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Abstract
This study provides empirical evidence of the long-range dependence in the

returns and volatility of Brazilian Stock Market (BSM). We test for long memory
in the daily returns and volatility series. The measures of long-term persistence
employed are the modi…ed rescaled range (R/S) statistic proposed by Lo (1991),
the rescaled variance V/S statistic proposed by Giraitis et al. (2003), and the
semiparametric estimator of Robinson (1995). Further analysis is conducted via
FIGARCH model of Baillie et al. (1996). Signi…cant long memory is conclusively
demonstrated in the volatility measures, while there is a little evidence of long
memory in the returns themselves. This evidence disputes the hypothesis of mar-
ket e¢ciency and therefore implies fractal structure in the emerging stock market
of Brazil. We conclude, that stock market dynamics in the biggest emerging
market, even with its di¤erent institutions and information ‡ows than the devel-
oped market, present similar return-generating process to the preponderance of
studies employing other data. Our results should be useful to regulators, practi-
tioners and derivative market participants, whose success depends on the ability
to forecast stock price movements.

Keywords: Long Memory, R/S analysis, V/S analysis, Emerging Markets,
Brazilian Stock Market

JEL classi…cation: G1; G12; G14; G15



1. Introduction

It is commonly observed that asset returns, whilst approximately uncorrelated,
are temporally dependent. In particular, the autocorrelation functions of vari-
ous volatility measures - squared, log-squared and absolute returns - decay at a
very slow mean-reverting hyperbolic rate (see for example, Bollerslev and Wright
(2000) and Ding, Granger and Engle (1993)). This feature is labelled a “long
memory” or “long-range dependence”. Long memory describes the correlation
structure of a series at long lags. Such series are characterized by distinct but
nonperiodic cyclical patterns. Mandelbrot (1977) characterizes long memory
processes as having fractal dimensions. A widely accepted long memory time
series model is the fractionally integrated ARFIMA (p;d; q) model. These mod-
els were introduced to economics and …nance by Granger and Joyeux (1980) and
Hosking (1981), and have the desired ability to match the slow decay of the auto-
correlation functions. ARFIMA (p; d; q) models o¤ered an alternative to ARIMA
(p;d; q) process by not restricting the parameter d, to be limited to an integer
value but rather allowing it to take on fractional values.

Because nonzero values of the fractional di¤erencing parameter imply depen-
dence between distant observations, considerable attention has been directed to
the analysis of fractional dynamics in asset returns. Long-term dependencies have
been found in the returns of a variety of assets classes. Cheung (1993), Cheung
and Lai (1995), and Chou and Shih (1997) found evidence of a deterministic
process in exchange rate changes. Helms, Kaen, and Rosenman (1984), Kao and
Ma (1992), Eldridge, Bernhardt, and Mulvey (1993), Fang, Lai, and Lai (1994),
and Corazza, Malliaris, and Nardelli (1997) found long-term dependence in in-
dex and commodity futures returns. Greene and Fielitz (1977), Lo (1991), and
Nawrocki (1995) examined nonlinear regularities in U.S. equity market returns.
Jacobsen (1996), Cheung, Lai, and Lai (1993) examined long-term dependence in
developed European and Asian equity markets.

Despite the extensive research into the empirical and theoretical aspects of
this relation in the well-developed …nancial markets, usually the U.S. markets,
little is known about the information interaction in emerging securities markets.
Emerging markets are typically much smaller, less liquid, and more volatile than
well known world …nancial markets (Domowitz, Glen, and Madhavan (1998)).
There is also more evidence that emerging markets may be less informationally
e¢cient1. Further, the industrial organization found in emerging economies is

1 This could be due to several factors such as poor-quality (low precision) information, high
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often quite di¤erent from that in developed economies. All of these conditions and
others may contribute to a di¤erent dynamics underlying returns and volatility
in emerging stock markets.

