.264 is condensed from Section C.22.6.
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Table D.264: Non Optimal Coins Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.652796 0.548572

D.23 Non Optimal Logistic Coins Tossing Game

For the analysis, the data was in the directory ../markets/tscoins-b89.
The data in this section is presented in Section C.23.

D.23.1 Non Optimal Logistic Coins Tossing Game, normalized increments

The data in table D.265 is condensed from Section C.23.1.

Table D.265: Non Optimal Logistic Coins Tossing Game, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.032010 0.195609 0.198114 0.061302 -0.000059 0.159477 0.117600 0.198114 0.167886 -0.000017

D.23.2 Non Optimal Logistic Coins Tossing Game, Logarithmic Returns, in Bits

The data in table D.266 is condensed from Section C.23.5.

Table D.266: Non Optimal Logistic Coins Tossing Game, Logarithmic Returns, in Bits.
Calculated from Table D.265 From program:

Mean Least squares tslsq tslogreturns

0.045457 0.085835 0.012612 0.018217

D.23.3 Non Optimal Logistic Coins Tossing Game, Shannon probabilities

The data in table D.267 is condensed from sections C.23.5 and C.23.9.

D.23.4 Non Optimal Logistic Coins Tossing Game, Logistic Analysis

The data in table D.268 is condensed from Section C.23.390.
89As a simulation model, the program tscoins was run to make a time series data file. The data is by tosses.
90Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.23.3.
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Table D.267: Non Optimal Logistic Coins Tossing Game, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.567568 0.580787 0.568000 0.579290

Table D.268: Non Optimal Logistic Coins Tossing Game, Logistic Analysis, á � A|á ��� 1 « T fG� L á ��� 1 ¯ .� :
0.061302 -0.000059

D.23.5 Non Optimal Logistic Coins Tossing Game, Hurst Coefficients and H Parameters

The data in table D.269 is condensed from Section C.23.4.

Table D.269: Non Optimal Logistic Coins Tossing Game, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.842100 0.475809 0.476419 0.456782

Table D.270: Non Optimal Logistic Coins Tossing Game, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.842820 0.704858 0.480558 0.484204

D.23.6 Non Optimal Logistic Coins Tossing Game, verification of the increments

The data in table D.271 is condensed from Section C.23.10.

Table D.271: Non Optimal Logistic Coins Tossing Game, verification the of the increments, the mean, é is the standard
deviation from table D.265, 0.195609, and u is the maximum Shannon probability from table D.267, 0.567568. In
principle, the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.032010 0.026772 0.026678
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D.23.7 Non Optimal Logistic Coins Tossing Game, verification of the increments

The data in table D.272 is condensed from Section C.23.10.

Table D.272: Non Optimal Logistic Coins Tossing Game, verification the of increments. In principle, the mean of the
absolute value of the increments and the root mean square of the increments should equate92.

Mean of the rms
absolute value

0.159477 0.198114

D.23.8 Non Optimal Logistic Coins Tossing Game, D 2 values of the increments

The data in table D.273 is condensed from Section C.510.

Table D.273: Non Optimal Logistic Coins Tossing Game, ê 2 values of the increments. In principle, if the distribution
of the normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

0.367000 42.557000

D.23.9 Non Optimal Logistic Coins Tossing Game, time series data, empirical and simulated

The data in table D.274 is condensed from Section C.23.8.

Table D.274: Non Optimal Logistic Coins Tossing Game, time series data, empirical and simulated, analysis of the
normalized increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.032010 0.195609 0.026997 0.196364

D.23.10 Non Optimal Logistic Coins Tossing Game, number of participating companies

The data in table D.275 is condensed from Section C.23.6.

D.23.11 Non Optimal Logistic Coins Tossing Game, Shannon probability optimizations

The data in table D.276 is condensed from Section C.23.6.
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Table D.275: Non Optimal Logistic Coins Tossing Game, number of participating companies.
Number Shannon probability
0.815559 0.589457

Table D.276: Non Optimal Logistic Coins Tossing Game, Shannon probability optimization.
optimize capital growth optimize market growth

0.580787 0.589457

D.24 Simulated Industrial Market

For the analysis, the data was in the directory ../markets/tsmarket93.
The data in this section is presented in Section C.24.

D.24.1 Simulated Industrial Market, normalized increments

The data in table D.277 is condensed from Section C.24.1.

Table D.277: Simulated Industrial Market, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.013109 0.029243 0.032003 0.013460 -0.000002 0.025065 0.019930 0.032003 0.023976 0.000007

D.24.2 Simulated Industrial Market, Logarithmic Returns, in Bits

The data in table D.278 is condensed from Section C.24.5.

Table D.278: Simulated Industrial Market, Logarithmic Returns, in Bits.
Calculated from Table D.277 From program:

Mean Least squares tslsq tslogreturns

0.018789 0.019289 0.017469 0.018128

D.24.3 Simulated Industrial Market, Shannon probabilities

The data in table D.279 is condensed from sections C.24.5 and C.24.9.
93As a simulation model, the program tsmarket was run to make a time series data file. The data is by months.
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Table D.279: Simulated Industrial Market, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.675585 0.704809 0.676667 0.579097

D.24.4 Simulated Industrial Market, Logistic Analysis

The data in table D.280 is condensed from Section C.24.394.

Table D.280: Simulated Industrial Market, Logistic Analysis, á � Azá ��� 1 « T f9� L á ��� 1 ¯ .� :
0.013460 -0.000002

D.24.5 Simulated Industrial Market, Hurst Coefficients and H Parameters

The data in table D.281 is condensed from Section C.24.4.

Table D.281: Simulated Industrial Market, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.848216 0.786671 0.554674 0.563657

Table D.282: Simulated Industrial Market, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.847743 0.574061 0.497584 0.495947

D.24.6 Simulated Industrial Market, verification of the increments

The data in table D.283 is condensed from Section C.24.10.

D.24.7 Simulated Industrial Market, verification of the increments

The data in table D.284 is condensed from Section C.24.10.
94Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.24.3.
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Table D.283: Simulated Industrial Market, verification the of the increments, the mean, é is the standard deviation
from table D.277, 0.029243, and u is the maximum Shannon probability from table D.279, 0.675585. In principle,
the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.013109 0.011239 0.010968

Table D.284: Simulated Industrial Market, verification the of increments. In principle, the mean of the absolute value
of the increments and the root mean square of the increments should equate96.

Mean of the rms
absolute value

0.025065 0.032003

D.24.8 Simulated Industrial Market, D 2 values of the increments

The data in table D.285 is condensed from Section C.533.

Table D.285: Simulated Industrial Market, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

1.229000 42.557000

D.24.9 Simulated Industrial Market, time series data, empirical and simulated

The data in table D.286 is condensed from Section C.24.8.

Table D.286: Simulated Industrial Market, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.013109 0.029243 0.011169 0.030041

D.24.10 Simulated Industrial Market, number of participating companies

The data in table D.287 is condensed from Section C.24.6.
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Table D.287: Simulated Industrial Market, number of participating companies.
Number Shannon probability

12.799358 0.557247

D.24.11 Simulated Industrial Market, Shannon probability optimizations

The data in table D.288 is condensed from Section C.24.6.

Table D.288: Simulated Industrial Market, Shannon probability optimization.
optimize capital growth optimize market growth

0.704809 0.557247

D.25 Discreet Logistic Function

For the analysis, the data was in the directory ../markets/tsdlogistic97.
The data in this section is presented in Section C.25.

D.25.1 Discreet Logistic Function, normalized increments

The data in table D.289 is condensed from Section C.25.1.

Table D.289: Discreet Logistic Function, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.962687 1.398261 1.695689 1.244560 -0.001892 1.384386 0.980842 1.695689 1.643432 -0.001739

D.25.2 Discreet Logistic Function, Logarithmic Returns, in Bits

The data in table D.290 is condensed from Section C.25.5.

D.25.3 Discreet Logistic Function, Shannon probabilities

The data in table D.291 is condensed from sections C.25.5 and C.25.9.
97As a simulation model, the program tsdlogistic was run to make a time series data file. The data is by months.
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Table D.290: Discreet Logistic Function, Logarithmic Returns, in Bits.
Calculated from Table D.289 From program:

Mean Least squares tslsq tslogreturns

0.972830 1.166433 0.008341 0.072212

Table D.291: Discreet Logistic Function, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.665552 0.783863 0.666667 0.656864

D.25.4 Discreet Logistic Function, Logistic Analysis

The data in table D.292 is condensed from Section C.25.398.

Table D.292: Discreet Logistic Function, Logistic Analysis, á � A|á ��� 1 « T fF� L á ��� 1 ¯ .� :
1.244560 -0.001892

D.25.5 Discreet Logistic Function, Hurst Coefficients and H Parameters

The data in table D.293 is condensed from Section C.25.4.

Table D.293: Discreet Logistic Function, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.614199 0.122234 -0.001844 0.004883

D.25.6 Discreet Logistic Function, verification of the increments

The data in table D.295 is condensed from Section C.25.10.

D.25.7 Discreet Logistic Function, verification of the increments

The data in table D.296 is condensed from Section C.25.10.
98Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.25.3.
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Table D.294: Discreet Logistic Function, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.848748 0.608754 0.520327 0.481698

Table D.295: Discreet Logistic Function, verification the of the increments, the mean, é is the standard deviation from
table D.289, 1.398261, and u is the maximum Shannon probability from table D.291, 0.665552. In principle, the
values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.962687 0.561449 0.490644

Table D.296: Discreet Logistic Function, verification the of increments. In principle, the mean of the absolute value
of the increments and the root mean square of the increments should equate100.

Mean of the rms
absolute value

1.384386 1.695689

D.25.8 Discreet Logistic Function, D 2 values of the increments

The data in table D.297 is condensed from Section C.556.

Table D.297: Discreet Logistic Function, ê 2 values of the increments. In principle, if the distribution of the normalized
increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

11.091000 42.557000

D.25.9 Discreet Logistic Function, time series data, empirical and simulated

The data in table D.298 is condensed from Section C.25.8.

D.25.10 Discreet Logistic Function, number of participating companies

The data in table D.299 is condensed from Section C.25.6.

D.25.11 Discreet Logistic Function, Shannon probability optimizations

The data in table D.300 is condensed from Section C.25.6.
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Table D.298: Discreet Logistic Function, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.962687 1.398261 0.556782 1.603622

Table D.299: Discreet Logistic Function, number of participating companies.
Number Shannon probability
0.334806 0.990583

Table D.300: Discreet Logistic Function, Shannon probability optimization.
optimize capital growth optimize market growth

0.783863 0.990583

D.26 Simulated Equity Market Index

For the analysis, the data was in the directory ../markets/tsgaussian.tsmath.tsmath.tsunfraction101.
The data in this section is presented in Section C.26.

D.26.1 Simulated Equity Market Index, normalized increments

The data in table D.301 is condensed from Section C.26.1.

Table D.301: Simulated Equity Market Index, normalized increments.
Normalized Normalized Absolute Value

Mean Standard rms Least Squares Mean Standard rms Least Squares
deviation Constant Slope deviation Constant Slope

0.000312 0.009885 0.009889 0.000354 0.000000 0.007914 0.005930 0.009889 0.007715 0.000000

D.26.2 Simulated Equity Market Index, Logarithmic Returns, in Bits

The data in table D.302 is condensed from Section C.26.5.

D.26.3 Simulated Equity Market Index, Shannon probabilities

The data in table D.303 is condensed from sections C.26.5 and C.26.9.
101As a simulation model, the programs tsgaussian, tsmath, and tsunfraction were run to make a time series data file. The data is by months.
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Table D.302: Simulated Equity Market Index, Logarithmic Returns, in Bits.
Calculated from Table D.301 From program:

Mean Least squares tslsq tslogreturns

0.000450 0.000511 0.000330 0.000380

Table D.303: Simulated Equity Market Index, Shannon probabilities.
Maximum Operational

Fraction of
mean
rms 8 1

2 From program:
positive increments tsshannonmax tsshannon

0.516200 0.515775 0.516297 0.511475

D.26.4 Simulated Equity Market Index, Logistic Analysis

The data in table D.304 is condensed from Section C.26.3102.

