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INTRODUCTION

An important issue in the study of financial markets is the evaluation of
the stochastic memory of market returns. If returns have a stochastic
memory, it is possible to obtain increased profits on the basis of price-
change predictions. Such predictability would contradict the efficient
market hypothesis (see e.g., Ball, 1989), which states that increased prof-
its cannot be made consistently by trading on the basis of information
given by past prices.

Over twenty years ago, Mandelbrot’s work (1965, 1972) on the use
of the Rescaled Adjusted Range Statistic (R/S) stimulated the use of this
statistic for analyzing the fractal behavior and stochastic memory of fi-
nancial time series. Using R/S analysis, Greene and Fielitz (1977), Booth,
Kaen, and Koveos (1982a, 1982b), and other researchers arrived at the
surprising conclusion that some financial time series have long-memory
behavior. In particular, Helms, Kaen, and Rosenman (1984) analyzed
price changes in futures’ contracts and claimed that the returns of the
series displayed long-memory characteristics. The claim of long memory
on commodity futures’ price changes goes further than the simple claim
of some statistical dependence that could improve the predictability of
the prices: It states that correlations between price changes die out very
slowly, in a sense made precise below, so that the actual movements in
the market are influenced stochastically by the recent to the most remote
past.

More recent work on R/S analysis (Lo, 1991) has demonstrated that
this statistic is biased when short-range correlation is present in a series,
calling into question earlier claims of persistence in futures’ returns. Us-
ing new statistical tools, many authors (Cheung & Lai, 1993; Crato,
1994; Fung & Lo, 1993) have found that financial returns on the major
markets have no significant memory. However, the original claims of
Helms et al. (1984) concerning the memory of futures’ returns never were
reevaluated in light of the new statistical tools. Doukas (1990) found unit
roots on most of the returns series, although the existence of a unit root
does not preclude long-memory behavior. For a long time, the issue was
not investigated further. Recently, Barkoulas, Labys, and Onochie (1997)
used the classical R/S analysis to reevaluate the memory of futures’ re-
turns. Studying a large new data set, they claimed to have found persistent
long memory in a significant group of futures’ contracts.

This paper rexamines the memory of futures’ returns using three
different methods: (i) a modified version of the R/S statistic developed by
Lo (1991), (ii) the nonparametric spectral test of Lobato and Robinson
(1998), and (iii) a test based on the estimator of the long-memory param-
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eter due to Geweke and Porter-Hudak (1983), henceforth GPH. Our
results indicate no long-memory behavior in futures’ returns. However, a
similar analysis applied to the volatility of the returns finds overwhelming
evidence of persistence in volatility. This finding is consistent with recent
work by Ding, Granger, and Engle (1993), de Lima and Crato (1993),
Bollerslev and Mikkelsen (1996), Baillie, Bollerslev, and Mikkelsen
(1996), and Breidt, Crato, and de Lima (1998), among others, which
finds compelling evidence that the volatility of financial markets displays
a long-memory structure. As Engle (1982), Bollerslev (1986), and others
have shown, the volatility of financial returns may display a strong auto-
correlation structure while the level of the returns display no memory and
a random-walk-type behavior. This finding in futures’ series behavior adds
to the emerging literature on persistent volatility in financial markets and
suggests the use of new methods of forecasting volatility, assessing risk,
and optimizing portfolios in futures’ markets.

The plan of the rest of the paper is as follows. First we will define
the concepts of short and long memory of a random process and describe
tests for long-memory behavior. Then we will describe the data sets and
present the new empirical findings for both futures’ returns and volatili-
ties. We then will introduce the long-memory stochastic volatility (LMSV)
model and illustrate its use for a particular series of futures’ contract
returns.

THE MEMORY OF A TIME SERIES

The expected relationship between the value of a process at time t and
its value at time t � k is a measure of the correlation present in the series.
A stationary time series has correlation that depends only on the time lag
k between the two observations, and decays to zero as k increases, re-
flecting the fact that the influence of the past values decreases with the
lags under consideration. The speed of this decay is a measure of the
stochastic “memory” of the random process.

A process in which all observations are uncorrelated is called a white
noise, and the random process is said to have no memory. One commonly
assumed implication of the Efficient Market Hypothesis is that futures’
returns follow such a process. Processes with short memory are those that
have autocorrelations decaying to zero at a geometric rate. Auto-
Regressive Moving Average (ARMA) models are examples of such pro-
cesses. In contrast, a long-memory process has autocorrelations that de-
cay much more slowly, asymptotically following a hyperbolic decay. More
precisely, a stationary process {Xt} is said to have long memory if, for some
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C � 0 and d � 0.5, its autocovariance function, c(k) � E[(Xt � l)(Xt�k

� l)], has asymptotic behavior

�2d 1|c(k)| � C|k| as k r �, (1)

for d � 0. If d � 0, so that R|c(k)| � �, the process is said to be persistent.
Equivalently, a long-memory process can be characterized in the fre-

quency domain by the following form of its spectral-density function, f
(k), at frequency k:

� k �i 2df(k) � |1 � e | f (k), (2)U

where d � 0 and fU is finite and bounded above from zero at the origin.
There are many tests and statistics to detect the existence of long

memory in a time series. One of the first tools to be developed was the
R/S method.