Given the divergent conclusions of this research, further insights should be
obtainable through an investigation of an alternative stock market returns, in
particular, returns of an emerging market. The purpose of this study is to deter-
mine if long memory exists in the equity returns and volatility of the Brazilian
Stock Market (BSM). We pay particular emphasis on the implications of long
memory for market e¢ciency. According to the market e¢ciency hypothesis in
its weak form, asset prices incorporate all relevant information, rendering asset
returns unpredictable. The price of an asset determined in an e¢cient market
should follow a martingale process in which each price change is una¤ected by its
predecessor and has no memory. If the return series exhibit long memory, they
display signi…cant autocorrelation between distant observations. Therefore, the
series realizations are not independent over time and past returns can help pre-
dict futures returns, thus violating the market e¢ciency hypothesis. The second
purpose is to examine the sensitivity of the …ndings to the choice of method of
analysis. Our focus on the Brazilian Stock Market is appropriate for a number
of reasons. First, Brazil is one of the countries in the Mercosur formed by the
four Latin American countries and is becoming an increasingly important compo-
nent of the regional and global economy. Its equity markets are integral segment
of the South-American …nancial markets, and therefore, understanding the be-
havior of these markets is thus an important undertaking. Second, this market
allows comparison of developed markets with maturing markets to determine if
the returns-generating processes and presence or absence of chaos depends on the
degree of market development. Third, the presence of long-memory in asset prices
would provide evidence against the weak form of market e¢ciency and hence a
potentially predictable component in the series dynamics. Fourth, the presence
of fractal structure in equity prices may re‡ect fractal dynamic in the underlying
economy which, in turn, would be of value in modelling business cycles. Fifth, as
the volatility dynamic plays a very important role in derivative pricing, it may
be bene…cial to incorporate the long-term volatility structure in deriving pricing
formulas. Indeed, Bollerslev and Mikkelsen (1996) presented results showing that
it may be important to model the long memory volatility correctly when pricing
contracts with long maturity, such as index options and futures.

Based on these results, we investigate the long-range dependence in the re-

trading costs, and/or less competition due to international investment barriers. For recent
research on emerging markets and discussions of some of the di¤erences between emerging and
developed markets, see Errunza (1994); and Harvey (1995).
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turns of the largest emerging markets in the world, namely Brazil. We investigate
this property in the daily returns, from January 03, 1994 to May 17, 2002, with
2063 daily observations. We analyze the continuously compounded rate of re-
turn. A further application for long memory analysis lies in the dependence in
the volatility of …nancial time series. We investigate this property in the mar-
ket absolute returns, squared returns and modi…ed log-squared returns. We use
the modi…ed rescaled range R/S statistic developed by Lo (1991), the rescaled
variance V/S statistic developed by Giraitis et al. (2003) and the semiparamet-
ric Gaussian estimator of Robinson (1995). Besides testing for long memory, we
model long-range dependence in volatility by using the FIGARCH (Fractionally
Integrated GARCH) model of Baillie et al. (1996). Signi…cant long memory is
demonstrated in the volatility series, with a little evidence of dependence in the
returns themsevles. This evidence is invariant to the method used in either testing
or estimating the long memory components. Our …ndings for returns do not fall
in line with those on other countries, while those regarding volatility are consis-
tent consistent with the evidence reported by studies on developed markets. We
conclude that the Brazilian market, even with its di¤erent institutions and infor-
mation ‡ows than the developed market, presents similar fractal market structure
to the preponderance of studies employing other developed markets data. The
implication of our results is that di¤erences in institutions and information ‡ows
in Brazil are not that important enough to a¤ect the valuation process of equity
securities and produce similar results to those occurring in developed markets.

The paper is organized as follows. Section 2 provides an overview of the
theoretical background and measures of volatility. Section 3 describes the tests
and estimators employed. Section 4 presents the empirical results. Section 5
contains a summary of our …ndings and concluding remarks.

2. Long memory in volatility

Models with long memory in the volatility process have been proposed and found
to match the autocorrelation functions of squared, log-squared and absolute asset
returns. These include the fractionally integrated GARCH, or FIGARCH, model
in Bollerslev and Mikkelsen (1996) and Baillie, Bollerslev and Mikkelsen (1996)
and the fractionally integrated stochastic volatility model in Breidt, Crato and
de Lima (1998). These models can imply that the autocorrelation functions of
squared, log-squared and / or absolute returns have the same hyperbolic rate of
decay as the volatility process.