Table D.304: Simulated Equity Market Index, Logistic Analysis, á � Azá �5� 1 « T f9� L á �5� 1 ¯ .� :
0.000354 0.000000

D.26.5 Simulated Equity Market Index, Hurst Coefficients and H Parameters

The data in table D.305 is condensed from Section C.26.4.

Table D.305: Simulated Equity Market Index, Hurst Coefficients and H Parameters.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.841512 0.426071 0.504966 0.507959

D.26.6 Simulated Equity Market Index, verification of the increments

The data in table D.307 is condensed from Section C.26.10.

D.26.7 Simulated Equity Market Index, verification of the increments

The data in table D.308 is condensed from Section C.26.10.
102Note that there are numerical stability issues with the methodology used to derive the constants—if the non-linear term, ð , was greater than

zero, it was set to zero to produce the graphs in Section C.26.3.
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Table D.306: Simulated Equity Market Index, Hurst Coefficients and H Parameters, as a Derivative.
Hurst Coefficients H Parameters

Near term Far term Near term Far term

0.841611 0.440756 0.499701 0.501820

Table D.307: Simulated Equity Market Index, verification the of the increments, the mean, é is the standard deviation
from table D.301, 0.009885, and u is the maximum Shannon probability from table D.303, 0.516200. In principle,
the values should equate.

Mean rms ; 2 �=<
1 > ? @ 2 A ª 1 B

2 C A @ A ª 1 B
0.000312 0.000320 0.000320

Table D.308: Simulated Equity Market Index, verification the of increments. In principle, the mean of the absolute
value of the increments and the root mean square of the increments should equate104.

Mean of the rms
absolute value

0.007914 0.009889

D.26.8 Simulated Equity Market Index, D 2 values of the increments

The data in table D.309 is condensed from Section C.579.

Table D.309: Simulated Equity Market Index, ê 2 values of the increments. In principle, if the distribution of the
normalized increments is a Gaussian distribution, the ê 2 value will be significantly less than the critical value.E 2 Critical Value

0.213000 42.557000

D.26.9 Simulated Equity Market Index, time series data, empirical and simulated

The data in table D.310 is condensed from Section C.26.8.

D.26.10 Simulated Equity Market Index, number of participating companies

The data in table D.311 is condensed from Section C.26.6.

D.26.11 Simulated Equity Market Index, Shannon probability optimizations

The data in table D.312 is condensed from Section C.26.6.
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Table D.310: Simulated Equity Market Index, time series data, empirical and simulated, analysis of the normalized
increments.

Empirical Simulated
Mean Standard Mean Standard

deviation deviation

0.000312 0.009885 0.000322 0.009885

Table D.311: Simulated Equity Market Index, number of participating companies.
Number Shannon probability
3.190435 0.508832

Table D.312: Simulated Equity Market Index, Shannon probability optimization.
optimize capital growth optimize market growth

0.515775 0.508832
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A
absolute value

increments, 143, 166, 189, 213, 233, 254, 275,
295, 316, 335, 353, 372, 391, 410, 428, 447,
466, 485, 504, 523, 542, 560, 579, 598, 617,
636

algorithm
simplex, 30

analysis
cumulative sum, 143, 146, 166, 169, 189, 192,

213, 216, 233, 238, 254, 257, 275, 278, 295,
299, 316, 319, 335, 338, 353, 357, 372, 375,
391, 394, 410, 413, 428, 432, 447, 451, 466,
469, 484, 487, 503, 507, 523, 526, 542, 545,
560, 564, 579, 583, 598, 602, 617, 620, 636,
639

markets, 142, 153, 154, 155, 158, 160, 176, 177,
178, 181, 183, 198, 200, 201, 204, 206, 223,
224, 225, 243, 245, 246, 264, 266, 284, 286,
287, 305, 307, 308, 326, 327, 328, 344, 346,
363, 365, 381, 383, 384, 401, 402, 403, 419,
421, 422, 438, 440, 457, 458, 459, 475, 477,
494, 496, 513, 515, 533, 534, 535, 551, 553,
554, 570, 572, 589, 591, 608, 610, 627, 628,
629, 645, 647, 648

number of companies, 156, 179, 202, 226, 247,
267, 288, 309, 329, 347, 366, 385, 404, 422,
441, 460, 478, 497, 516, 536, 554, 573, 592,
611, 630, 648

random process, 143, 146, 166, 169, 189, 192,
213, 216, 233, 238, 254, 257, 275, 278, 295,
299, 316, 319, 335, 338, 353, 357, 372, 375,
391, 394, 410, 413, 428, 432, 447, 451, 466,
469, 484, 487, 503, 507, 523, 526, 542, 545,
560, 564, 579, 583, 598, 602, 617, 620, 636,
639

speculative games, 53
verification, 164, 187, 211, 232, 253, 273, 294,

315, 332, 351, 370, 389, 408, 425, 445, 463,
481, 500, 520, 540, 557, 577, 596, 615, 633,

651
average of normalized increments, 81, 146, 169, 191,

216, 237, 257, 278, 298, 319, 336, 356, 375,
394, 413, 430, 450, 466, 486, 504, 526, 545,
562, 582, 601, 620, 638

instantaneous computation of, 81, 146, 169, 191,
216, 237, 257, 278, 298, 319, 336, 356, 375,
394, 413, 430, 450, 466, 486, 504, 526, 545,
562, 582, 601, 620, 638

time series, 63, 65

B
betting strategies

optimization, 51, 52, 53, 54
strategy, 5

binary symmetric channel, 52
binomial distribution

simulation, 105
time series, 105

binomial distribution time series
generation, 105

black noise
generation, 96
simulation, 96
time series, 96

Brown noise, 7
brown noise

generation, 96
simulation, 96
time series, 96

Brownian motion, 5, 6, 7, 9, 19, 29, 152, 175, 198, 222,
243, 263, 284, 305, 325, 344, 362, 381, 400,
419, 438, 456, 475, 494, 513, 532, 551, 570,
589, 608, 626, 645

fixed increments, 7, 17, 27, 43
fractional, 43, 149, 162, 172, 184, 194, 209, 219,

229, 241, 251, 261, 270, 281, 292, 303, 313,
323, 331, 340, 351, 360, 369, 378, 388, 397,
407, 416, 425, 434, 445, 454, 462, 471, 481,
489, 500, 509, 520, 529, 539, 548, 557, 566,
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577, 587, 596, 606, 615, 623, 632, 641, 651
motion, fractional, 143, 166, 189, 213, 233, 254,

275, 295, 316, 335, 353, 372, 391, 410, 428,
447, 466, 484, 503, 523, 542, 560, 579, 598,
617, 636

C
capital markets, 53

venture, 48
Cauchy

time series, 140
Cauchy time series

generation, 140
simulation, 140

Central Limit Theorem, 7
Cirrus Logic Stock, 334, 682

analysis of increments, 335
chi-squared values of increments, 335
deterministic mechanism, 335
fiscal strategy, 344, 346, 348
fiscal strategy, simulation, 350, 351
growth rate, 346
H parameter analysis, 338, 344
Hurst coefficient analysis, 338, 339, 340, 342,

343, 344
increasing returns, 348
instantaneous analysis of normalized increments,

336
logarithmic returns, 344
Logistic function analysis, 338
management metric, 346
market simulation, 349
maximum Shannon probability, 351
number of companies, 347
optimum number of products, 346
product diversity, 346
product mix, 346
product portfolio, 346
rate of change, 338, 340, 342, 343, 344
rate of revenue returns, consistency, 340
rate of revenue returns, forecastability, 340
rate of revenue returns, increase and decrease,343,

344
rate of revenue returns, predictability, 340
rate of revenue returns, range, 335, 342, 343, 344
revenues, 338
Shannon probability, 345, 348
statistical estimates, 335
Time series analysis, 335

verification of analysis, 351
windows of opportunity, 338, 348

coin game, 7, 51
time series, 99, 100

coin game time series
generation, 99, 100
simulation, 99, 100

Coin Tossing Game, 447, 700
analysis of increments, 447
chi-squared values of increments, 448
deterministic mechanism, 450
fiscal strategy, 457, 458, 459, 460
fiscal strategy, simulation, 461
growth rate, 458, 459
H parameter analysis, 452, 456
Hurst coefficient analysis, 452, 453, 454, 456
increasing returns, 460
instantaneous analysis of normalized increments,

450
logarithmic returns, 457
Logistic function analysis, 451
management metric, 459
market simulation, 461
maximum Shannon probability, 461
number of companies, 460
optimum number of products, 459
product diversity, 459
product mix, 459
product portfolio, 459
rate of change, 452, 454, 456
rate of revenue returns, consistency, 454
rate of revenue returns, forecastability, 454
rate of revenue returns, increase and decrease, 456
rate of revenue returns, predictability, 454
rate of revenue returns, range, 450, 456
revenues, 452
Shannon probability, 458, 460
statistical estimates, 448
Time series analysis, 447
verification of analysis, 463
windows of opportunity, 452, 460

Coins Tossing Game, 541, 716
analysis of increments, 542
chi-squared values of increments, 542
deterministic mechanism, 542
fiscal strategy, 551, 553, 554, 555
fiscal strategy, simulation, 557
growth rate, 553
H parameter analysis, 546, 551
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Hurst coefficient analysis, 546, 547, 548, 550, 551
increasing returns, 555
instantaneous analysis of normalized increments,

545
logarithmic returns, 552
Logistic function analysis, 545
management metric, 553
market simulation, 557
maximum Shannon probability, 557
number of companies, 554
optimum number of products, 554
product diversity, 554
product mix, 554
product portfolio, 554
rate of change, 546, 548, 550, 551
rate of revenue returns, consistency, 548
rate of revenue returns, forecastability, 548
rate of revenue returns, increase and decrease, 551
rate of revenue returns, predictability, 548
rate of revenue returns, range, 542, 550, 551
revenues, 546
Shannon probability, 553, 555
statistical estimates, 542
Time series analysis, 542
verification of analysis, 557
windows of opportunity, 546, 555

consistency
rate of revenue returns, 149, 151, 172, 174, 194,

196, 219, 221, 241, 242, 261, 262, 281, 283,
303, 304, 323, 324, 340, 341, 360, 362, 378,
380, 397, 399, 416, 418, 434, 435, 454, 455,
471, 473, 490, 491, 509, 510, 529, 531, 548,
549, 566, 567, 587, 588, 606, 607, 624, 625,
641, 643

corporate
failure rate, 48

crus
program, 334

cumulative returns, 7, 9, 11, 12, 13, 52, 53
fraction wagered, 54
increments, 17, 27
investment, 5
iterated game, 52
maximizing, 13, 14
strategic considerations, 52

cumulative sum, 7, 18, 27, 42
analysis, 143, 146, 166, 169, 189, 192, 213, 216,

233, 238, 254, 257, 275, 278, 295, 299, 316,
319, 335, 338, 353, 357, 372, 375, 391, 394,

410, 413, 428, 432, 447, 451, 466, 469, 484,
487, 503, 507, 523, 526, 542, 545, 560, 564,
579, 583, 598, 602, 617, 620, 636, 639