R/S Analysis

Let X1, X2, . . . Xn represent the observations in n successive periods, and
let X̄ represent the empirical average. The adjusted range, R, is defined as

k �

¯ ¯R(d) :� max X � kX � min X � �X .� i � i� � � �
0�k�n 0���ni�1 i�1

A normalization factor S is an estimate of the standard deviation of the
process. The estimator can be written in the general form

q

S(n,q) :� w ( j)ĉ( j),� q�j��q

where is an estimate of the process autocovariance at lag j, and wq( j)ĉ( j)
are weights. The R/S statistic then is defined as

R(n)
Q(n,q) :� . (3)

S(n,q)

In the classical R/S analysis applied by Helms et al. (1984) and by
Barkoulas et al. (1997), q � 0, w0(0) � 1, and so S(n,q) is simply the
usual sample standard deviation estimate. The distribution of this clas-
sical R/S statistic (q � 0) is not known, and short-memory components
can affect the R/S values in a non-negligible way. A modified R/S statistic,
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having q � 0, was constructed by Lo (1991) to handle these problems.
Lo used the weights proposed by Newey and West (1987), wq( j) :� 1 �

j/(q � 1) with q � n. For choosing the truncation parameter q, Lo fol-
lowed Andrews’ (1987) suggestion of setting q as the greatest integer less
than or equal to the data dependent quantity

1/3 2/33n 2q̂(1)
, (4)2� � � �2 1 � q̂ (1)

where is an estimate of the first-order autocorrelation of the process.q̂(1)
The modified estimator is invariant over a general class of short-memory
processes, but is sensitive to the presence of long memory. If only short
memory is present, then Q(n,q)/ converges weakly to the range of then�
Brownian bridge on the unit interval. The distribution function for this
range is given by Kennedy (1976) and Siddiqui (1976). It can be expressed
as F(v) � from which critical values can be

2 2�2 2 2v k�� (1 � 4v k )e ,k���

computed to test the null hypothesis of no long-range dependence.
For ARMA and other short-memory processes, the values of Q(n,q)

converge to n J with J � 1/2. The parameter J is called the Hurst exponent
and is related to the long-memory parameter d discussed above by J � d
� 1/2. Mandelbrot and coworkers proved in a series of papers (see, for
instance, Mandelbrot & Taqqu, 1979) that when J � 1/2, a process has
long memory. Various methods can be used in R/S analysis to estimate
the J. A natural estimate for a series of length n is simply

log Q(n,q)
Ĵ � . (5)

log n

No distributional results are available currently for this estimate of J.

GPH Spectral Regression

The second method we have used for determining the existence of long-
range dependence in a time series is based on the spectral form of a long-
range dependent process, as given in (2). Geweke and Porter-Hudak
(1983) suggested regressing the log of the estimated spectrum of the
series on the log of the frequency values themselves. They also suggested
that the regression be performed using a set of Fourier frequencies close
to zero, where the slope of the log spectrum relative to the frequency is
dependent directly on the long-memory parameter d. They argued that
their regression estimator could capture the long-memory characteristic
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of the process without being “contaminated” in the estimation by short-
memory correlation in the time series evident at higher frequencies.

Use of this method requires choice of a truncation parameter m to
determine the number of Fourier frequencies to be considered. Based on
simulations, Geweke and Porter-Hudak suggested the use of m � [nu]
with u � .5, where n is the number of observations and [•] is the greatest
integer function. Robinson (1995) argued that a consistent estimator for
d could be obtained if an additional low-order truncation l � 1 was in-
troduced, thus using the Fourier frequencies j � l, 2, . . . , m. More re-
cent results by Hurvich, Deo, and Brodsky (1998) found that this lower
truncation is not necessary. They concluded that setting l � 1 i.e., no
lower truncation, and [n •6] for the upper truncation is a more optimal
choice. We have tried a range of possible values for both upper and lower
truncations in order to have more robust results.

The distribution of the estimated d parameter can be shown to be
Gaussian under certain conditions, and thus a test for Ho: d � 0 (no long
memory) can be performed as a usual t-test, using the standard deviation
given by the regression.

Nonparametric LM Spectral Test

A third tool we have used is the nonparametric spectral test constructed
by Lobato and Robinson (1998). This is a test for stationary short memory,
i.e., integration of order zero of the time series, Xt � I(0), against frac-
tional alternatives, Xt � I(d) with d � 0.

This test uses the periodogram ordinates I(wj) at the Fourier fre-
quencies wj � 2pj/n, where j � 1, 2, . . . , m � n/2 and n is the length
of the series. The truncation parameter m is chosen in order to use a
sensible number of low-order frequencies whose values essentially are
determined by the long-memory component of the process. Without the
previous knowledge of the memory parameter, there is no clear rule for
determining the value of the truncation m. Thus, we have used a set of
values consistent with the simulation results available in the original
paper.