To de…ne a long memory model formally, a stationary stochastic process fXtg
is called a long-memory process if there exists a real number H and a …nite
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constant C such that the autocorrelation function ½ (k) has the following rate of
decay:

½ (k) » Ck2H¡2 as k ¡!1 (1)

The parameter H, called the Hurst exponent, may represent the long-memory
property of the time series. A long-memory time series is also said fractionally
integrated, where the fractional degree of integration d is related to the parameter
H by the equality d = H ¡ 1=2: If H 2 (1=2;1); i.e., d 2 (0;1=2); the series is
stationary and said to have long-memory. If H > 1; i.e., d > 1=2, the series is
nonstationary. If H 2 (0; 1=2); i.e., d 2 (¡1=2; 0), the series is called antipersis-
tent. Equivalently, a long-memory process can be characterized by the behavior
of its spectrum f( j̧), estimated at the harmonic frequencies ¸j = 2¼j=n; with
j = 1; ::::; [n=2]; near the zero frequency:

lim
j̧!0+

f( j̧) = C¸
¡2d
j (2)

where C is a strictly positive constant and n is the sample size. The slow
rate of decay of the autocorrelations of log-squared, squared and absolute returns
motivates the construction of models with long memory in the volatility process.

3. Empirical methodology

3.1. The modi…ed rescaled range analysis (R/S)

To detect for long-range dependence, Mandelbrot (1972) suggested the use of the
range over standard deviation, R/S, which was originally developed by Hurst
(1951). Lo (1991), however, showed that this statistic may be signi…cantly biased
when there is short-term dependence in the form of heteroskedasticity or autocor-
relation, and suggested the use of the modi…ed rescaled range statistic. To de…ne
the statistics formally, consider a sample of returns, X1;X2;X3; :::::::; Xn and let
Xn denote the sample mean (1=n)

P
j Xj: The rescaled range statistic, denoted

by Qn is de…ned as:

Qn = 1=b¾x

2
4Max

kX

j=1

(Xj ¡Xn)¡Min
kX

j=1

(Xj ¡Xn)
3
5 (3)

for 1 · k · n; where b¾x is the ML estimate of the standard deviation:
The …rst term in Qn is the maximum over k of the partial sums of the …rst k
deviations of Xj from the sample mean. Since the sum of all n deviations of the
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X0js from their mean is zero, this maximum is always nonnegative. The second
term is the minimum over k of this same sequence of partial sums; it is always
nonpositive. The di¤erence of the two quantities, called the range, is therefore
always nonnegative2 .

The di¤erence between the traditional rescaled range and Lo’s modi…ed sta-
tistic is the denominator. The modi…ed rescaled range statistic is:

Qn;q = 1=b¾n(q)

2
4Max

kX

j=1

(Xj ¡Xn)¡Min
kX

j=1

(Xj ¡Xn)
3
5 (4)

for 1 · k · n;where b¾2n(q) = ¾2x+2
Pq
j=1wj(q)b°j ;with wj(q) = 1¡ j=(q+1);

q < n and b¾2x and b°j are the sample variance and autocovariance, respectively.
The expression for Qn di¤ers from Qn;q only in its denominator, which is the
square root of a consistent estimator of the partial sum’s variance. If fXtg is
subject to short-range dependence, the variance of the partial sum is not simply
the sum of the variances of the individual terms, but also includes the autocovari-
ances. That is the estimator b¾n(q) involves not only sums of squared deviations
of Xj , but also its weighted autocovariances up to lag q. The weights wj(q) are
those suggested by Newey and West (1987) and always yield a positive b¾2n(q) , an
estimator of 2¼ times the spectral density function of Xt at frequency zero using
a Bartlett window.

3.2. The rescaled variance V/S analysis

Equivalently, we can test for I(0) against fractional alternatives by using the
KPSS test of Kwiatkowski, Phillips, Schmidt, and Shin (1992), as Lee and Schmidt
(1996) have shown that this test has a power equivalent to Lo’s statistic against
long-memory processes. The KPSS statistic for testing for long memory in a
stationary sequence is given by:

KPSS(q) =
1

n2b¾2(q)

nX

k=1

S2k (5)

where b¾2(q) is the Newey and West (1987) heteroskedastic and autocorrelation
consistent variance estimator of the centered observations (Xj ¡Xn); for lag q
and with Sk =

Pk
j=1(Xj ¡Xn):

2 Mandelbrot and Wallis (1969) demonstrated the superiority of R/S analysis in determining
long-range dependence. They showed that the R/S statistic can detect long-range dependence
in highly non-Gaussian time series with large skewness and kurtosis.
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Giraitis et al. (2003) have proposed a centering of the KPSS statistic based
on the partial sum of the deviations from the mean. They called it a rescaled
variance test V/S as its expression given by:

V=S =
1

n2b¾2n(q)

2
64
nX

k=1

0
@

kX

j=1

(Xj ¡Xn
1
A
2

¡ 1
n

0
@

nX

k=1

kX

j=1

(Xj ¡Xn
1
A
2
3
75 (6)

can be equivalently rewritten as:

V=S = n¡1
bV (S1; :::::::::::Sn)

b¾2n(q)
(7)

where Sk are again the partial sums of the observations. The V=S statistic is
the sample variance of the series of partial sums fStgnt=1: The limiting distribution
of this statistic is a Brownian bridge of which the distribution is linked to the
Kolmogorov statistic. This statistic has uniformly higher power than the KPSS,
and is less sensitive than the Lo statistic to the choice of the order q: For 2 ·
q · 10, the V=S statistic can appropriately detect the presence of long-memory
in the level series, although, like most tests and estimators, this test may wrongly
detect the presence of long-memory in series with shifts in the levels.

3.3. Semiparametric gaussian estimator

To estimate a long memory time series model, one can rely on di¤erent proposed
methods. However, since we are mainly interested in the long memory parame-
ter d, this may be estimated by semiparameteric methods. Of these, the log-
periodogram regression estimator is the most widely used. It was …rst proposed
by Geweke and Porter-Hudak (1983). Robinson (1995) proposed an alternative
semiparametric estimator of the long memory parameter d, which is asymptot-
ically more e¢cient and the properties of which can be established under some
mild conditions. Robinson (1995) estimator is based on the approximation of the
spectrum of a long-memory process in the Whittle approximate maximum likeli-
hood estimator. An estimator of the fractional degree of integration d is obtained
by solving the minimization problem:

f bC; bdg =argmin
C;d

L(C; d) =
1

m

mX

j=1

(
ln(C¸¡2dj ) +

I(¸j)

C¸¡2dj

)
(8)

where I(¸j) is evaluated for a range of harmonic frequencies j̧ = 2¼j=n,
j = 1; ::::; m ¿ [n=2] bounded by the bandwidth m;which increases with the
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sample size n but more slowly: the bandwidth m must satisfy 1
m +

m
n ! 0 as

n!1: If m = n=2; this estimator is the Gaussian estimator for the parametric
model f(¸) = C¸¡2d: After eliminating C, the estimator bd is equal to:

bd=argmin
d

8
<
:ln(

1

m

mX

j=1

I(¸j)

¸¡2dj

)¡ 2d
m

mX

j=1

ln( j̧)

9
=
; (9)

4. Data and empirical results

To analyze the Brazilian Stock Market (BSM), we use the daily index of the São
Paulo Stock Exchange (BOVESPA). The period examined is from January 03,
1994 through May 17, 2002 with 2063 observations. In the case of a day following
a nontrading day, the return is calculated using the closing price indices of the
latest trading day and that day. We analyze the continuously compounded rate
of return, rt = log(Xt=Xt¡1), where Xt denotes the stock index in day t. We
also investigate the long-memory in the volatility by considering the series of
absolute returns jrtj, squared returns r2t , and log-squared returns r¤t as proxy of
the volatility measures3.

A problem often arises when dealing with log-squared returns; if the asset
returns is very close to zero, then the log-squared transformation yields a large
negative number. Such an observation can then greatly a¤ect the results of sub-
sequent data analysis. In the extreme case, if the asset return is equal to zero,
then the log-squared transformation is not even de…ned. Fuller (1996) proposed
a slight modi…cation of the log-squared transformation, which does not converge
to minus in…nity as the argument converges to zero. This speci…es that the trans-
formed series of asset returns is:

r¤t = log(r
2
t + ¿s

2)¡ ¿s2

(r2t + ¿s
2)

(10)

where s2 is the sample variance of rt and ¿ is a small constant. ¿ is set to
0.02, following Fuller (1996).

Table 1 summarizes the statistical properties of the returns: we show the
…rst four moments, the autocorrelation coe¢cient at lag one and the Ljung and
Box test statistic for autocorrelation in returns and squared returns. First, the
higher variability of the Brazilian stock market returns is visible. Considering the

3 There is little theoretical reason to prefer one volatility measure over any of the others.
Lobato and Savin (1998) use squared returns, Granger and Ding (1996) use absolute returns,
Breidt, Crato, and de Lima (1998) use log-squared returns and Bollerslev and Wright (2000) use
all three of these volatility measures.
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autocorrelation of returns, at lag one the BOVESPA has a value of 0.080 and is
signi…cant at the 5% level. In the table, we further observe two stylized facts for
return series which has universal validity, as documented in the survey by Pagan
(1996). The …rst stylized fact is nonnormality of the unconditional distribution
of returns in the form of leptokurtosis. This phenomena has been termed fat
tails. The second stylized fact is that the volatility of returns is time-varying.
This dependence is indicated by the signi…cant Ljung-Box Q(20) test statistics
showing strong autocorrelation in squared returns. Thus, this time-dependence in
volatility shows that a speci…cation which omits the dynamics in variance neglects
an important characteristic of the time series.