D
decision

obsolete, 157, 180, 203, 227, 247, 268, 289, 309,
329, 348, 367, 385, 404, 423, 442, 460, 479,
498, 517, 537, 555, 574, 593, 612, 630, 649

timeliness, 157, 180, 203, 227, 247, 268, 289,
309, 329, 348, 367, 385, 404, 423, 442, 460,
479, 498, 517, 537, 555, 574, 593, 612, 630,
649

derivative
derivative, 56, 95

derivative of increments
normalized, 143, 166, 189, 213, 236, 255, 275,

298, 317, 335, 355, 372, 391, 410, 430, 450,
466, 486, 504, 523, 542, 562, 582, 601, 618,
636

deterministic
mechanism, 143, 166, 189, 213, 236, 256, 275,

298, 318, 335, 356, 373, 391, 410, 430, 450,
466, 486, 504, 523, 542, 562, 582, 601, 619,
636

deviate, normally distributed, 96
deviate, random, 96
discreet

logistic equation, 103
Discreet Logistic Function, 617, 729

analysis of increments, 617
chi-squared values of increments, 617
deterministic mechanism, 619
fiscal strategy, 627, 628, 629, 630
fiscal strategy, simulation, 631
growth rate, 628, 629
H parameter analysis, 622, 626
Hurst coefficient analysis, 621, 622, 623, 624, 626
increasing returns, 630
instantaneous analysis of normalized increments,

620
logarithmic returns, 627
Logistic function analysis, 620
management metric, 629
market simulation, 631
maximum Shannon probability, 631
number of companies, 630
optimum number of products, 629
product diversity, 629

Id: tables.tex,v 0.0 1995/11/20 04:38:13 john Exp 741



INDEX

product mix, 629
product portfolio, 629
rate of change, 622, 624, 626
rate of revenue returns, consistency, 624
rate of revenue returns, forecastability, 624
rate of revenue returns, increase and decrease, 626
rate of revenue returns, predictability, 624
rate of revenue returns, range, 619, 626
revenues, 622
Shannon probability, 628, 630
statistical estimates, 617
Time series analysis, 617
verification of analysis, 633
windows of opportunity, 622, 630

distribution
Gaussian, 5, 6, 7, 9

Dow Jones Average, 316, 679
analysis of increments, 316
chi-squared values of increments, 316
deterministic mechanism, 318
fiscal strategy, 326, 327, 328, 329
fiscal strategy, simulation, 330
growth rate, 327, 328
H parameter analysis, 321, 325
Hurst coefficient analysis, 321, 322, 323, 325
increasing returns, 329
instantaneous analysis of normalized increments,

319
logarithmic returns, 326
Logistic function analysis, 319
management metric, 328
market simulation, 330
maximum Shannon probability, 330
number of companies, 329
optimum number of products, 328
product diversity, 328
product mix, 328
product portfolio, 328
rate of change, 321, 323, 325
rate of revenue returns, consistency, 323
rate of revenue returns, forecastability, 323
rate of revenue returns, increase and decrease, 325
rate of revenue returns, predictability, 323
rate of revenue returns, range, 318, 325
revenues, 321
Shannon probability, 327, 329
statistical estimates, 316
Time series analysis, 316
verification of analysis, 332

windows of opportunity, 321, 329
Dow Jones News Information Retrieval Service, 316,

680

E
economic increasing returns

Cirrus Logic Stock, 348
Coin Tossing Game, 460
Coins Tossing Game, 555
Discreet Logistic Function, 630
Dow Jones Average, 329
Non-optimal Coin Tossing Game, 479
Non-optimal Coins Tossing Game, 574
Non-optimal Logistic Coins Tossing Game, 593
North American Integrated Circuit Market, 156
North American Semiconductor Market, 202
Simulated Equity Market Index, 649
Simulated Industrial Market, 611
Simulated Shannon Probability of 0.6 Game, 536
Time Sampled Coin Tossing Game, 517
Time Sampled Non-optimal Coin Tossing Game,

498
United States Electronic Component Production,

247
United States Electronic Component Shipments,

226
United States Electronics Market, 268
United States Employment Figures, 385
United States Gross Domestic Product, 366
United States Information Systems Market, 309
United States Leading Economic Indicators, 404
United States M2, 423
United States Office Computer Market, 288
United States Treasury Bill Returns, 442
World Semiconductor Market, 179

economic theory, 51
electronics

industry, 142
exploitable

strategy, 157, 161, 180, 184, 203, 209, 227, 229,
247, 248, 249, 268, 270, 289, 292, 309, 310,
311, 329, 330, 348, 351, 367, 368, 385, 386,
387, 404, 405, 406, 423, 425, 442, 445, 460,
461, 479, 481, 498, 500, 517, 520, 537, 538,
555, 557, 574, 577, 593, 596, 612, 614, 630,
631, 649, 651

exponential least squares fit
time series, 62
returns, 9
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exponential returns, 10

F
Fibonacci

sequence, 6
fiscal

optimum strategy, 142
optimum strategy, simulation, 161, 184, 209, 229,

249, 270, 292, 311, 330, 351, 368, 387, 406,
425, 445, 461, 481, 500, 520, 538, 557, 577,
596, 614, 631, 651

strategy, 153, 154, 155, 157, 158, 160, 161, 176,
177, 178, 180, 181, 183, 184, 198, 200, 201,
202, 204, 206, 209, 223, 224, 225, 227, 229,
243, 245, 246, 247, 249, 264, 266, 268, 270,
284, 286, 287, 289, 292, 305, 307, 308, 309,
311, 326, 327, 328, 329, 330, 344, 346, 348,
351, 363, 365, 367, 368, 381, 383, 384, 385,
387, 401, 402, 403, 404, 406, 419, 421, 422,
423, 425, 438, 440, 442, 445, 457, 458, 459,
460, 461, 475, 477, 479, 481, 494, 496, 498,
500, 513, 515, 517, 520, 533, 534, 535, 537,
538, 551, 553, 554, 555, 557, 570, 572, 574,
577, 589, 591, 593, 596, 608, 610, 612, 614,
627, 628, 629, 630, 631, 645, 647, 648, 649,
651

fiscal strategy
optimum, 46
simulation, 46
strategy, simulation, 161, 184, 207, 229, 249, 270,

291, 311, 330, 350, 368, 386, 405, 425, 444,
461, 481, 500, 519, 538, 557, 576, 595, 613,
631, 651

fixed increments
Brownian motion, 43

forecast
rate of revenue returns, 147, 157, 170, 180, 192,

203, 217, 227, 239, 247, 248, 259, 268, 279,
289, 301, 309, 310, 321, 329, 330, 338, 348,
358, 367, 376, 385, 386, 395, 404, 405, 414,
423, 432, 442, 452, 460, 461, 469, 479, 488,
498, 507, 517, 527, 537, 546, 555, 564, 574,
585, 593, 604, 612, 622, 630, 631, 639, 649

forecastability
rate of revenue returns, 149, 151, 172, 174, 194,

196, 219, 221, 241, 242, 261, 262, 281, 283,
303, 304, 323, 324, 340, 341, 360, 362, 378,
380, 397, 399, 416, 418, 434, 435, 454, 455,
471, 473, 490, 491, 509, 510, 529, 531, 548,

549, 566, 567, 587, 588, 606, 607, 624, 625,
641, 643

Fourier analysis, 46, 71
fractal, 29, 149, 152, 172, 175, 194, 198, 219, 222,

241, 243, 261, 263, 281, 284, 303, 305, 323,
325, 340, 344, 360, 362, 378, 381, 397, 400,
416, 419, 434, 438, 454, 456, 471, 475, 489,
494, 509, 513, 529, 532, 548, 551, 566, 570,
587, 589, 606, 608, 623, 626, 641, 645

fractal analysis, 47
relation to management methodology, 49
Brownian motion, 143, 166, 189, 213, 233, 254,

275, 295, 316, 335, 353, 372, 391, 410, 428,
447, 466, 484, 503, 523, 542, 560, 579, 598,
617, 636

fractal dimension, 47
relation to Hurst coefficient, 47
R/S analysis, 58, 143, 166, 189, 213, 236, 256,

275, 298, 318, 335, 356, 373, 391, 410, 430,
450, 466, 486, 504, 523, 542, 562, 582, 601,
619, 636

range, 58, 143, 166, 189, 213, 236, 256, 275, 298,
318, 335, 356, 373, 391, 410, 430, 450, 466,
486, 504, 523, 542, 562, 582, 601, 619, 636

standard deviation, 58
time series, 51

fractional Brownian motion, 5, 6, 7, 19
Brownian motion, 43, 143, 149, 162, 166, 172,

184, 189, 194, 209, 213, 219, 229, 233, 241,
251, 254, 261, 270, 275, 281, 292, 295, 303,
313, 316, 323, 331, 335, 340, 351, 353, 360,
369, 372, 378, 388, 391, 397, 407, 410, 416,
425, 428, 434, 445, 447, 454, 462, 466, 471,
481, 484, 489, 500, 503, 509, 520, 523, 529,
539, 542, 548, 557, 560, 566, 577, 579, 587,
596, 598, 606, 615, 617, 623, 632, 636, 641,
651

generation, 102
simulation, 102
time series, 102
simulation, 97
time series, 97

frequency plot
time series, 63

G
gain

time series, 93, 94
game
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iterated, 52
Mora, 29
nonzero-sum, 31
of strategy, 29, 31
Prisoner’s Dilemma, 31
speculative, 51

game theory, 29, 31
zero-sum, 29

games
iterated, 53
unfair, 53

gamma function, 96
Gaussian distribution, 5, 6, 7

distribution, 9
increment property, 46
increments, 143, 166, 189, 213, 233, 254, 275,

295, 316, 335, 353, 372, 391, 410, 428, 447,
466, 484, 503, 523, 542, 560, 579, 598, 617,
636

time series, 97
Gaussian time series

generation, 97
simulation, 97

generation
binomial distribution time series, 105
black noise, 96
brown noise, 96
Cauchy time series, 140
coin game time series, 99, 100
fractional Brownian motion, 102
Gaussian time series, 97
logistic function, 102
pink noise, 98
white noise, 98

H
H parameter

analysis, 147, 152, 170, 175, 192, 198, 217, 222,
239, 243, 259, 263, 279, 284, 301, 305, 321,
325, 338, 344, 358, 363, 376, 381, 395, 400,
414, 419, 432, 438, 452, 456, 469, 475, 488,
494, 507, 513, 527, 532, 546, 551, 564, 570,
584, 589, 603, 608, 622, 626, 639, 645

calculation, 46
program, 57

histogram
increments, 43
normalized, 143, 166, 189, 213, 234, 254, 275,

295, 316, 335, 353, 372, 391, 410, 430, 447,

466, 486, 504, 523, 542, 562, 580, 599, 617,
636

time series, 63
historical data, 53
Hurst coefficient, 9

analysis, 147, 149, 151, 152, 170, 172, 174, 175,
192, 194, 196, 197, 198, 217, 219, 221, 222,
239, 241, 242, 243, 259, 261, 263, 279, 281,
283, 284, 300, 301, 303, 304, 305, 321, 323,
325, 338, 340, 342, 343, 344, 358, 360, 362,
363, 376, 378, 380, 381, 395, 397, 399, 400,
414, 416, 418, 419, 432, 434, 436, 437, 438,
452, 454, 456, 469, 471, 473, 474, 475, 488,
490, 492, 493, 494, 507, 509, 511, 512, 513,
527, 529, 531, 532, 546, 548, 550, 551, 564,
566, 568, 569, 570, 584, 585, 587, 588, 589,
603, 604, 606, 607, 608, 621, 622, 624, 626,
639, 641, 643, 644, 645

calculation, 46
program, 58
Relation to fractal dimension, 47
relation to spectral exponent, 46