The testing statistic is based on the Lagrange Multiplier (LM) prin-
ciple and takes the form

m m

t � � n v I(w ) I(w ), (6)� � j j � j�
j�1 j�1

where vj � ln j � ln( j)). This statistic is asymptotically stan-�1 mm (�j�1

dard normal under the short-memory assumption. Rejection of the null
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hypothesis in the direction of persistent long memory (d � 0) occurs at
the upper tail of the distribution.

In the next section, these three methods are applied to two sets of
futures’ returns data.

TESTING FOR LONG MEMORY IN FUTURES’
RETURNS

The first data set to be considered is the set of six daily-returns series
previously analyzed by Helms et al. (1984). They correspond to soybean
oil (BO), soybean (SO), and soybean meal (SM) contracts for March 1976
(M76) and January 1977 (J77), comprising approximately 230 observa-
tions each. The second data set to be considered is an extension of the
data set used by Barkoulas et al. (1997). It consists of 17 commodities,
five major currencies, and one U.S. stock index. The price data are daily
settlement prices of the nearest-to-expiration contract over approximately
the last 20 years. At the beginning of the month in which the near con-
tract matures, the price of the successive contract is used as the next
price value. The earliest start date is January 3, 1977, and the latest end
date is November 28, 1997. The appendix lists the data sets, along with
the exchange in which the trade takes place, and the start and end dates
of the series. The data were obtained from Market Research Inc., asso-
ciated with the Chicago Board of Trade. For each contract, the time series
of returns is analyzed. For a given series of futures’ prices, pt, the returns,

are computed as the first differences of the log prices: � log pt �r*, r*t t

log pt�1.
Table I gives the results for the three-methods analysis of the Helms

data. Table II presents corresponding results for the extended data set.
The first three columns of the tables show the estimated Hurst coeffi-
cients, J, computed from the R/S statistic, as in (5). In the first column,
the truncation parameter q for the computations is zero, i.e., the esti-
mates are based on the classical R/S statistic. The second and third col-
umns show results for q � 0, with estimates based on the corrected sta-
tistic of Lo (1991). The first corrected estimates in the second column
use a reasonably high truncation parameter, yielding conservative tests
for long memory. The second corrected estimates in the third column use
the value q* chosen by Andrews’ data-dependent formula presented in
(4). An extensive set of truncation values q also was tried; these results
are available upon request. The estimates essentially are similar for rea-
sonable non-zero values of q.
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TABLE I

Memory Estimates for the Helms Data Returns

Hurst
Estimates Ĵ

GPH
Estimates d̂

Nonparametric
LM Test

Series q � 0 q � 5 q � q* m � [n0.50]
l � 1

m � [n0.60]
l � 1

m � [n0.60]
l � 2

m � [n.50] m � [n.55] m � [n.60]

BO M76 0.536 0.540 0.534 0.211 0.189 �0.223 0.029 �0.199 �0.431
[0.500] [0.460] [0.525] (0.182) (0.190) (0.110) [0.488] [0.579] [0.667]

BO J77 0.506 0.513 0.515 0.136 0.176 0.164 �0.310 �0.135 �0.109
[0.781] [0.721] [0.706] (0.161) (0.125) (0.253) [0.622] [0.554] [0.543]

SO M76 0.525 0.529 0.528 0.021 �0.076 0.195 0.779 0.193 0.288
[0.605] [0.571] [0.582] (0.131) (0.083) (0.272) [0.218] [0.424] [0.387]

SO J77 0.541 0.536 0.541 0.265 0.057 0.230 �0.001 0.313 0.177
[0.440] [0.492] [0.440] (0.296) (0.172) (0.178) [0.506] [0.377] [0.430]

SM M76 0.532 0.557 0.540 0.118 �0.032 �0.239 �0.255 �0.081 �0.643
[0.549] [0.319] [0.480] (0.228) (0.152) (0.221) [0.601] [0.532] [0.740]

SM J77 0.546 0.555 0.553 0.015 0.183 0.264 �0.001 0.312 0.177
[0.407] [0.328] [0.347] (0.113) (0.135) (0.198) [0.506] [0.377] [0.430]

Values in brackets below the estimates for J (Hurst estimates) and below the statistics t (LM test) are the p values for the
one-sided test for persistent long memory. Values in parentheses below the estimates for d (GPH estimates) are thestandard
errors for the estimates.

The values given within square brackets below the estimated J are p
values corresponding to the probability of obtaining a value at least as
high for the Hurst exponent as the one obtained under the null hypothesis
of short memory. For the corrected R/S of Lo (q � 0), the p values of the
estimates for J are computed as the tail probabilities of the corresponding
values of the R/S statistic under the short-memory null. The p values
shown for the classical R/S statistic (q � 0) are appropriate only if the
series are uncorrelated.