Table 1 also includes the implementation of KPSS tests proposed by Kwiatkowski
et al. (1992) for the null hypothesis of I(0) against long-memory alternatives. We
consider two tests, denoted by Const and Trend based on a regression on a con-
stant, and on a constant and time trend, respectively. As the table shows, the
trend-stationarity null hypothesis is strongly rejected for return series. As a re-
sult, the return series cannot be characterized as I(0) processes, which suggests
that a fractionally di¤erenced process may be an appropriate representation for
these series.

In Table 2, we report the results from the R/S statistic. R/S is extremely
sensitive to the order of truncation q and there is no statistical criteria for choosing
q in the framework of this statistic. Andrews (1991) rule gives mixed results. If
q is too small, this estimator does not account for the autocorrelation of the
process, while if q is too large, it accounts for any form of autocorrelation and the
power of this test tends to its size. Since there is no data driven guidance for the
choice of this parameter, we consider di¤erent values for q = 0; 2;4;6; 8; 10 and
15: At the 5% signi…cance level, the null hypothesis of a short-memory process is
rejected if the modi…ed R/S statistic does not fall within the con…dence interval
[0.809, 1.862].

For returns, the null hypothesis of short-memory is not rejected at any lag
order. However, for volatility measures, the null hypothesis of short-memory is
rejected for all lag orders, except for q = 10 and 15 for those of absolute and
squared returns. The result illustrates the issue of the choice of the parameter
q: In the case of absolute and squared returns, for q = 0; 2;4;6 and 8; we reject
the null hypothesis of no long-memory. However, when q = 10; and 15; this null
hypothesis is accepted, as the power of this test is too low for these levels of
truncation orders. The results for the modi…ed squared returns di¤er very much
from those of the other two measures of volatility. In all cases, the null hypothesis
of no long memory is rejected at the 5% signi…cance level. This indicates that
the BSM volatility measures are not IID and that certain patterns occur too
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frequently than otherwise be the case if the series were truly random.
In Table 3, we report the V=S statistic results. We consider the same trunca-

tion lag of q: There is again no evidence of long memory in the returns series, but
strong and robust evidence of long range dependence in the volatility series. In
only one case, where q = 15, the null hypothesis can not be rejected for squared
returns. The presence of long memory is similar in value across all volatility mea-
sures and for each lag order. Our results fall in line with those reported by the
R/S analysis. The combined evidence based on R/S and V/S statistics is a good
representation of the data generating process, and suggests that a fractionally
di¤erenced process is the appropriate representation for these series.

To complement R/S and V/S analysis, we apply Robinson (1995) estimator to
returns and volatility measures, using the following bandwidth parameters: m =
n=2; n=3;n=4;n=5; n=6; and n=7: Our results are further supported by using the
Geweke and Porter-Hudak (1983) estimator. The results from the two estimators
are reported in Tables 4 and 5, respectively. Looking at returns, both estimators
present similar results. We …nd no evidence of long memory at high periodogram
points, in contrast to some some long memory when m is low. The existence of
some long memory in the returns does not match the results obtained in Tables
2 and 3 (R/S and V/S analysis), since both tests were not able to reject the
null hypothesis of short memory. Regarding volatility, signi…cant and robust
evidence of long memory can be found in the absolute returns, squared returns and
modi…ed log-squared returns. The estimated d values range between 0 and 0:5;
which is the property of the fractionally integrated processes, in their ability to
capture the long memory in returns and volatility when the fractional parameter
d is in the range (0 < d < 1=2), the ACF of such a model declines hyperbolically
to zero, i.e., at a much slower rate of decay than the exponential decay of standard
ARMA (d = 0) process. The results are not too sensitive to the bandwidth, nor
are they sensitive to the choice of volatility measures. However, we obtain lower
estimates of d with the squared returns than with the other volatility measures,
and the evidence of long memory is qualitatively the same across di¤erent choices
of the periodogram points.