I
increment property

Gaussian, 46
incremental change

time series, 61
incremental rate of revenue returns

calculation, 42
incremental returns

average, 42
calculation, 18, 27
least squares fit, 42
mean, 42
root mean square, 43
time series, 42

increments
absolute value, 143, 166, 189, 213, 233, 254, 275,

295, 316, 335, 353, 372, 391, 410, 428, 447,
466, 485, 504, 523, 542, 560, 579, 598, 617,
636

cumulative returns, 17, 27
Gaussian, 143, 166, 189, 213, 233, 254, 275, 295,

316, 335, 353, 372, 391, 410, 428, 447, 466,
484, 503, 523, 542, 560, 579, 598, 617, 636

normalized, 143, 146, 147, 152, 166, 169, 170,
175, 189, 191, 192, 198, 213, 216, 217, 222,
233, 237, 239, 243, 254, 257, 259, 263, 275,
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278, 279, 284, 295, 298, 300, 305, 316, 319,
321, 325, 335, 336, 338, 344, 353, 356, 358,
363, 372, 375, 376, 381, 391, 394, 395, 400,
410, 413, 414, 419, 428, 430, 432, 438, 447,
450, 452, 456, 466, 469, 475, 484, 486, 488,
494, 503, 504, 507, 513, 523, 526, 527, 532,
542, 545, 546, 551, 560, 562, 564, 570, 579,
582, 584, 589, 598, 601, 603, 608, 617, 620,
621, 626, 636, 638, 639, 645

increments of cumulative returns
standard deviation, 18
see time series increments, 42

industry
electronics, 142

instantaneous analysis
time series, 146, 169, 191, 216, 237, 257, 278,

298, 319, 336, 356, 375, 394, 413, 430, 450,
466, 486, 504, 526, 545, 562, 582, 601, 620,
638

instantaneous computation
average of normalized increments, 81, 146, 169,

191, 216, 237, 257, 278, 298, 319, 336, 356,
375, 394, 413, 430, 450, 466, 486, 504, 526,
545, 562, 582, 601, 620, 638

root mean square of normalized increments, 81,
146, 169, 191, 216, 237, 257, 278, 298, 319,
336, 356, 375, 394, 413, 430, 450, 466, 486,
504, 526, 545, 562, 582, 601, 620, 638

Shannon probability, 81, 146, 169, 191, 216, 237,
257, 278, 298, 319, 336, 356, 375, 394, 413,
430, 450, 466, 486, 504, 526, 545, 562, 582,
601, 620, 638

integration
time series, 57, 106

inventory, 48
investment

cumulative returns, 5
investments

research and development, 48
iterated

game, 52
iterated game

cumulative returns, 52
iterated solution

Newton—Raphson, 60, 62, 68, 100, 106, 109

K
kurtosis

time series, 92, 93

L
least squares approximation, 143, 146, 166, 169, 189,

192, 213, 216, 233, 234, 238, 254, 258, 275,
278, 295, 300, 316, 320, 335, 338, 353, 357,
372, 375, 391, 394, 410, 413, 428, 430, 432,
447, 451, 466, 469, 485, 486, 488, 504, 507,
523, 526, 542, 545, 560, 562, 564, 579, 580,
584, 598, 599, 603, 617, 621, 636, 639

least squares fit
time series, 62

life cycle, product, 157, 180, 203, 227, 248, 268, 289,
310, 330, 348, 367, 386, 405, 423, 442, 461,
479, 498, 517, 537, 555, 574, 593, 612, 631,
649

linear algebra, 30
logarithmic

returns, 10, 153, 154, 159, 165, 176, 177, 182,
188, 199, 200, 205, 212, 223, 224, 232, 243,
244, 253, 265, 274, 285, 286, 294, 305, 306,
315, 326, 327, 333, 344, 345, 351, 364, 371,
382, 383, 390, 401, 402, 409, 420, 421, 427,
438, 445, 457, 458, 464, 475, 476, 482, 494,
495, 502, 513, 520, 533, 534, 541, 552, 553,
559, 570, 577, 589, 596, 608, 616, 627, 628,
634, 645, 646, 653

logarithmic returns
time series, 58

logistic equation
discreet, 103
simulation, 103
time series, 103
function, 27, 579, 723

logistic function
generation, 102
simulation, 102
time series, 102, 146, 169, 192, 216, 238, 257,

278, 299, 319, 338, 357, 375, 394, 413, 432,
451, 469, 487, 507, 526, 545, 564, 583, 602,
620, 639

M
management methodology

relation to fractal analysis, 49
management metric, 155, 160, 178, 183, 200, 206, 225,

245, 266, 287, 307, 328, 346, 365, 384, 403,
421, 440, 459, 477, 496, 515, 535, 553, 572,
591, 610, 629, 647

market
Cirrus Logic Stock, 334, 682
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Coin Tossing Game, 447, 700
Coins Tossing Game, 541, 716
Discreet Logistic Function, 617, 729
Dow Jones Average, 316, 679
model, 19
Non Optimal Coin Tossing Game, 703
Non Optimal Coins Tossing Game, 719
Non Optimal Logistic Coins Tossing Game, 722
non-linearity, 27, 579, 723
Non-optimal Coin Tossing Game, 465
Non-optimal Coins Tossing Game, 560
Non-optimal Logistic Coins Tossing Game, 579
North American Integrated Circuit Market, 143,

655
North American Semiconductor Market, 188, 660
Simulated Equity Market Index, 635, 731
Simulated Industrial Market, 598, 725
Simulated Shannon Probability of 0.6, 713
Simulated Shannon Probability of 0.6 Game, 522

market simulation
time series, 109
Time Sampled Coin Tossing Game, 503, 710
Time Sampled Non Optimal Coin Tossing Game,

706
Time Sampled Non-optimal Coin Tossing Game,

484
United States Electronic Component Production,

233, 667
United States Electronic Component Shipments,

212, 663
United States Electronics Market, 254, 670
United States Employment Figures, 372, 689
United States Gross Domestic Product, 353, 686
United States Information Systems Market, 295,

676
United States Leading Economic Indicators, 390,

691
United States M2, 409, 694
United States Office Computer Market, 275, 673
United States Treasury Bill Returns, 428, 697
variance, 19
volatility, 19
World Semiconductor Market, 166, 657

markets
analysis, 142, 153, 154, 155, 158, 160, 176, 177,

178, 181, 183, 198, 200, 201, 204, 206, 223,
224, 225, 243, 245, 246, 264, 266, 284, 286,
287, 305, 307, 308, 326, 327, 328, 344, 346,
363, 365, 381, 383, 384, 401, 402, 403, 419,

421, 422, 438, 440, 457, 458, 459, 475, 477,
494, 496, 513, 515, 533, 534, 535, 551, 553,
554, 570, 572, 589, 591, 608, 610, 627, 628,
629, 645, 647, 648

many contributing agents, 19
simulation, 161, 184, 207, 209, 229, 249, 270,

291, 292, 311, 330, 350, 351, 368, 386, 387,
405, 406, 425, 444, 445, 461, 481, 500, 519,
520, 538, 557, 576, 577, 595, 596, 613, 614,
631, 651

time series, 19
Markov

statistics, 152, 175, 197, 198, 221, 222, 242, 263,
284, 304, 325, 342, 343, 362, 381, 400, 418,
419, 436, 437, 456, 473, 474, 492, 493, 511,
512, 531, 532, 550, 551, 568, 569, 588, 607,
626, 644

Markov—Wiener process, 7
maximization

golden method, 61
maximum Shannon probability

time series, 61
mean

standard deviation, 143, 166, 189, 213, 233, 234,
254, 275, 295, 316, 335, 353, 372, 391, 410,
428, 430, 447, 466, 485, 486, 504, 523, 542,
560, 562, 579, 580, 598, 599, 617, 636

time series, 63
mean, standard deviation, root mean square

relationship, 19
mechanism

deterministic, 143, 166, 189, 213, 236, 256, 275,
298, 318, 335, 356, 373, 391, 410, 430, 450,
466, 486, 504, 523, 542, 562, 582, 601, 619,
636

methodology
verification of, 164, 187, 211, 232, 253, 273, 294,

315, 332, 351, 370, 389, 408, 425, 445, 463,
481, 500, 520, 540, 557, 577, 596, 615, 633,
651

model
market, 19

Monte Carlo
simulation, 7

Mora
game, 29

N
Newton—Raphson
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iterated solution, 60, 62, 68, 100, 106, 109
Non Optimal Coin Tossing Game, 703
Non Optimal Coins Tossing Game, 719
Non Optimal Logistic Coins Tossing Game, 722
non-linearity

market, 27, 579, 723
Non-optimal Coin Tossing Game, 465

analysis of increments, 466
chi-squared values of increments, 466
deterministic mechanism, 466
fiscal strategy, 475, 477, 479
fiscal strategy, simulation, 481
growth rate, 477
H parameter analysis, 469, 475
Hurst coefficient analysis, 469, 471, 473, 474, 475
increasing returns, 479
instantaneous analysis of normalized increments,

466
logarithmic returns, 475
Logistic function analysis, 469
management metric, 477
market simulation, 481
maximum Shannon probability, 481
number of companies, 478
optimum number of products, 477
product diversity, 477
product mix, 477
product portfolio, 477
rate of change, 469, 471, 473, 474, 475
rate of revenue returns, consistency, 471
rate of revenue returns, forecastability, 471
rate of revenue returns, increase and decrease,474,

475
rate of revenue returns, predictability, 471
rate of revenue returns, range, 466, 473, 474, 475
revenues, 469
Shannon probability, 476, 479
statistical estimates, 466
Time series analysis, 466
verification of analysis, 481
windows of opportunity, 469, 479

Non-optimal Coins Tossing Game, 560
analysis of increments, 562
chi-squared values of increments, 562
deterministic mechanism, 562
fiscal strategy, 570, 572, 574
fiscal strategy, simulation, 576, 577
growth rate, 572
H parameter analysis, 564, 570

Hurst coefficient analysis, 564, 565, 566, 568,
569, 570

increasing returns, 574
instantaneous analysis of normalized increments,

562
logarithmic returns, 570
Logistic function analysis, 564
management metric, 572
market simulation, 575
maximum Shannon probability, 577
number of companies, 573
optimum number of products, 572
product diversity, 572
product mix, 572
product portfolio, 572
rate of change, 564, 566, 568, 569
rate of revenue returns, consistency, 566
rate of revenue returns, forecastability, 566
rate of revenue returns, increase and decrease, 569
rate of revenue returns, predictability, 566
rate of revenue returns, range, 562, 568, 569
revenues, 564
Shannon probability, 571, 574
statistical estimates, 562
Time series analysis, 560
verification of analysis, 577
windows of opportunity, 564, 574

Non-optimal Logistic Coins Tossing Game, 579
analysis of increments, 580
chi-squared values of increments, 581
deterministic mechanism, 582
fiscal strategy, 589, 591, 593
fiscal strategy, simulation, 595, 596
growth rate, 591
H parameter analysis, 584, 589
Hurst coefficient analysis, 584, 585, 586, 587,

588, 589
increasing returns, 593
instantaneous analysis of normalized increments,

582
logarithmic returns, 589
Logistic function analysis, 583
management metric, 591
market simulation, 594
maximum Shannon probability, 596
number of companies, 592
optimum number of products, 591
product diversity, 591
product mix, 591
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product portfolio, 591
rate of change, 585, 587, 588
rate of revenue returns, consistency, 587
rate of revenue returns, forecastability, 587
rate of revenue returns, increase and decrease, 588
rate of revenue returns, predictability, 587
rate of revenue returns, range, 582, 588
revenues, 585
Shannon probability, 590, 593
statistical estimates, 581
Time series analysis, 579
verification of analysis, 596
windows of opportunity, 585, 593

nonzero-sum
game, 31

normalized
derivative of increments, 143, 166, 189, 213, 236,

255, 275, 298, 317, 335, 355, 372, 391, 410,
430, 450, 466, 486, 504, 523, 542, 562, 582,
601, 618, 636

histogram, 143, 166, 189, 213, 234, 254, 275, 295,
316, 335, 353, 372, 391, 410, 430, 447, 466,
486, 504, 523, 542, 562, 580, 599, 617, 636

normalized increments, 81
increments, 143, 146, 147, 152, 166, 169, 170,

175, 189, 191, 192, 198, 213, 216, 217, 222,
233, 237, 239, 243, 254, 257, 259, 263, 275,
278, 279, 284, 295, 298, 300, 305, 316, 319,
321, 325, 335, 336, 338, 344, 353, 356, 358,
363, 372, 375, 376, 381, 391, 394, 395, 400,
410, 413, 414, 419, 428, 430, 432, 438, 447,
450, 452, 456, 466, 469, 475, 484, 486, 488,
494, 503, 504, 507, 513, 523, 526, 527, 532,
542, 545, 546, 551, 560, 562, 564, 570, 579,
582, 584, 589, 598, 601, 603, 608, 617, 620,
621, 626, 636, 638, 639, 645

normally distributed deviate, 96
North American Integrated Circuit Market, 143, 655

analysis of increments, 143
chi-squared values of increments, 143
deterministic mechanism, 143
fiscal strategy, 153, 154, 155, 157, 158, 160
fiscal strategy, simulation, 161
growth rate, 154, 155, 160
H parameter analysis, 147, 152
Hurst coefficient analysis, 147, 148, 149, 151, 152
increasing returns, 156
instantaneous analysis of normalized increments,