The next three columns of the tables show the GPH estimates of d
for different truncation values l and m. The values given within paren-
theses below the estimated d are the estimated standard deviations of the
estimates for d, computed as the standard error given by the regression.

The last three columns show the results of the nonparametric LM
test. The table shows the values of the statistic t from eq. (6) for different
truncations. The values given within brackets below the statistics are the
p values of the one-sided tests for persistent long memory (d � 0).

A simple inspection of Table I reveals the contrast between the re-
sults based on classical R/S estimates (q � 0) and those based on the
modified R/S statistics. With the possible exception of the soybean oil 76
contract (BO M76), all the classical R/S estimates clearly indicate values
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TABLE II

Memory Estimates for the Extended Data Returns

Hurst
Estimates Ĵ

GPH
Estimates d̂

Nonparametric
LM Test

Series q � 0 q � 5 q � q* m � [n0.50]
l � 1

m � [n0.60]
l � 1

m � [n0.60]
l � 3

m � [n.50] m � [n.55] m � [n.60]

BO 0.480 0.478 0.477 �0.165 0.010 0.095 �0.804 0.204 0.384
[0.961] [0.969] [0.970] (0.069) (0.053) (0.057) [0.789] [0.419] [0.351]

BP 0.562 0.562 0.561 0.033 0.059 0.035 0.757 1.452 0.982
[0.067] [0.066] [0.072] (0.075) (0.053) (0.059) [0.225] [0.073] [0.177]

JC 0.533 0.506 0.506 0.043 �0.003 0.012 �0.297 �0.732 �0.768
[0.351] [0.756] [0.756] (0.085) (0.054) (0.061) [0.617] [0.768] [0.779]

CD 0.569 0.568 0.568 �0.022 �0.038 �0.087 �0.152 0.010 �0.292
[0.037] [0.039] [0.038] (0.085) (0.051) (0.056) [0.560] [0.496] [0.615]

CT 0.559 0.531 0.531 0.030 �0.020 �0.051 0.492 �0.201 �0.198
[0.080] [0.384] [0.388] (0.077) (0.046) (0.051) [0.311] [0.580] [0.578]

DM 0.552 0.549 0.552 0.049 0.032 0.019 1.080 0.679 0.945
[0.132] [0.160] [0.132] (0.065) (0.045) (0.050) [0.140] [0.249] [0.172]

FC 0.570 0.560 0.562 0.092 �0.026 �0.047 0.540 0.477 �0.372
[0.032] [0.073] [0.066] (0.094) (0.057) (0.064) [0.295] [0.317] [0.645]

GC 0.575 0.576 0.577 �0.019 0.152 0.162 �0.773 1.193 2.518
[0.019] [0.017] [0.016] (0.072) (0.052) (0.058) [0.780] [0.116] [0.006]

HG 0.504 0.504 0.503 �0.025 0.016 0.023 �0.155 �0.787 0.109
[0.778] [0.772] [0.786] (0.073) (0.048) (0.053) [0.562] [0.784] [0.457]

HO 0.518 0.517 0.513 �0.034 0.048 0.041 �0.869 �0.215 0.505
[0.595] [0.607] [0.655] (0.089) (0.055) (0.061) [0.808] [0.585] [0.307]

JY 0.558 0.555 0.558 0.056 0.144 0.169 0.769 0.955 2.834
[0.085] [0.113] [0.085] (0.076) (0.053) (0.059) [0.221] [0.170] [0.002]

KC 0.499 0.502 0.500 0.024 �0.004 0.014 0.511 �0.343 �0.127
[0.831] [0.797] [0.826] (0.089) (0.056) (0.062) [0.305] [0.634] [0.551]

LC 0.510 0.509 0.508 �0.015 �0.078 �0.095 �0.664 �0.826 �1.707
[0.700] [0.715] [0.725] (0.091) (0.055) (0.061) [0.747] [0.796] [0.956]

LH 0.499 0.502 0.500 0.024 �0.004 0.014 0.511 �0.343 �0.127
[0.831] [0.797] [0.826] (0.089) (0.056) (0.062) [0.305] [0.634] [0.551]

JO 0.520 0.520 0.518 �0.091 �0.098 �0.049 �0.657 �1.568 �1.247
[0.550] [0.560] [0.584] (0.092) (0.056) (0.062) [0.744] [0.942] [0.894]

PB 0.501 0.488 0.490 �0.104 �0.069 �0.077 �0.751 �0.973 �1.235
[0.814] [0.919] [0.910] (0.080) (0.060) (0.067) [0.774] [0.835] [0.892]

JS 0.487 0.491 0.487 �0.040 0.074 0.122 �0.148 0.933 1.456
[0.926] [0.905] [0.930] (0.075) (0.053) (0.058) [0.559] [0.175] [0.073]

SB 0.513 0.519 0.511 �0.024 �0.013 0.016 �0.412 �0.012 �0.767
[0.658] [0.569] [0.681] (0.078) (0.051) (0.057) [0.660] [0.505] [0.779]