4.1. Further analysis: long memory via FIGARCH

Motivated by the presence of long-memory in the squared and absolute returns of
various …nancial asset prices, Baillie, Bollerslev, and Mikkelsen (1996) proposed
the fractionally integrated generalized autoregressive conditional heteroskedastic-
ity (FIGARCH) model by combining the fractionally integrated process for the
mean with the regular GARCH process for the conditional variance. This process
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implies a slow hyperbolic rate of decay for lagged squared innovations and persis-
tent impulse response weights. A FIGARCH process exhibits the characteristic
volatility e¤ect captured by standard GARCH models, but with the di¤erence
that shocks to the error process die away at a slower, hypergoemetric rate rather
than the short-term exponential decay typical of a short memory process. The
FIGARCH (1; d; 1) process is de…ned as:

rt = ¹+ ²t; ²t=t » ¢(0;¾2t ) (11)

¾2t = w+ f1 ¡ [1 ¡¯1(L)]¡1(1 ¡ Á1(L))[1 ¡L]dg²2t (12)

where ¹ is the unconditional mean of the process, t is the information set
at time t, ¢ is the conditional distribution, L is the lag operator and w;¯1;Á1
and d are parameters to be estimated with d being the fractional integration
parameter. The FIGARCH (1; d; 1) model nests the GARCH (1;1) model. For
d= 0 , then equation 14 reduces to the standard GARCH (1; 1) model; and when
d= 1; then equation 12 becomes the Integrated GARCH, or IGARCH (1;1), and
implies complete persistence of the conditional variance to a shock in squared
returns. As advocated by Baillie et al. (1996), the IGARCH process may be
seen too restrictive as it implies in…nite persistence of a volatility shock. Such a
dynamics is not consistent with stylized facts. By contrast, for 0 < d < 1, the
FIGARCH model implies a long-memory behavior and slow rate of decay after a
volatility shock.

As in the case of the GARCH model, the estimation of the FIGARCH model
relies on the quasi maximum likelihood (QML) procedure. Following Bollerslev
and Wooldrige (1992) one performs a correction of the standard errors of the
estimates. Concerning the estimation procedure, two important points need to be
made. The …rst one concerns the choice of the underlying distribution. As shown
by Baillie et al. (1996) and Bollerslev and Wooldridge (1992), the QML estimates
obtained with a Gaussian assumption behave relatively well. Nevertheless, as
explained by Pagan (1996), a Student’s-t distribution may be more appropriate
to account for the leptokurticity characterizing the high frequency …nancial data.
In this respect, we compare the results obtained with the Normal and with the
Student’s-t distributions. Therefore, the log-likelihood to be maximized becomes:

Ln(:) = T[logf¡f(º + 1)=2g ¡ log¡(º=2)¡ (1=2) log¼(º ¡ 2)]¡ (15)

¡(1=2)
TX

t=1

flog(¾2t ) + ((º + 1)[log(1 + ²2t ¾¡2t (º ¡ 2)¡1]g;
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where ¡(:) is the gamma function and º is the degrees of freedom parameter. A
second point concerns the minimum number of observations required to estimate
the FIGARCH model. This number is related to the order of the expansion of
the fractional …lter (1¡L)d. Because of the positive value of d, it is advisable to
use a su¢ciently high truncation lag order. In this respect, we chose a truncation
order equal to 1000.

In order to assess the relevance of the FIGARCH speci…cation, we also esti-
mate a GARCH model. The estimation results are included in Table 6. Unsur-
prisingly, the Student’s-t distribution is found to outperform the normal. Simple
likelihood ratio tests point out that the degree of freedom º needs to be included
in the estimation procedure. As a whole, Table 6 suggests that the FIGARCH
speci…cation is supported by the data. Indeed, in all cases, the parameter d is
highly signi…cantly di¤erent both from 0 and 1, rejecting the validity of both
the GARCH and the IGARCH speci…cations. Hence, there is strong support for
the hyperbolic decay and persistence as opposed to the conventional exponential
decay associated with the stable GARCH (1,1). Finally, a sequence of diagnostic
statistics is provided and fail to detect any need to further complicate the model.
These tests are skewness (b3) and kurtosis (b4) values as well as the Box-Pierce
statistics of the residuals (Q(20)) and the squared residuals (Q2(20)) at lag equal
to 20. In general, the estimations carried out with assumed conditional Gaussian
errors exhibit kurtosis, which tends to motivate further the use of a Student’s-t
distribution. As a whole, our MA(1) - FIGARCH (1; d; 1) model and Student’s-t
distribution seems a satisfying representation to our data.