146

logarithmic returns, 153, 159
Logistic function analysis, 146
management metric, 155, 160
market simulation, 161
maximum Shannon probability, 161
number of companies, 156
optimum number of products, 155, 160
product diversity, 155, 160
product mix, 155, 160
product portfolio, 155, 160
rate of change, 147, 149, 151, 152
rate of revenue returns, consistency, 149
rate of revenue returns, forecastability, 149
rate of revenue returns, increase and decrease, 152
rate of revenue returns, predictability, 149
rate of revenue returns, range, 143, 151, 152
revenues, 147
Shannon probability, 154, 157, 159
statistical estimates, 143
Time series analysis, 143
verification of analysis, 164
windows of opportunity, 147, 157

North American Semiconductor Market, 188, 660
analysis of increments, 189
chi-squared values of increments, 189
deterministic mechanism, 189
fiscal strategy, 198, 200, 201, 202, 204, 206
fiscal strategy, simulation, 207, 209
growth rate, 200, 206
H parameter analysis, 192, 198
Hurst coefficient analysis, 192, 194, 196, 197, 198
increasing returns, 202
instantaneous analysis of normalized increments,

191
logarithmic returns, 199, 205
Logistic function analysis, 192
management metric, 200, 206
market simulation, 207
maximum Shannon probability, 209
number of companies, 202
optimum number of products, 201, 206
product diversity, 201, 206
product mix, 201, 206
product portfolio, 201, 206
rate of change, 192, 194, 196, 197, 198
rate of revenue returns, consistency, 194
rate of revenue returns, forecastability, 194
rate of revenue returns, increase and decrease, 198
rate of revenue returns, predictability, 194
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rate of revenue returns, range, 189, 196, 197, 198
revenues, 192
Shannon probability, 200, 202, 205
statistical estimates, 189
Time series analysis, 189
verification of analysis, 211
windows of opportunity, 192, 203

number of companies
analysis, 156, 179, 202, 226, 247, 267, 288, 309,

329, 347, 366, 385, 404, 422, 441, 460, 478,
497, 516, 536, 554, 573, 592, 611, 630, 648

O
obsolete

decision, 157, 180, 203, 227, 247, 268, 289, 309,
329, 348, 367, 385, 404, 423, 442, 460, 479,
498, 517, 537, 555, 574, 593, 612, 630, 649

operations research, 30, 49, 157, 180, 203, 227, 248,
268, 289, 310, 330, 348, 367, 386, 405, 424,
442, 461, 479, 499, 517, 537, 556, 574, 593,
612, 631, 650

optimization, 48
betting strategies, 51, 52, 53, 54
P&L, 22

optimum number of products, 155, 160, 178, 183, 201,
206, 225, 246, 266, 287, 308, 328, 346, 365,
384, 403, 422, 440, 459, 477, 496, 515, 535,
554, 572, 591, 610, 629, 648

optimum strategy
coin game, formula, 52

P
P&L

optimization, 22
pink noise

generation, 98
simulation, 98
time series, 98

polynomial interpolation, 96
predictability

rate of revenue returns, 149, 151, 172, 174, 194,
196, 219, 221, 241, 242, 261, 262, 281, 283,
303, 304, 323, 324, 340, 341, 360, 362, 378,
380, 397, 399, 416, 418, 434, 435, 454, 455,
471, 473, 490, 491, 509, 510, 529, 531, 548,
549, 566, 567, 587, 588, 606, 607, 624, 625,
641, 643

prisoner’s dilemma, 31
Prisoner’s Dilemma

game, 31
probability

Shannon, 9, 11, 14, 17, 27, 43, 46, 52, 53, 146,
154, 156, 157, 159, 161, 162, 164, 165, 169,
177, 179, 180, 182, 184, 187, 188, 191, 200,
202, 205, 209, 211, 212, 216, 224, 226, 227,
229, 232, 233, 237, 245, 247, 249, 251, 253,
257, 265, 267, 268, 270, 273, 274, 278, 286,
288, 289, 292, 294, 295, 298, 307, 309, 311,
313, 315, 319, 327, 329, 330, 331, 332, 333,
334, 336, 346, 347, 348, 351, 353, 356, 364,
366, 367, 368, 369, 370, 371, 375, 383, 385,
387, 388, 389, 390, 394, 402, 404, 406, 407,
408, 409, 413, 421, 422, 423, 425, 427, 428,
430, 440, 441, 442, 445, 447, 450, 458, 460,
461, 462, 463, 464, 465, 466, 477, 478, 479,
481, 482, 484, 486, 496, 497, 498, 500, 501,
503, 504, 515, 516, 517, 520, 522, 526, 534,
536, 537, 538, 539, 540, 541, 545, 553, 554,
555, 557, 559, 560, 562, 572, 573, 574, 577,
579, 582, 590, 592, 593, 596, 598, 601, 609,
611, 612, 614, 615, 616, 620, 628, 630, 631,
632, 633, 634, 635, 638, 647, 648, 649, 651,
652, 654

product diversity, 155, 160, 178, 183, 201, 206, 225,
246, 266, 287, 308, 328, 346, 365, 384, 403,
422, 440, 459, 477, 496, 515, 535, 554, 572,
591, 610, 629, 648

product life cycle, 157, 180, 203, 227, 248, 268, 289,
310, 330, 348, 367, 386, 405, 423, 442, 461,
479, 498, 517, 537, 555, 574, 593, 612, 631,
649

product mix, 155, 160, 178, 183, 201, 206, 225, 246,
266, 287, 308, 328, 346, 365, 384, 403, 422,
440, 459, 477, 496, 515, 535, 554, 572, 591,
610, 629, 648

product portfolio, 155, 160, 178, 183, 201, 206, 225,
246, 266, 287, 308, 328, 346, 365, 384, 403,
422, 440, 459, 477, 496, 515, 535, 554, 572,
591, 610, 629, 648

program
H parameter, 57
Hurst coefficient, 58

programs, 56
availability, 56
C language, 56
crus, 334
Licensing, 56
sources, 56
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thshurst, 46
tsavg, 65
tsavgwindow, 65
tsbinomial, 105
tsblack, 96
tsbrownian, 96
tscauchy, 140
tschangewager, 64
tscoin, 16, 27, 99, 447, 465, 484, 503, 522, 701,

704, 707, 710, 713
tscoins, 27, 100, 542, 560, 579, 716, 720, 723
tsderivative, 56, 143, 166, 189, 213, 236, 255,

275, 298, 317, 335, 355, 372, 391, 410, 430,
450, 466, 486, 504, 523, 542, 562, 582, 601,
618, 636

tsdeterministic, 71
tsdft, 71
tsdlogistic, 27, 103, 617, 729
tsfBm, 102
tsfraction, 42, 44, 46, 61, 143, 166, 189, 213, 233,

254, 275, 295, 316, 335, 353, 372, 391, 410,
428, 447, 466, 484, 503, 523, 542, 560, 579,
598, 617, 636

tsfractional, 97
tsgain, 93
tsgainwindow, 94
tsgaussian, 97, 635, 732
tshcalc, 44, 46, 57, 147, 152, 170, 175, 192, 198,

217, 222, 239, 243, 259, 263, 279, 284, 301,
305, 321, 325, 338, 344, 358, 363, 376, 381,
395, 400, 414, 419, 432, 438, 452, 456, 469,
475, 488, 494, 507, 513, 527, 532, 546, 551,
564, 570, 584, 589, 603, 608, 622, 626, 639,
645

tshurst, 44, 58, 147, 152, 170, 175, 192, 198, 217,
222, 239, 243, 259, 263, 279, 284, 300, 305,
321, 325, 338, 344, 358, 363, 376, 381, 395,
400, 414, 419, 432, 438, 452, 456, 469, 475,
488, 494, 507, 513, 527, 532, 546, 551, 564,
570, 584, 589, 603, 608, 621, 626, 639, 645

tsinstant, 81
tsintegers, 106
tsintegrate, 57
tskurtosis, 92
tskurtosiswindow, 93
tslogistic, 102
tslogreturns, 43, 44, 46, 58, 154, 159, 177, 182,

200, 205, 224, 244, 245, 265, 286, 306, 307,
327, 345, 364, 383, 402, 421, 438, 439, 458,

476, 495, 513, 514, 534, 553, 570, 571, 589,
590, 608, 609, 628, 646, 647

tslsq, 27, 42, 43, 44, 46, 62, 147, 152, 154, 159,
170, 175, 177, 182, 192, 198, 199, 205, 217,
222, 224, 239, 243, 244, 259, 263, 265, 279,
284, 285, 286, 301, 305, 306, 321, 325, 327,
338, 344, 358, 362, 364, 376, 381, 382, 383,
395, 400, 402, 414, 419, 420, 432, 438, 452,
456, 458, 469, 475, 488, 494, 507, 513, 527,
532, 534, 546, 551, 552, 564, 570, 585, 589,
604, 608, 622, 626, 628, 639, 645, 646

tsmarket, 21, 109, 598, 726
tsmath, 71, 635, 732
tsnormal, 43, 44, 46, 63, 143, 153, 159, 166, 176,

182, 189, 199, 205, 213, 223, 234, 243, 254,
265, 275, 285, 295, 305, 316, 326, 335, 344,
353, 364, 372, 382, 391, 401, 410, 420, 430,
438, 447, 457, 466, 475, 486, 494, 504, 513,
523, 533, 542, 552, 562, 570, 580, 589, 599,
608, 617, 627, 636, 645

tsnumber, 92
tspink, 98
tspole, 70
tsrms, 43, 44, 61
tsrmswindow, 65
tsrootmean, 84
tsrootmeanscale, 96
tsrunlength, 82
tsrunmagnitude, 84
tssample, 65, 484, 503, 707, 710
tsscalederivative, 95
tsshannon, 10, 44, 46, 60, 154, 159, 177, 182, 200,

205, 224, 245, 265, 286, 307, 327, 346, 364,
383, 402, 421, 440, 458, 477, 496, 515, 523,
534, 553, 572, 590, 609, 628, 647

tsshannonaggregate, 79
tsshannonfundamental, 92
tsshannonmax, 44, 46, 61, 161, 162, 184, 209,

229, 249, 251, 270, 292, 311, 313, 330, 331,
351, 368, 369, 387, 388, 406, 407, 425, 445,
461, 462, 481, 500, 520, 538, 539, 557, 577,
596, 614, 615, 631, 632, 651

tsshannonstock, 106
tsshannonvolume, 84
tsshannonwindow, 67
tsstatest, 72, 143, 166, 189, 213, 236, 254, 275,

297, 316, 335, 353, 372, 391, 410, 430, 448,
466, 486, 504, 523, 542, 562, 581, 600, 617,
636
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tsstock, 112
tsstocks, 125
tsstockwager, 104
tstrade, 128
tstradesim, 138
tsunfairbrownian, 10, 44, 46, 98, 142, 161, 184,

207, 209, 229, 249, 270, 291, 292, 311, 330,
350, 351, 368, 386, 387, 405, 406, 425, 444,
445, 461, 465, 481, 484, 500, 503, 519, 520,
522, 538, 557, 576, 577, 595, 596, 613, 614,
631, 651, 704, 707, 710, 713

tsunfaircoin, 53
tsunfairfractional, 106
tsunfraction, 80, 635, 732
tsunshannon, 92
tswhite, 98
tsXsquared, 65, 143, 166, 189, 213, 235, 254, 275,