SF 0.544 0.542 0.544 0.007 0.016 0.024 0.905 0.863 1.542
[0.209] [0.232] [0.216] (0.085) (0.048) (0.054) [0.183] [0.194] [0.062]

SI 0.556 0.550 0.551 0.006 0.101 0.107 0.217 0.931 1.628
[0.102] [0.149] [0.143] (0.067) (0.045) (0.050) [0.414] [0.176] [0.052]

SM 0.505 0.505 0.503 �0.022 0.035 0.084 �0.205 0.349 0.694
[0.769] [0.765] [0.790] (0.084) (0.054) (0.060) [0.581] [0.364] [0.244]

SP 0.497 0.505 0.497 �0.001 �0.080 �0.107 �0.525 �0.446 �1.650
[0.848] [0.762] [0.848] (0.091) (0.051) (0.058) [0.700] [0.672] [0.951]

JW 0.532 0.532 0.531 �0.025 �0.024 0.010 �0.551 �0.375 �0.880
[0.370] [0.366] [0.384] (0.079) (0.048) (0.053) [0.709] [0.646] [0.811]

Values in brackets below the estimates for J (Hurst estimates) and below the statistics t (LM test) are the p values for the
one-sided test for persistent long memory. Values in parentheses below the estimates for d (GPH estimates) are thestandard
errors for the estimates.
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FIGURE 1
Futures returns display a very noisy behavior. As the example in the graph shows, it is

difficult to detect any structure in the direction of change.

of J � 0.5, i.e., they suggest the presence of long memory. However, the
p values for the corrected estimates all are high, well above the conven-
tional significance values for statistical testing. At 1, 5, and even 10%,
one cannot reject the null of short memory, J � 0, for any of the time
series. The GPH method gives estimates of d oscillating about zero, with
standard errors of the same order as the estimates. None of the t tests
rejects the hypothesis d � 0, confirming the results of the modified R/S
analysis. The third approach confirms these results. In all cases, the val-
ues of the statistic are close to zero, and the corresponding p values are
high, well above the conventinal thresholds for significance.

The three methods provide a consistent indication of no long mem-
ory for the returns.

Findings for the extended data set, given in Table II, are based on
much longer series and corroborate these findings. An example of returns
of such a data series is shown in Figure 1. The corresponding sample
autocorrelations are shown in Figure 2. A simple graphical analysis of
these two figures suggests that there is no significant memory on the
series of returns. It is not surprising that the corrected R/S (q � 0) sta-
tistic, the GPH tests, and the LM tests reject unequivocally the existence
of long memory. Using the classical R/S statistic (q � 0), short memory
is rejected for several series, although the estimated values of the Hurst
exponent are only slightly larger than 0.5. Using the GPH and the LM
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FIGURE 2
The autocorrelations of futures returns display the characteristic behavior of a process

with no memory. Most of the sample values, 95% or more, fall inside the 95%
confidence bands constructed under the null of an uncorrelated process.

tests, only in a few cases are there some apparently significant values.
However, since 23 series are analyzed and six tests are conducted for each
case, one or two apparently significant values should be taken as natural
results of the random error due to the repetition of the same tests. Nev-
ertheless, there is not a single case in which the different methods and
different truncations simultaneously point to long memory.

The results are very clear: The indication of long memory given by
the classical R/S is a statistical artifact of the short-range correlations
present in the data.

TESTING FOR LONG MEMORY IN VOLATILITY
OF FUTURES’ RETURNS

Although the lack of long memory in the movement of financial markets
currently is well accepted, more recent research has focused on the ex-
istence of persistent behavior in the volatility of financial markets. Evi-
dence of long-range dependence in volatilities has been found by many
authors, including Ding et al. (1993), de Lima and Crato (1993), Boller-
slev and Mikkelsen (1996), Baillie et al. (1996), Breidt et al. (1998), and
Lobato and Savin (1998). However, a study of persistence in futures’
volatility has not yet been presented in the literature. This analysis is
important for forecasting, risk assessment, and portfolio optimization.
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FIGURE 3
Futures volatility series display an unmistakable memory structure, with long

nonperiodic waves characteristic of a long-memory process. Periods of high volatility
are likely to be followed by periods of high volatility and periods of low volatility by

periods of low volatility.

Various measures of volatility can be constructed, in particular the
absolute value of returns, the square of returns, and the logarithm of the
squared returns. Empirical findings indicate that evidence concerning
long-range dependence is essentially the same for all these measures (see
Breidt et al. 1998). This study analyzes the series of logarithms of the
mean-corrected returns, rt � � r̄*)2, using the same three testslog(r*t
applied in the the previous section. Breidt et al. (1998) and Deo and
Hurvich (1998) study the behavior of these tests for the detection of long
memory in volatility data.

Figure 3 shows an example of such a volatility series. A simple graph-
ical analysis reveals an interesting pattern, completely different from the
one displayed by the series of returns. Underneath the natural variability,
there are apparent slow movements on the volatility levels.