Signi…cant evidence of long memory can be found in the volatility series; we
…nd values of d di¤erent from zero and consistently signi…cant. The evidence of
long memory in the volatility is qualitatively the same across the di¤erent models.
The estimated d values range between 0 and 0:5; a property of a process, in which
its autocorrelation function declines hyperbolically to zero, i.e. at a much slower
rate of decay than the exponential decay of standard ARMA (d= 0) process.

5. Conclusion

One of the important questions in studies of asset returns and volatility has been
how long the e¤ects of shocks persist. This is particularly important for emerging
…nancial markets. This study attempts to investigate the long memory property
in returns and volatility of the Brazilian Stock Market (BSM). Long memory
is investigated via R/S statistic proposed by Lo (1991), V/S statistic developed
by Giraitis et al. (2003) and the semiparametric Gaussian estimator of Robinson
(1995). We also focus on the long memory in volatility by estimating the fractional
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parameter dwithin the FIGARCH model of Baillie et al. (1996). Signi…cant long
memory is found in absolute, squared, and modi…ed log-squared returns, but not
in the returns. These series exhibit signi…cant long-range dependence, and similar
to Ding et al. (1993) …ndings, the evidence of long memory is much stronger for
absolute returns than for squared returns. In general, our results support the
claim that the stock market returns in this emerging market has an underlying
fractal structure, and disputes the hypothesis of market e¢ciency. Thus, we
conclude that returns and volatility of Brazilian Stock Market (BSM), even with
its di¤erent institutions and information ‡ows than the developed market, present
similar return-generating process and are in tandem with those patterns observed
in the more mature stock markets of the developed countries. The implication
is that di¤erences in institutions and information ‡ows in Brazil are not that
important enough to a¤ect the valuation process of equity prices and produce
similar results to those occurring in developed markets.
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Table 1: Statistical properties of returns
Mean S.D. Skewness Kurtosis b½rt(1) Qrt(20) b½r2t (1) Qr2t

(20)
0.0017 0.0292 0.591 12.25 0.080* 81.18* 0.195* 498*
KPSS Statistic Critical values

0.1 0.05 0.01
Const 1.125* 0.347 0.463 0.739
Trend 0.229* 0.119 0.146 0.216

Notes: * indicates signi…cance at the 5% level of the null hypothesis of I(0)
against long-memory alternatives.

Table 2: Modi…ed rescaled range (R/S) statistic for the returns, absolute,
squared and modi…ed log-squared returns

Lag order R/S statistic
q rt jrtj r2t r¤t
0 1.835 2.813¤ 2.813¤ 4.686¤

2 1.750 2.378¤ 2.378¤ 3.969¤

4 1.759 2.128¤ 2.128¤ 3.466¤

6 1.797 1.980¤ 1.980¤ 3.134¤

8 1.795 1.869¤ 1.869¤ 2.891¤

10 1.744 1.781 1.781 2.702¤

15 1.655 1.626 1.626 2.361¤

Notes: * indicates signi…cance at the 5% level. At the 5% signi…cance level,
the null hypothesis of a short-memory process is rejected if the modi…ed R/S
statistic does not fall within the con…dence interval [0.809, 1.862]. rt, jrtj, r2t ,
r¤t represent returns, absolute, squared and modi…ed log-squared returns, respec-
tively.
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Table 3: Variance Rescaled (V/S) statistic for the returns, absolute, squared
and modi…ed log-squared returns

Lag order V=S statistic
q rt jrtj r2t r¤t
0 0.184 1.524¤ 0.553¤ 1.596¤

2 0.167 0.947¤ 0.395¤ 1.145¤

4 0.169 0.695¤ 0.316¤ 0.873¤

6 0.176 0.561¤ 0.274¤ 0.714¤

8 0.176 0.472¤ 0.244¤ 0.607¤

10 0.166 0.411¤ 0.221¤ 0.531¤

15 0.149 0.314¤ 0.184 0.405¤

Notes: * indicates signi…cance at the 5% level. The critical value is 0.1869
at 5% signi…cance level. rt, jrtj, r2t , r¤t represent returns, absolute, squared, and
modi…ed log-squared returns, respectively.
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Table 4: Semiparametric estimates of d for returns, absolute, squared and
modi…ed log-squared returns, based on Robinson (1995)

Bandwidth d estimates
m rt r2t jrtj r¤t

1031
0:015
(0:020; 0:458)