296, 316, 335, 353, 372, 391, 410, 430, 448,
466, 486, 504, 523, 542, 562, 581, 600, 617,
636

Q
quality

of analysis, 164, 187, 211, 232, 253, 273, 294,
315, 332, 351, 370, 389, 408, 425, 445, 463,
481, 500, 520, 540, 557, 577, 596, 615, 633,
651

R
random deviate, 96
random mechanism

speculative games, 53, 54
random process, 5, 6, 7, 9, 11, 17, 18, 27, 42

analysis, 143, 146, 166, 169, 189, 192, 213, 216,
233, 238, 254, 257, 275, 278, 295, 299, 316,
319, 335, 338, 353, 357, 372, 375, 391, 394,
410, 413, 428, 432, 447, 451, 466, 469, 484,
487, 503, 507, 523, 526, 542, 545, 560, 564,
579, 583, 598, 602, 617, 620, 636, 639

random walk, 29
rate of revenue returns

consistency, 149, 151, 172, 174, 194, 196, 219,
221, 241, 242, 261, 262, 281, 283, 303, 304,
323, 324, 340, 341, 360, 362, 378, 380, 397,
399, 416, 418, 434, 435, 454, 455, 471, 473,
490, 491, 509, 510, 529, 531, 548, 549, 566,
567, 587, 588, 606, 607, 624, 625, 641, 643

decomposition, 42

forecast, 147, 157, 170, 180, 192, 203, 217, 227,
239, 247, 248, 259, 268, 279, 289, 301, 309,
310, 321, 329, 330, 338, 348, 358, 367, 376,
385, 386, 395, 404, 405, 414, 423, 432, 442,
452, 460, 461, 469, 479, 488, 498, 507, 517,
527, 537, 546, 555, 564, 574, 585, 593, 604,
612, 622, 630, 631, 639, 649

forecastability, 149, 151, 172, 174, 194, 196, 219,
221, 241, 242, 261, 262, 281, 283, 303, 304,
323, 324, 340, 341, 360, 362, 378, 380, 397,
399, 416, 418, 434, 435, 454, 455, 471, 473,
490, 491, 509, 510, 529, 531, 548, 549, 566,
567, 587, 588, 606, 607, 624, 625, 641, 643

incremental, calculation, 42
predictability, 149, 151, 172, 174, 194, 196, 219,

221, 241, 242, 261, 262, 281, 283, 303, 304,
323, 324, 340, 341, 360, 362, 378, 380, 397,
399, 416, 418, 434, 435, 454, 455, 471, 473,
490, 491, 509, 510, 529, 531, 548, 549, 566,
567, 587, 588, 606, 607, 624, 625, 641, 643

research and development
investments, 48

returns
exponential, 9
logarithmic, 10, 153, 154, 159, 165, 176, 177,

182, 188, 199, 200, 205, 212, 223, 224, 232,
243, 244, 253, 265, 274, 285, 286, 294, 305,
306, 315, 326, 327, 333, 344, 345, 351, 364,
371, 382, 383, 390, 401, 402, 409, 420, 421,
427, 438, 445, 457, 458, 464, 475, 476, 482,
494, 495, 502, 513, 520, 533, 534, 541, 552,
553, 559, 570, 577, 589, 596, 608, 616, 627,
628, 634, 645, 646, 653

See, rate of revenue returns, 147, 170, 192, 217,
239, 259, 279, 301, 321, 338, 358, 376, 395,
414, 432, 452, 469, 488, 507, 527, 546, 564,
585, 604, 622, 639

revenue
See, rate of revenue returns, 147, 170, 192, 217,

239, 259, 279, 301, 321, 338, 358, 376, 395,
414, 432, 452, 469, 488, 507, 527, 546, 564,
585, 604, 622, 639

Romberg integration, 96
root mean square, 143, 166, 189, 213, 233, 234, 254,

275, 295, 316, 335, 353, 372, 391, 410, 428,
430, 447, 466, 485, 486, 504, 523, 542, 560,
562, 579, 580, 598, 599, 617, 636

incremental returns, 43
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root mean square of normalized increments, 81, 146,
169, 191, 216, 237, 257, 278, 298, 319, 336,
356, 375, 394, 413, 430, 450, 466, 486, 504,
526, 545, 562, 582, 601, 620, 638

instantaneous computation of, 81, 146, 169, 191,
216, 237, 257, 278, 298, 319, 336, 356, 375,
394, 413, 430, 450, 466, 486, 504, 526, 545,
562, 582, 601, 620, 638

time series, 61
root mean square, mean, standard deviation

relationship, 19
time series, 84, 96

rtsblack
program, 96

run length, 82
run length magnitude, 84

S
sampling

time series, 65
searching for solutions

methodology, 60, 62, 100, 109
Semiconductor Industry Association, 143, 166, 188,

655, 658, 661
sequence

Fibonacci, 6
Shannon

probability, 9, 11, 14, 17, 27, 43, 46, 52, 53
Shannon probability, 81, 98

probability, 146, 154, 156, 157, 159, 161, 162,
164, 165, 169, 177, 179, 180, 182, 184, 187,
188, 191, 200, 202, 205, 209, 211, 212, 216,
224, 226, 227, 229, 232, 233, 237, 245, 247,
249, 251, 253, 257, 265, 267, 268, 270, 273,
274, 278, 286, 288, 289, 292, 294, 295, 298,
307, 309, 311, 313, 315, 319, 327, 329, 330,
331, 332, 333, 334, 336, 346, 347, 348, 351,
353, 356, 364, 366, 367, 368, 369, 370, 371,
375, 383, 385, 387, 388, 389, 390, 394, 402,
404, 406, 407, 408, 409, 413, 421, 422, 423,
425, 427, 428, 430, 440, 441, 442, 445, 447,
450, 458, 460, 461, 462, 463, 464, 465, 466,
477, 478, 479, 481, 482, 484, 486, 496, 497,
498, 500, 501, 503, 504, 515, 516, 517, 520,
522, 526, 534, 536, 537, 538, 539, 540, 541,
545, 553, 554, 555, 557, 559, 560, 562, 572,
573, 574, 577, 579, 582, 590, 592, 593, 596,
598, 601, 609, 611, 612, 614, 615, 616, 620,
628, 630, 631, 632, 633, 634, 635, 638, 647,

648, 649, 651, 652, 654
calculating from signs of increments, 43
instantaneous computation of, 81, 146, 169, 191,

216, 237, 257, 278, 298, 319, 336, 356, 375,
394, 413, 430, 450, 466, 486, 504, 526, 545,
562, 582, 601, 620, 638

time series, 60, 67, 92
simplex

algorithm, 30
Simulated Equity Market Index, 635, 731

analysis of increments, 636
chi-squared values of increments, 636
deterministic mechanism, 636
fiscal strategy, 645, 647, 648, 649
fiscal strategy, simulation, 651
growth rate, 647
H parameter analysis, 639, 645
Hurst coefficient analysis, 639, 641, 643, 644, 645
increasing returns, 649
instantaneous analysis of normalized increments,

638
logarithmic returns, 645
Logistic function analysis, 639
management metric, 647
market simulation, 651
maximum Shannon probability, 651
number of companies, 648
optimum number of products, 648
product diversity, 648
product mix, 648
product portfolio, 648
rate of change, 639, 641, 643, 644, 645
rate of revenue returns, consistency, 641
rate of revenue returns, forecastability, 641
rate of revenue returns, increase and decrease,644,

645
rate of revenue returns, predictability, 641
rate of revenue returns, range, 636, 643, 644, 645
revenues, 639
Shannon probability, 647, 649
statistical estimates, 636
Time series analysis, 636
verification of analysis, 651
windows of opportunity, 639, 649

Simulated Industrial Market, 598, 725
analysis of increments, 599
chi-squared values of increments, 600
deterministic mechanism, 601
fiscal strategy, 608, 610, 612
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fiscal strategy, simulation, 613, 614
growth rate, 610
H parameter analysis, 603, 608
Hurst coefficient analysis, 603, 604, 605, 606,

607, 608
increasing returns, 611
instantaneous analysis of normalized increments,

601
logarithmic returns, 608
Logistic function analysis, 602
management metric, 610
market simulation, 612
maximum Shannon probability, 614
number of companies, 611
optimum number of products, 610
product diversity, 610
product mix, 610
product portfolio, 610
rate of change, 604, 606, 607
rate of revenue returns, consistency, 606
rate of revenue returns, forecastability, 606
rate of revenue returns, increase and decrease, 607
rate of revenue returns, predictability, 606
rate of revenue returns, range, 601, 607
revenues, 604
Shannon probability, 609, 612
statistical estimates, 600
Time series analysis, 598
verification of analysis, 615
windows of opportunity, 604, 612

Simulated Shannon Probability of 0.6, 713
Simulated Shannon Probability of 0.6 Game, 522

analysis of increments, 523
chi-squared values of increments, 523
deterministic mechanism, 523
fiscal strategy, 533, 534, 535, 537
fiscal strategy, simulation, 538
growth rate, 534, 535
H parameter analysis, 527, 532
Hurst coefficient analysis, 527, 528, 529, 531, 532
increasing returns, 536
instantaneous analysis of normalized increments,

526
logarithmic returns, 533
Logistic function analysis, 526
management metric, 535
market simulation, 537
maximum Shannon probability, 538
number of companies, 536

optimum number of products, 535
product diversity, 535
product mix, 535
product portfolio, 535
rate of change, 527, 529, 531, 532
rate of revenue returns, consistency, 529
rate of revenue returns, forecastability, 529
rate of revenue returns, increase and decrease, 532
rate of revenue returns, predictability, 529
rate of revenue returns, range, 523, 531, 532
revenues, 527
Shannon probability, 534, 537
statistical estimates, 523
Time series analysis, 523
verification of analysis, 540
windows of opportunity, 527, 537

simulation
binomial distribution, 105
black noise, 96
brown noise, 96
Cauchy time series, 140
coin game time series, 99, 100
fractional, 97
fractional Brownian motion, 102
Gaussian time series, 97
logistic equation, 103
logistic function, 102
markets, 161, 184, 207, 209, 229, 249, 270, 291,

292, 311, 330, 350, 351, 368, 386, 387, 405,
406, 425, 444, 445, 461, 481, 500, 519, 520,
538, 557, 576, 577, 595, 596, 613, 614, 631,
651

Monte Carlo, 7
pink noise, 98
stock wager optimization, 104, 106, 112, 125
white noise, 98

spectral exponent
relation to Hurst coefficient, 46

speculative games
analysis, 53
intuitive concepts, 53
modeling, 43
random mechanism, 53, 54

speculative markets, 5, 51
as iterative processes, 5

standard deviation
increments of cumulative returns, 18
mean, 143, 166, 189, 213, 233, 234, 254, 275,

295, 316, 335, 353, 372, 391, 410, 428, 430,
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447, 466, 485, 486, 504, 523, 542, 560, 562,
579, 580, 598, 599, 617, 636

time series, 63
standard deviation, mean, root mean square

relationship, 19
statistical estimate

time series, 72
statistics

Markov, 152, 175, 197, 198, 221, 222, 242, 263,
284, 304, 325, 342, 343, 362, 381, 400, 418,
419, 436, 437, 456, 473, 474, 492, 493, 511,
512, 531, 532, 550, 551, 568, 569, 588, 607,
626, 644

stock wager optimization
simulation, 104, 106, 112, 125
time series, 104, 106, 112, 125