Tables III and IV present the formal testing results for all the futures’
contract volatility series. The contrast between the analysis of the returns
and of the volatilities is striking. While returns do not display persistence,
the volatilities show a strong and significant persistence for almost all
studied series. For the Helms data, the only exceptions are two of the
shorter series, soybeans for March 77 (BO M76) and soybean meal for
the same date (SM M76), which have conflicting evidence of long-mem-
ory. Results for the extended data set, shown in Table IV, consistently
indicate significant long-memory behavior.
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TABLE III

Memory Estimates for the Helms Data Volatility

Hurst
Estimates Ĵ

GPH
Estimates d̂

Nonparametric
LM Test

Series q � 0 q � 5 q � q* m � [n0.50]
l � 1

m � [n0.60]
l � 1

m � [n0.60]
l � 2

m � [n.50] m � [n.55] m � [n.60]

BO M76 0.600 0.585 0.604 0.162 0.158 0.382 1.737 1.400 2.328
[0.050] [0.109] [0.040] (0.149) (0.149) (0.151) [0.040] [0.081] [0.010]

BO J77 0.706 0.658 0.700 0.459 0.193 0.172 3.870 4.650 4.853
[0.000] [0.001] [0.000] (0.168) (0.110) (0.137) [0.000] [0.000] [0.000]

SO M76 0.615 0.584 0.602 0.454 0.347 0.412 2.029 2.604 3.157
[0.018] [0.108] [0.041] (0.165) (0.123) (0.123) [0.020] [0.005] [0.001]

SO J77 0.711 0.673 0.692 0.454 0.347 �0.001 4.894 5.413 5.767
[0.000] [0.000] [0.000] (0.165) (0.123) (0.116) [0.000] [0.000] [0.000]

SM M76 0.597 0.581 0.590 0.162 0.158 0.077 0.572 0.158 0.592
[0.073] [0.142] [0.098] (0.149) (0.149) (0.184) [0.280] [0.437] [0.277]

SM J77 0.728 0.659 0.659 0.459 0.193 0.179 4.277 5.295 5.953
[0.000] [0.000] [0.000] (0.168) (0.110) (0.191) [0.000] [0.000] [0.000]

Returns volatility is computed as the series of logs of mean-corrected squared returns. Values in brackets below the
estimates for J (Hurst estimates) and below the statistics t (LM test) are the p values for the one-sided test for persistent
long memory. Values in parentheses below the estimates for d (GPH estimates) are the standard errors for the estimates.

It is interesting to note from Table IV that the persistence showed
by the commodity futures’ volatility is substantially higher than the per-
sistence shown by the currency futures’ volatility. Higher estimates for
the memory parameters J and d and higher values of the LM statistic t
indicate more persistent memory in the time series. With the exception
of the British Pound (BP), the estimates for the commodity futures are
substantially higher than the estimates for the currency futures. This
means that shocks driving volatility persist longer, on average, on the
commodity futures’ transactions. Markets seem to absorb more quickly
the instability in currency futures than in commodity futures.

A VOLATILITY MODEL FOR FUTURES DATA

Breidt et al. (1998) introduced the long-memory-stochastic-volatility
(LMSV) model to describe the type of persistent-dependence structure
observed for the futures’ volatility series. The model is an extension of
the short-range-dependent-stochastic-volatility model of Melino and
Turnbull (1990) and Harvey, Ruiz, and Shephard (1994), which has been
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TABLE IV

Memory Estimates for the Extended Data Volatility

Hurst
Estimates Ĵ

GPH
Estimates d̂

Nonparametric
LM Test

Series q � 0 q � 5 q � q* m � [n0.50]
l � 1

m � [n0.60]
l � 1

m � [n0.60]
l � 3

m � [n.50] m � [n.55] m � [n.60]

BO 0.697 0.663 0.678 0.367 0.313 0.283 8.635 12.405 15.570
[0.000] [0.000] [0.000] (0.078) (0.047) (0.053) [0.000] [0.000] [0.000]

BP 0.732 0.686 0.693 0.627 0.384 0.345 13.123 17.258 21.944
[0.000] [0.000] [0.000] (0.073) (0.047) (0.052) [0.000] [0.000] [0.000]

JC 0.642 0.594 0.601 0.339 0.359 0.414 4.600 7.908 12.156
[0.000] [0.002] [0.001] (0.090) (0.056) (0.061) [0.000] [0.000] [0.000]

CD 0.643 0.608 0.619 0.424 0.323 0.337 6.251 8.694 11.219
[0.000] [0.000] [0.000] (0.071) (0.049) (0.055) [0.000] [0.000] [0.000]

CT 0.663 0.627 0.634 0.363 0.269 0.293 7.201 9.213 11.230
[0.000] [0.000] [0.000] (0.071) (0.045) (0.050) [0.000] [0.000] [0.000]