0:230¤

(0:0207;0:000)
0:335¤

(0:020; 0:000)
0:231¤

(0:02; 0:000)

687
0:009
(0:025; 0:705)

0:235¤

(0:0252;0:000)
0:351¤

(0:025; 0:000)
0:290¤

(0:025;0:000)

515
0:0036
(0:029; 0:899)

0:251¤

(0:029;0:000)
0:404¤

(0:029; 0:000)
0:317¤

(0:029;0:000)

412
0:0846¤

(0:0326; 0:009)
0:268¤

(0:032;0:000)
0:424¤

(0:032; 0:000)
0:321¤

(0:032;0:000)

343
0:133¤

(0:0358; 0:000)
0:263¤

(0:035;0:000)
0:449¤

(0:035; 0:000)
0:346¤

(0:035;0:000)

294
0:217¤

(0:038; 0:000)
0:286¤

(0:038;0:000)
0:498¤

(0:038; 0:000)
0:398¤

(0:038;0:000)

Notes: * indicates signi…cance at the 5% level. rt, jrtj, r2t , r¤t represent returns,
absolute, squared and modi…ed log-squared returns, respectively. m represents
the number of periodogram points. Standard errors and probabilities are provided
in parentheses.
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Table 5: Log periodogram estimates of d for returns, absolute returns, squared
returns and modi…ed log-squared returns based on Geweke and Porter-Hudak

(1983)
Bandwidth d estimates
m rt r2t jrtj r¤t

1031
0:0285

(0:015; 0:066)

0:258¤

(0:0155;0:000)

0:365¤

(0:015; 0:000)

0:257¤

(0:015;0:000)

687
0:0241
(0:019; 0:205)

0:249¤

(0:0190;0:000)
0:382¤

(0:019; 0:000)
0:315¤

(0:019;0:000)

515
0:0179
(0:022; 0:415)

0:263¤

(0:022;0:000)
0:426¤

(0:022; 0:000)
0:347¤

(0:022;0:000)

412
0:0694¤

(0:024; (0:004)

0:270¤

(0:024;0:000)

0:436¤

(0:024; 0:000)

0:351¤

(0:024;0:000)

343
0:104¤

(0:0269; 0:000)
0:273¤

(0:026;0:000)
0:456¤

(0:026; 0:000)
0:372¤

(0:026;0:000)

294
0:173¤

(0:0291; 0:000)
0:309¤

(0:029;0:000)
0:498¤

(0:029; 0:000)
0:410¤

(0:029;0:000)

Notes: * indicates signi…cance at the 5% level. rt, jrtj, r2t , r¤t represent returns,
absolute, squared and modi…ed log-squared returns, respectively. m represents
the number of periodogram points. Standard errors and probabilities are provided
in parentheses.
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Table 6: Quasi maximum likelihood estimates of a FIGARCH model
FIGARCH (N) FIGARCH (St) GARCH (N) GARCH (St)

¹ 0.183 (3.841)* 0.169 (3.694)* 0.182 (3.807)* 0.167 (3.621)*
µ1 0.0729 (2.94)* 0.075 (3.159)* 0.075 (3.079)* 0.074 (3.122)*
! 0.275 (3.391)* 0.164 (2.299)* 0.235 (4.287)* 0.132 (3.007)*
¯1 0.578 (4.435)* 0.629 (5.571)* 0.805 (35.53)* 0.858 (37.84)*
Á1 0.128 (1.641) 0.147 (1.972)* 0.170 (8.181)* 0.128 (5.929)*
d 0.325 (5.270)* 0.348 (5.446)* - -
º - 7.767 (7.112)* - 8.140 (6.714)*
Ln (L) -4729.61 -4686.88 -4729.93 -4688.4
Q(20) 35.34 27.30 26.809 26.22
Q2(20) 11.07 18.65 17.41 20.68
b3 -0.043 -0.274 -0.262 -0.289
b4 4.496 2.296 1.947 2.286

Notes: t-statistics of maximum likelihood estimates are in brackets. * indi-
cates rejection at the 5% level. St and N refer, respectively, to estimations with
the Student and the Normal distributions. Ln (L) is the value of the maximized
log likelihood. The sample skewness and kurtosis refer to the standarized resid-
uals. The Q(20) and Q2(20) statistics are the Ljung-Box test statistics for 20
degrees of freedom to test for serial correlation in the standarized residuals and
squared standarized residuals.
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