Stock, Cirrus Logic, 682
strategic considerations

cumulative returns, 52
strategy

betting, 5
exploitable, 157, 161, 180, 184, 203, 209, 227,

229, 247, 248, 249, 268, 270, 289, 292, 309,
310, 311, 329, 330, 348, 351, 367, 368, 385,
386, 387, 404, 405, 406, 423, 425, 442, 445,
460, 461, 479, 481, 498, 500, 517, 520, 537,
538, 555, 557, 574, 577, 593, 596, 612, 614,
630, 631, 649, 651

fiscal, 153, 154, 155, 157, 158, 160, 161, 176,
177, 178, 180, 181, 183, 184, 198, 200, 201,
202, 204, 206, 209, 223, 224, 225, 227, 229,
243, 245, 246, 247, 249, 264, 266, 268, 270,
284, 286, 287, 289, 292, 305, 307, 308, 309,
311, 326, 327, 328, 329, 330, 344, 346, 348,
351, 363, 365, 367, 368, 381, 383, 384, 385,
387, 401, 402, 403, 404, 406, 419, 421, 422,
423, 425, 438, 440, 442, 445, 457, 458, 459,
460, 461, 475, 477, 479, 481, 494, 496, 498,
500, 513, 515, 517, 520, 533, 534, 535, 537,
538, 551, 553, 554, 555, 557, 570, 572, 574,
577, 589, 591, 593, 596, 608, 610, 612, 614,
627, 628, 629, 630, 631, 645, 647, 648, 649,
651

fiscal, simulation, 161, 184, 207, 229, 249, 270,
291, 311, 330, 350, 368, 386, 405, 425, 444,
461, 481, 500, 519, 538, 557, 576, 595, 613,
631, 651

optimum fiscal, 142

optimum fiscal, simulation, 161, 184, 209, 229,
249, 270, 292, 311, 330, 351, 368, 387, 406,
425, 445, 461, 481, 500, 520, 538, 557, 577,
596, 614, 631, 651

simulation, 46

T
thshcalc

program, 46
thshurst

program, 46
Time Sampled Coin Tossing Game, 503, 710

analysis of increments, 504
chi-squared values of increments, 504
deterministic mechanism, 504
fiscal strategy, 513, 515, 517
fiscal strategy, simulation, 519, 520
growth rate, 515
H parameter analysis, 507, 513
Hurst coefficient analysis, 507, 508, 509, 511,

512, 513
increasing returns, 517
instantaneous analysis of normalized increments,

504
logarithmic returns, 513
Logistic function analysis, 507
management metric, 515
market simulation, 518
maximum Shannon probability, 520
number of companies, 516
optimum number of products, 515
product diversity, 515
product mix, 515
product portfolio, 515
rate of change, 507, 509, 511, 512
rate of revenue returns, consistency, 509
rate of revenue returns, forecastability, 509
rate of revenue returns, increase and decrease, 512
rate of revenue returns, predictability, 509
rate of revenue returns, range, 504, 511, 512
revenues, 507
Shannon probability, 514, 517
statistical estimates, 504
Time series analysis, 503
verification of analysis, 520
windows of opportunity, 507, 517

Time Sampled Non Optimal Coin Tossing Game, 706
Time Sampled Non-optimal Coin Tossing Game, 484

analysis of increments, 486
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chi-squared values of increments, 486
deterministic mechanism, 486
fiscal strategy, 494, 496, 498
fiscal strategy, simulation, 500
growth rate, 496
H parameter analysis, 488, 494
Hurst coefficient analysis, 488, 489, 490, 492,

493, 494
increasing returns, 498
instantaneous analysis of normalized increments,

486
logarithmic returns, 494
Logistic function analysis, 487
management metric, 496
market simulation, 500
maximum Shannon probability, 500
number of companies, 497
optimum number of products, 496
product diversity, 496
product mix, 496
product portfolio, 496
rate of change, 488, 490, 492, 493
rate of revenue returns, consistency, 490
rate of revenue returns, forecastability, 490
rate of revenue returns, increase and decrease, 493
rate of revenue returns, predictability, 490
rate of revenue returns, range, 486, 492, 493
revenues, 488
Shannon probability, 495, 498
statistical estimates, 486
Time series analysis, 484
verification of analysis, 500
windows of opportunity, 488, 498

time series, 18, 27, 42, 81, 146, 169, 191, 216, 237,
257, 278, 298, 319, 336, 356, 375, 394, 413,
430, 450, 466, 486, 504, 526, 545, 562, 582,
601, 620, 638

analysis, 143, 146, 166, 169, 189, 191, 192, 213,
216, 233, 237, 238, 254, 257, 275, 278, 295,
298, 299, 316, 319, 335, 336, 338, 353, 356,
357, 372, 375, 391, 394, 410, 413, 428, 430,
432, 447, 450, 451, 466, 469, 484, 486, 487,
503, 504, 507, 523, 526, 542, 545, 560, 562,
564, 579, 582, 583, 598, 601, 602, 617, 620,
636, 638, 639

time series analysis
software methodology, 44
average, 63, 65
binomial distribution, 105

black noise, 96
brown noise, 96
Cauchy, 140
changing unfair weights, 98, 106
coin game, 99, 100
derivative, 56, 95
example analysis, 9
exponential least squares fit, 62
fractal, 51
fractional, 97
fractional Brownian motion, 102
frequency plot, 63
gain, 93, 94
Gaussian, 97
histogram, 63
incremental change, 61
increments, 143, 146, 166, 169, 189, 191, 192,

213, 216, 233, 237, 238, 254, 257, 275, 278,
295, 298, 299, 316, 319, 335, 336, 338, 353,
356, 357, 372, 375, 391, 394, 410, 413, 428,
430, 432, 447, 450, 451, 466, 469, 484, 486,
487, 503, 504, 507, 523, 526, 542, 545, 560,
562, 564, 579, 582, 583, 598, 601, 602, 617,
620, 636, 638, 639

time series increments
deriving, 6
H parameter, calculation, 46
histogram, 43
Hurst coefficient, calculation, 46
mean, 9, 14, 16, 44, 46
mean, calculation, 46
normalized histogram, calculation, 46
relation of root mean square, and average or mean,

43
revenue gain, 11
root mean square, 14, 15, 44, 46
root mean square, calculation, 46
root mean square, mean, standard deviation, alter-

native calculations, 46
standard deviation, 44, 46
standard deviation, calculation, 46
instantaneous analysis, 146, 169, 191, 216, 237,

257, 278, 298, 319, 336, 356, 375, 394, 413,
430, 450, 466, 486, 504, 526, 545, 562, 582,
601, 620, 638

integration, 57, 106
kurtosis, 92, 93
least squares fit, 62
logarithmic returns, 58
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logistic equation, 103
logistic function, 102, 146, 169, 192, 216, 238,

257, 278, 299, 319, 338, 357, 375, 394, 413,
432, 451, 469, 487, 507, 526, 545, 564, 583,
602, 620, 639

market simulation, 109
markets, 19
maximum Shannon probability, 61
mean, 63
pink noise, 98
root mean, 84, 96
root mean square, 61
sampling, 7, 8, 9, 65
Shannon probability, 60, 67, 92
simulation, 46
standard deviation, 63
statistical estimate, 72
stock wager optimization, 104, 106, 112, 125
time sampled, 15, 16
tutorial, 51
unfair returns, changing, 64
white noise, 98
zero free intervals, 82

timeliness
decision, 157, 180, 203, 227, 247, 268, 289, 309,

329, 348, 367, 385, 404, 423, 442, 460, 479,
498, 517, 537, 555, 574, 593, 612, 630, 649

trapezoid iteration, 96
tsavg

program, 65
tsavgwindow

program, 65
tsbinomial

program, 105
tsbrownian

program, 96
tscauchy

program, 140
tschangewager

program, 64
tscoin, 465, 484, 503, 704, 707, 710

program, 16, 27, 99, 447, 465, 484, 503, 522, 701,
704, 707, 710, 713

tscoins
program, 27, 100, 542, 560, 579, 716, 720, 723

tsderivative
program, 56, 143, 166, 189, 213, 236, 255, 275,

298, 317, 335, 355, 372, 391, 410, 430, 450,

466, 486, 504, 523, 542, 562, 582, 601, 618,
636

tsdeterministic
program, 71

tsdft
program, 71

tsdlogistic
program, 27, 103, 617, 729

tsfBm
program, 102

tsfraction
program, 42, 44, 46, 61, 143, 166, 189, 213, 233,

254, 275, 295, 316, 335, 353, 372, 391, 410,
428, 447, 466, 484, 503, 523, 542, 560, 579,
598, 617, 636

use in analytical methodology, 44
tsfractional

program, 97
tsgain

program, 93
tsgainwindow

program, 94
tsgaussian

program, 97, 635, 732
tshcalc

program, 44, 57, 147, 152, 170, 175, 192, 198,
217, 222, 239, 243, 259, 263, 279, 284, 301,
305, 321, 325, 338, 344, 358, 363, 376, 381,
395, 400, 414, 419, 432, 438, 452, 456, 469,
475, 488, 494, 507, 513, 527, 532, 546, 551,
564, 570, 584, 589, 603, 608, 622, 626, 639,
645

use in analytical methodology, 44
tshurst

program, 44, 58, 147, 152, 170, 175, 192, 198,
217, 222, 239, 243, 259, 263, 279, 284, 300,
305, 321, 325, 338, 344, 358, 363, 376, 381,
395, 400, 414, 419, 432, 438, 452, 456, 469,
475, 488, 494, 507, 513, 527, 532, 546, 551,
564, 570, 584, 589, 603, 608, 621, 626, 639,
645

use in analytical methodology, 44
tsinstant

program, 81
tsintegers

program, 106
tsintegrate

program, 57
tskurtosis
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program, 92
tskurtosiswindow

program, 93
tslogistic

program, 102
tslogreturns

program, 44, 46, 58, 154, 159, 177, 182, 200, 205,
224, 244, 245, 265, 286, 306, 307, 327, 345,
364, 383, 402, 421, 438, 439, 458, 476, 495,
513, 514, 534, 553, 570, 571, 589, 590, 608,
609, 628, 646, 647

programs, 43
use in analytical methodology, 44

tslsq
program, 27, 43, 44, 46, 62, 147, 152, 154, 159,

170, 175, 177, 182, 192, 198, 199, 205, 217,
222, 224, 239, 243, 244, 259, 263, 265, 279,
284, 285, 286, 301, 305, 306, 321, 325, 327,
338, 344, 358, 362, 364, 376, 381, 382, 383,
395, 400, 402, 414, 419, 420, 432, 438, 452,
456, 458, 469, 475, 488, 494, 507, 513, 527,
532, 534, 546, 551, 552, 564, 570, 585, 589,
604, 608, 622, 626, 628, 639, 645, 646

programs, 42
use in analytical methodology, 44

tsmarket
program, 21, 109, 598, 726

tsmath
program, 71, 635, 732

tsnormal
program, 43, 44, 46, 63, 143, 153, 159, 166, 176,

182, 189, 199, 205, 213, 223, 234, 243, 254,
265, 275, 285, 295, 305, 316, 326, 335, 344,
353, 364, 372, 382, 391, 401, 410, 420, 430,
438, 447, 457, 466, 475, 486, 494, 504, 513,
523, 533, 542, 552, 562, 570, 580, 589, 599,
608, 617, 627, 636, 645

use in analytical methodology, 44
tsnumber

program, 92
tspink

program, 98
tspole

program, 70
tsrms

program, 43, 44, 61
use in analytical methodology, 44

tsrmswindow
program, 65

tsrootmean
program, 84

tsrootmeanscale
program, 96

tsrunlength
program, 82

tsrunmagnitude
program, 84

tssample, 484, 503, 707, 710
program, 65, 484, 503, 707, 710

tsscalederivative
program, 95

tsshannon
program, 10, 44, 46, 60, 154, 159, 177, 182, 200,

205, 224, 245, 265, 286, 307, 327, 346, 364,
383, 402, 421, 440, 458, 477, 496, 515, 523,
534, 553, 572, 590, 609, 628, 647

use in analytical methodology, 44
tsshannonaggregate

program, 79
tsshannonfundamental

program, 92
tsshannonmax

program, 44, 46, 61, 161, 162, 184, 209, 229, 249,
251, 270, 292, 311, 313, 330, 331, 351, 368,
369, 387, 388, 406, 407, 425, 445, 461, 462,
481, 500, 520, 538, 539, 557, 577, 596, 614,
615, 631, 632, 651

use in analytical methodology, 44
tsshannonstock

program, 106
tsshannonvolume

program, 84
tsshannonwindow

program, 67
tsstatest

program, 72, 143, 166, 189, 213, 236, 254, 275,
297, 316, 335, 353, 372, 391, 410, 430, 448,
466, 486, 504, 523, 542, 562, 581, 600, 617,
636

tsstock
program, 112

tsstocks
program, 125

tsstockwager
program, 104

tstrade
program, 128

tstradesim
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program, 138
tsunfairbrownian, 465, 484, 503, 704, 707, 710

program, 10, 44, 46, 98, 142, 161, 184, 207, 209,
229, 249, 270, 291, 292, 311, 330, 350, 351,
368, 386, 387, 405, 406, 425, 444, 445, 461,
465, 481, 484, 500, 503, 519, 520, 522, 538,
557, 576, 577, 595, 596, 613, 614, 631, 651,
704, 707, 710, 713

use in analytical methodology, 44
tsunfaircoin

program, 53
tsunfairfractional

program, 106
tsunfraction

program, 80, 635, 732
tsunshannon

program, 92
tswhite

program, 98
tsXsquared

program, 65, 143, 166, 189, 213, 235, 254, 275,
296, 316, 335, 353, 372, 391, 410, 430, 448,
466, 486, 504, 523, 542, 562, 581, 600, 617,
636