DM 0.699 0.666 0.681 0.444 0.395 0.381 9.156 11.050 15.189
[0.000] [0.000] [0.000] (0.066) (0.046) (0.052) [0.000] [0.000] [0.000]

FC 0.772 0.718 0.721 0.342 0.349 0.311 15.576 21.068 27.603
[0.000] [0.000] [0.000] (0.082) (0.048) (0.052) [0.000] [0.000] [0.000]

GC 0.787 0.721 0.717 0.607 0.385 0.312 19.331 25.999 33.522
[0.000] [0.000] [0.000] (0.078) (0.050) (0.054) [0.000] [0.000] [0.000]

HG 0.691 0.651 0.660 0.436 0.335 0.315 11.155 14.857 19.366
[0.000] [0.000] [0.000] (0.079) (0.048) (0.054) [0.000] [0.000] [0.000]

HO 0.734 0.677 0.677 0.506 0.490 0.486 9.584 13.485 19.143
[0.000] [0.000] [0.000] (0.082) (0.051) (0.058) [0.000] [0.000] [0.000]

JY 0.661 0.629 0.638 0.259 0.258 0.279 5.855 7.328 10.661
[0.000] [0.000] [0.000] (0.084) (0.048) (0.052) [0.000] [0.000] [0.000]

KC 0.714 0.663 0.666 0.424 0.393 0.378 9.510 13.264 17.352
[0.000] [0.000] [0.000] (0.096) (0.059) (0.066) [0.000] [0.000] [0.000]

LC 0.739 0.701 0.713 0.498 0.339 0.294 14.911 19.177 23.732
[0.000] [0.000] [0.000] (0.080) (0.052) (0.058) [0.000] [0.000] [0.000]

LH 0.714 0.663 0.666 0.424 0.393 0.378 9.510 13.264 17.352
[0.000] [0.000] [0.000] (0.096) (0.059) (0.066) [0.000] [0.000] [0.000]

JO 0.637 0.597 0.602 0.428 0.263 0.285 5.894 9.056 12.055
[0.000] [0.000] [0.000] (0.105) (0.056) (0.061) [0.000] [0.000] [0.000]

PB 0.657 0.630 0.643 0.303 0.242 0.202 5.741 8.042 11.105
[0.000] [0.000] [0.000] (0.088) (0.052) (0.057) [0.000] [0.000] [0.000]

JS 0.717 0.670 0.680 0.397 0.408 0.386 9.156 13.183 18.259
[0.000] [0.000] [0.000] (0.080) (0.052) (0.058) [0.000] [0.000] [0.000]

SB 0.774 0.722 0.722 0.468 0.292 0.229 17.011 20.767 26.254
[0.000] [0.000] [0.000] (0.092) (0.053) (0.058) [0.000] [0.000] [0.000]

SF 0.672 0.646 0.661 0.441 0.389 0.382 8.216 11.005 15.066
[0.000] [0.000] [0.000] (0.079) (0.054) (0.060) [0.000] [0.000] [0.000]

SI 0.751 0.700 0.703 0.488 0.368 0.320 14.114 19.245 24.743
[0.000] [0.000] [0.000] (0.088) (0.052) (0.057) [0.000] [0.000] [0.000]

SM 0.697 0.652 0.658 0.300 0.309 0.277 7.944 11.597 15.288
[0.000] [0.000] [0.000] (0.085) (0.046) (0.051) [0.000] [0.000] [0.000]

SP 0.708 0.673 0.693 0.625 0.378 0.335 11.430 14.381 18.323
[0.000] [0.000] [0.000] (0.089) (0.055) (0.062) [0.000] [0.000] [0.000]

JW 0.632 0.609 0.622 0.230 0.208 0.206 5.130 6.521 8.704
[0.000] [0.000] [0.000] (0.082) (0.048) (0.054) [0.000] [0.000] [0.000]

The volatility is computed as the series of logs of mean-corrected squared returns. Values in brackets below the estimates
for J (Hurst estimates) and below the statistics t (LM test) are the p values for the one-sided test for persistent long memory.
Values in parentheses below the estimates for d (GPH estimates) are the standard errors for the estimates.
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used to describe the behavior of log squared stock returns. A LMSV pro-
cess is defined by

r � r w , r � r exp(v /2), (7)t t t t t

where r � 0, {vt} is independent of {wt}, {�t} is a sequence of independent
and identically distributed (i.i.d.) random variables with mean zero and
variance one, and {vt} is a long-memory process having parameter d, with
0 � d � 0.5. The fractionally integrated noise model of Hosking (1981)
and Granger and Joyeux (1980), i.e., (1 � B)dvt � gt, where B denotes
the backward-shift operator (B jxt � xt�j) and gt is a short-memory pro-
cess, can be used to parametrerize the long-memory process. Typically, vt

is assumed to be Gaussian. The conditional variance measures the2rt

volatility of rt. By taking the logarithm of the squares of the mean cor-
rected returns, {rt}, we have

2 2 2y � log(r ) � [log(r ) � E(logw )] � vt t t t

2 2� [log(w ) � E(logw )] � l � v � e , (8)t t t t

i.e., { yt} is a Gaussian long-memory signal plus a non-Gaussian white
noise. If wt is assumed to be Gaussian, et follows a log v2 (1) distribution
with variance p2/2.