U
unfair coin game, 52, 53

games, 53
unfair games

as an exploitable advantage, 5
unfair returns, changing

time series, 64
United States Bureau of Labor and Statistics, 372, 689
United States Department of Commerce, 213, 233, 254,

275, 295, 353, 391, 664, 667, 670, 673, 676,
686, 692

United States Electronic Component Production, 233,
667

analysis of increments, 234
chi-squared values of increments, 235
deterministic mechanism, 236
fiscal strategy, 243, 245, 246, 247
fiscal strategy, simulation, 249
growth rate, 245
H parameter analysis, 239, 243
Hurst coefficient analysis, 239, 241, 242, 243
increasing returns, 247
instantaneous analysis of normalized increments,

237

logarithmic returns, 243
Logistic function analysis, 238
management metric, 245
market simulation, 248
maximum Shannon probability, 249
number of companies, 247
optimum number of products, 246
product diversity, 246
product mix, 246
product portfolio, 246
rate of change, 239, 241, 242, 243
rate of revenue returns, consistency, 241
rate of revenue returns, forecastability, 241
rate of revenue returns, increase and decrease,242,

243
rate of revenue returns, predictability, 241
rate of revenue returns, range, 236, 242, 243
revenues, 239
Shannon probability, 245, 247
statistical estimates, 236
Time series analysis, 233
verification of analysis, 253
windows of opportunity, 239, 247

United States Electronic Component Shipments, 212,
663

analysis of increments, 213
chi-squared values of increments, 213
deterministic mechanism, 213
fiscal strategy, 223, 224, 225, 227
fiscal strategy, simulation, 229
growth rate, 224, 225
H parameter analysis, 217, 222
Hurst coefficient analysis, 217, 218, 219, 221, 222
increasing returns, 226
instantaneous analysis of normalized increments,

216
logarithmic returns, 223
Logistic function analysis, 216
management metric, 225
market simulation, 229
maximum Shannon probability, 229
number of companies, 226
optimum number of products, 225
product diversity, 225
product mix, 225
product portfolio, 225
rate of change, 217, 219, 221, 222
rate of revenue returns, consistency, 219
rate of revenue returns, forecastability, 219
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rate of revenue returns, increase and decrease, 222
rate of revenue returns, predictability, 219
rate of revenue returns, range, 213, 221, 222
revenues, 217
Shannon probability, 224, 227
statistical estimates, 213
Time series analysis, 213
verification of analysis, 232
windows of opportunity, 217, 227

United States Electronics Market, 254, 670
analysis of increments, 254
chi-squared values of increments, 254
deterministic mechanism, 256
fiscal strategy, 264, 266, 268
fiscal strategy, simulation, 270
growth rate, 266
H parameter analysis, 259, 263
Hurst coefficient analysis, 259, 260, 261, 263
increasing returns, 268
instantaneous analysis of normalized increments,

257
logarithmic returns, 265
Logistic function analysis, 257
management metric, 266
market simulation, 270
maximum Shannon probability, 270
number of companies, 267
optimum number of products, 266
product diversity, 266
product mix, 266
product portfolio, 266
rate of change, 259, 261, 263
rate of revenue returns, consistency, 261
rate of revenue returns, forecastability, 261
rate of revenue returns, increase and decrease, 263
rate of revenue returns, predictability, 261
rate of revenue returns, range, 256, 263
revenues, 259
Shannon probability, 265, 268
statistical estimates, 254
Time series analysis, 254
verification of analysis, 273
windows of opportunity, 259, 268

United States Employment Figures, 372, 689
analysis of increments, 372
chi-squared values of increments, 372
deterministic mechanism, 373
fiscal strategy, 381, 383, 384, 385
fiscal strategy, simulation, 386, 387

growth rate, 383, 384
H parameter analysis, 376, 381
Hurst coefficient analysis, 376, 378, 380, 381
increasing returns, 385
instantaneous analysis of normalized increments,

375
logarithmic returns, 382
Logistic function analysis, 375
management metric, 384
market simulation, 386
maximum Shannon probability, 387
number of companies, 385
optimum number of products, 384
product diversity, 384
product mix, 384
product portfolio, 384
rate of change, 376, 378, 380, 381
rate of revenue returns, consistency, 378
rate of revenue returns, forecastability, 378
rate of revenue returns, increase and decrease, 381
rate of revenue returns, predictability, 378
rate of revenue returns, range, 373, 380, 381
revenues, 376
Shannon probability, 383, 385
statistical estimates, 372
Time series analysis, 372
verification of analysis, 389
windows of opportunity, 376, 385

United States Federal Reserve Board, 410, 428, 695,
698

United States Gross Domestic Product, 353, 686
analysis of increments, 353
chi-squared values of increments, 353
deterministic mechanism, 356
fiscal strategy, 363, 365, 367
fiscal strategy, simulation, 368
growth rate, 365
H parameter analysis, 358, 363
Hurst coefficient analysis, 358, 359, 360, 362, 363
increasing returns, 366
instantaneous analysis of normalized increments,

356
logarithmic returns, 364
Logistic function analysis, 357
management metric, 365
market simulation, 367
maximum Shannon probability, 368
number of companies, 366
optimum number of products, 365
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product diversity, 365
product mix, 365
product portfolio, 365
rate of change, 358, 360, 362
rate of revenue returns, consistency, 360
rate of revenue returns, forecastability, 360
rate of revenue returns, increase and decrease, 362
rate of revenue returns, predictability, 360
rate of revenue returns, range, 356, 362
revenues, 358
Shannon probability, 364, 367
statistical estimates, 353
Time series analysis, 353
verification of analysis, 370
windows of opportunity, 358, 367

United States Information Systems Market, 295, 676
analysis of increments, 295
chi-squared values of increments, 296
deterministic mechanism, 298
fiscal strategy, 305, 307, 308, 309
fiscal strategy, simulation, 311
growth rate, 307
H parameter analysis, 301, 305
Hurst coefficient analysis, 300, 301, 302, 303,

304, 305
increasing returns, 309
instantaneous analysis of normalized increments,

298
logarithmic returns, 305
Logistic function analysis, 299
management metric, 307
market simulation, 310
maximum Shannon probability, 311
number of companies, 309
optimum number of products, 308
product diversity, 308
product mix, 308
product portfolio, 308
rate of change, 301, 303, 304
rate of revenue returns, consistency, 303
rate of revenue returns, forecastability, 303
rate of revenue returns, increase and decrease, 304
rate of revenue returns, predictability, 303
rate of revenue returns, range, 298, 304
revenues, 301
Shannon probability, 307, 309
statistical estimates, 297
Time series analysis, 295
verification of analysis, 315

windows of opportunity, 301, 309
United States Leading Economic Indicators, 390, 691

analysis of increments, 391
chi-squared values of increments, 391
deterministic mechanism, 391
fiscal strategy, 401, 402, 403, 404
fiscal strategy, simulation, 405, 406
growth rate, 402, 403
H parameter analysis, 395, 400
Hurst coefficient analysis, 395, 397, 399, 400
increasing returns, 404
instantaneous analysis of normalized increments,

394
logarithmic returns, 401
Logistic function analysis, 394
management metric, 403
market simulation, 405
maximum Shannon probability, 406
number of companies, 404
optimum number of products, 403
product diversity, 403
product mix, 403
product portfolio, 403
rate of change, 395, 397, 399, 400
rate of revenue returns, consistency, 397
rate of revenue returns, forecastability, 397
rate of revenue returns, increase and decrease, 400
rate of revenue returns, predictability, 397
rate of revenue returns, range, 391, 399, 400
revenues, 395
Shannon probability, 402, 404
statistical estimates, 391
Time series analysis, 391
verification of analysis, 408
windows of opportunity, 395, 404

United States M2, 409, 694
analysis of increments, 410
chi-squared values of increments, 410
deterministic mechanism, 410
fiscal strategy, 419, 421, 422, 423
fiscal strategy, simulation, 425
growth rate, 421
H parameter analysis, 414, 419
Hurst coefficient analysis, 414, 415, 416, 418, 419
increasing returns, 423
instantaneous analysis of normalized increments,

413
logarithmic returns, 420
Logistic function analysis, 413
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management metric, 421
market simulation, 425
maximum Shannon probability, 425
number of companies, 422
optimum number of products, 422
product diversity, 422
product mix, 422
product portfolio, 422
rate of change, 414, 416, 418, 419
rate of revenue returns, consistency, 416
rate of revenue returns, forecastability, 416
rate of revenue returns, increase and decrease, 419
rate of revenue returns, predictability, 416
rate of revenue returns, range, 410, 418, 419
revenues, 414
Shannon probability, 421, 423
statistical estimates, 410
Time series analysis, 410
verification of analysis, 425
windows of opportunity, 414, 423

United States Office Computer Market, 275, 673
analysis of increments, 275
chi-squared values of increments, 275
deterministic mechanism, 275
fiscal strategy, 284, 286, 287, 289
fiscal strategy, simulation, 291, 292
growth rate, 286, 287
H parameter analysis, 279, 284
Hurst coefficient analysis, 279, 281, 283, 284
increasing returns, 288
instantaneous analysis of normalized increments,

278
logarithmic returns, 285
Logistic function analysis, 278
management metric, 287
market simulation, 290
maximum Shannon probability, 292
number of companies, 288
optimum number of products, 287
product diversity, 287
product mix, 287
product portfolio, 287
rate of change, 279, 281, 283, 284
rate of revenue returns, consistency, 281
rate of revenue returns, forecastability, 281
rate of revenue returns, increase and decrease, 284
rate of revenue returns, predictability, 281
rate of revenue returns, range, 275, 283, 284
revenues, 279

Shannon probability, 286, 289
statistical estimates, 275
Time series analysis, 275
verification of analysis, 294
windows of opportunity, 279, 289

United States Treasury Bill Returns, 428, 697
analysis of increments, 430
chi-squared values of increments, 430
deterministic mechanism, 430
fiscal strategy, 438, 440, 442
fiscal strategy, simulation, 444, 445
growth rate, 440
H parameter analysis, 432, 438
Hurst coefficient analysis, 432, 433, 434, 436,

437, 438
increasing returns, 442
instantaneous analysis of normalized increments,

430
logarithmic returns, 438
Logistic function analysis, 432
management metric, 440
market simulation, 443
maximum Shannon probability, 445
number of companies, 441
optimum number of products, 440
product diversity, 440
product mix, 440
product portfolio, 440
rate of change, 432, 434, 436, 437
rate of revenue returns, consistency, 434
rate of revenue returns, forecastability, 434
rate of revenue returns, increase and decrease, 437
rate of revenue returns, predictability, 434
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