Using this formulation, a fully parametric model can be fit to yt by
quasi-maximum likelihood estimation (for details, see Section 4 of Breidt
et al., 1998). As an illustration of this technique, an estimated LMSV
model for the volatility of coffee futures (KC) is presented below. The
volatility is modelled as

2log(r ) � �0.000086 � v � e ,t t t

with et independent and identically distributed with mean zero and var-
iance 2.721, and vt an ARFIMA(1,d,1)

0.445(1 � 0.308B) (1 � B) � (1 � 0.612B)g ,t

where gt is a zero-mean white noise with variance 3.017.
Note the high estimated value of d, relatively close to the stationarity

boundary 0.5, implying strong persistence in volatility. As seen in Figure
4, the autocorrelation structure of the data is matched closely by this
model, providing further evidence for the long-memory behavior of the
volatility series.
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FIGURE 4
The series of futures volatilities display significant positive autocorrelations at high lags
with a slow hyperbolic decay characteristic of long-memory processes. Even at lags of

order 200, most autocorrelations are significant and positive. The graph shows the
theoretical autocorrelation function given by the LMSV model (the smooth line)

superimposed on the sample estimates. There is a remarkable consonance
between the model and the sample values.

CONCLUSIONS

This paper reexamines returns on futures’ contracts using updated sta-
tistical tools. The results provide no evidence of long memory on the series
of returns. This contradicts the findings of previous researchers, who have
used results from classical R/S analysis as evidence to the existence of
long memory in futures’ returns. On the other hand, the analysis of the
volatility of futures’ returns indicates a strongly persistent behavior. These
are the first findings of this type using futures data. By showing that
changes in the variance of financial time series are persistent, i.e., that
they remain important for forecasts in large horizons, these results indi-
cate the need for new models for risk assessment of futures’ portfolios.
In order to evaluate adequately and forecast the risk of a portfolio, ana-
lysts should take into consideration the persistent volatility of these fi-
nancial series.

An additional interesting conclusion deserving for the investigation
is the fact that currency futures’ volatility seems to have a less-persistent
memory than commodity futures’ volatility. In the latter case, shocks driv-
ing instability in the markets seem to be absorbed faster.



Memory in Returns and Volatilities of Futures’ Contracts 541

Appendix

Description of the Extended Data Set

Commodity Symbol Exchange Start Date End Date Contract Months

Soybean Oil BO CBOT 01/03/77 11/28/97 1,3,5,7,8,9,10,12
British Pound BP CME 01/03/77 11/28/97 1,3,4,6,7,9,10,12
Corn C CBOT 01/03/77 11/28/97 3,5,7,9,12
Canadian Dollar CD CME 01/03/77 11/28/97 1,3,4,6,7,9,10,12
Cotton CT NYCE 01/03/77 11/26/97 3,5,7,10,12
Deutsche Mark DM CME 01/03/77 11/28/97 1,3,4,6,7,9,10,12
Feeder Cattle FC CME 01/03/77 11/28/97 1,3,4,5,8,9,10,11
Gold GC COMEX 01/03/77 11/26/97 2,4,6,8,10,12
Copper, High Grade HG COMEX 01/03/77 11/26/97 ALL
Heating Oil HO NYMEX 11/15/78 11/26/97 ALL
Japanese Yen JY CME 01/03/77 11/28/97 1,3,4,6,7,9,10,12
Coffee “C” KC CSCE 01/03/77 11/26/97 4,5,7,9,12
Live Cattle LC CME 01/03/77 11/28/97 2,4,6,8,10,12
Live Hogs LH CME 01/03/77 11/26/97 2,4,6,7,8,10,12
Oats O CBOT 01/03/77 11/28/97 3,5,7,9,12
Pork Bellies, Fresh PB CME 01/03/77 11/28/97 1,3,5,7,8,9,11
Soybean S CBOT 01/03/77 11/28/97 1,3,5,7,8,9,11
Sugar #11 SB CSCE 01/03/77 11/26/97 3,5,7,10
Swiss Franc SF CME 01/03/77 11/28/97 1,3,4,6,7,9,10,12
Silver SI COMEX 01/03/77 11/26/97 3,5,7,9,12
Soybean Meal SM CBOT 01/03/77 11/28/97 1,3,5,7,8,9,10,12
S & P 500 Index SP CME 04/21/82 11/28/97 3,6,9,12

CME � Chicago Mercantile Exchange: CBOT � Chicago Board of Trade; COMEX � Commodity Exchange; NYCE �

New York Cotton Exchange; NYMEX � New York Mercantile Exchange; CSCE � Coffee, Sugar, and Cocoa Exchange.
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