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Empirical Regularities From Interacting Long- and
Short-Memory Investors in an Agent-Based
Stock Market

Blake LeBaron

Abstract—This paper explores some of the empirical features remains. The model presented is designed to fit prices, trading

generated in an agent-based computational stock market with yolume, and returns for data sampled at the monthly frequency.
market participants adapting and evolving over time. Investors

view differing lengths of past information as being relevant to . .
their investment decision making process. The interaction of these The model used is a relatively new agent-based market.

memory lengths in determining market prices creates a kind of Many of its details are developed and presented in [2]. Although
market ecology in which it is difficult for the more stable longer it is similar in spirit to the Santa Fe artificial stock market, it
horizon agents to take over the market. What occurs is a dynam- js a radically different design, built to be more tractable and
ically changing market in which different types of agents arrive  |nger to the world of more traditional macrofinance models
and depart depending on their current relative performance. This .
paper analyzes several key time series features of such a market, €XCEPt for its heterogeneous agent framevéork. .
It is calibrated to the variability and growth of dividend payments The market also stresses many of the coevolutionary features
in the United States. The market generates some features that thatare aninteresting part of agent-based modeling. In acoevolu-
are remarkably similar to those from actual data. These include tionary setting, the fitness of strategies depends critically on the
magnifying the volatility from the dividend process, inducing = o\, rent population of other strategies. In this market, rules and
persistence in volatility and volume, and generating fat-tailed . . . .
return distributions. agents are evolved and compete with each other in their trading
activities. The wealthier agents survive, alongwithrules that have
been actively used. Agents’ decision-making processes differ in
avery special way designed to replicate heterogeneity in the real
world. They use differing amounts of past data in deciding on
I. INTRODUCTION their optimal trading strategies. Some traders take a perspective
ODELING the many interactions, diverse beliefs, an8.f looking back 25 years to evaluate a.trac.iing rule, Wh".e others
behaviors that are contained in a financial market iSvAewonIytheprewoussmmonthsasbemg|mportant.Th|saIIows

daunting task. However, much of modern finance theory is baszEI interesting evolutionary races across these differing playgrs
on careful assumptions and well-crafted theories that aIIo"i'l{;IOI he_lps to answer some questions ab_out whether there is a
simplification to analytically tractable models often involve Jay to_Jud_ge the most rauon_al and to predict who should e_nd up
single representative agent. While such models appear to pqu?lth'er in the long run. This bounded memory perspeciive on

one’s notions of stylized representations to the limit, they ard’8St information has been approached in many different contexts

common part of the economics toolkit for making difficult socia?Ind IS rglated to constgntgaln learning algorlthms. .
Section Il summarizes the model. Section Il gives results

interactions tractable. These heroic attempts at simplifyi . . :
markets have generally been unsuccessful at meeting the ¢ M Some computer experiments summarizes and Section IV-
lenge of lining up with many empirical features of real marketg.ondwes'

Among these are relative returns, the amount and persistence of

volatility and trading volume, and cross correlations between Il. MARKET STRUCTURE

volatility, returns, and volume. Atthe moment, there isno unified The market consists of several different pieces for which
theoretical model capable of replicating all these facts, althougbme are more or less standard in economics and finance and

some have been replicated individually. others are new. The market is interesting from an evolutionary
This paper presents the first results of calibrating agent-based

markets with interagting art_iﬁCia"y intelligent agents to aggre- 1agent-based approaches in which a market situation is analyzed from
gate macroeconomic and financial data. The results show thet bottom up using adaptive agent systems are becoming more preva-

in some dimensions, agent-based markets show great pronfigein economics. A good summary of this research can be found at
ttp://www.econ.iastate.edu/tesfatsi/ace.htm. Information specific to fi-

in solving some of these puzzles, while in others more WoHsnce can be found at the agent-based computational finance website
) . http://www.brandeis.edu/~blebaron/acf and in [1].
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standpoint for several reasons. First, as mentioned in thmally, d, is the dividend paid at tim& These heavily restricted
introduction, financial markets are coevolutionary entitigsreferences are used for tractability. Itis well known that for log-
where the fitness of agents depends critically on the strategaihmic utility, the agent’s optimal consumption choice can be
of other evolving agents. Second, this particular market sets@parated from the portfolio composition and is a constant pro-
involves evolution for both the agents and the rules. Agerngertion of wealtf

are evolved over wealth and chosen from a common set of

rules in an attempt to maximize their own objectives. Rules cip = (1= Bwiy. (4)

are evglvgd separate!y using only a weak notion of populari%e time rate of discount is set t0(0.95)*/12, which corre-

as their fitness function. This allows some aspects of sociglyngs to 0.95 annual rate. This is a common time rate of dis-
learning and information transfer across agenftsalso allows ., nt ysed in macro models and a later section will show that
for an endogenous measure of belief dispersions coming frgfis orovides a reasonable match for the equilibrium dividend

the number of different rules or strategies in use at a given timg|§ i the model. It will be useful to denote the interest rate
The following sections describe the market in greater detaé'orresponding to the time rate of discount-as

Since this market is calibrated to actual data, time increments are

meaningful. The basic time interval of the market is taken to be r = 1 1. (5)
one month, which corresponds to many longer range financial B
studies in macroeconomics and finance. A second property of logarithmic preferences is that the

portfolio decision is myopic in that agents maximize the loga-
rithm of next period’s portfolio return. Agents will concentrate
The market is a partial equilibrium model with two securitheir learning efforts on this optimal portfolio decision. They
ties, arisk-free assetin infinite supply paying a constant interegk interested in finding a rule that will maximize the expected
ratery and a risky security paying investors a random dividenggarithm of the portfolio return from a dynamic strategy. The
each period. Itis available in a fixed SUpp'y of one share for t@ategy recommends a fraction of SavirlgsiJ to invest in
population. Ifs; is the share holdings of agentthe following the risky asset as a function of current informatian The

A. Securities

constraint must be met in all periods objective is to
1= ET: 5i (1) max Elog (14 ajrepr + (1 — aj)ry] (6)
=1

for the set of all available rules;. In general, it would be im-
where! is the number of agents. The log dividend follows @ossible for agents to run this optimization each period, since
random walk, with an annualized growth rate of 2% and aannubk above expectation depends on the state of all other agents
standard deviation of 6%. This corresponds roughly to actualthe market, along with the dividend state. The portfolio de-
dividend properties from the USThe constant interest rate iscision will therefore be replaced with a simple rule that will be
set to a value of 1% at an annual rate (compounded monthlypntinually tested against other candidate rules. This continual
which is also a common benchmark in economics for the re@kting forms a key part of the learning going on the market.
rate of interest. The trading rulesy; should be thought of as being separate

Agents receive only three forms of income: dividends, irfrom the actual agents. The best analogy is to that of an invest-
terest payments, and capital gains from purchases and saiesnt advisor or mutual fund. A population of rules is maintained
These go to building wealth and current consumption. No othaiid agents select from this set as they might chose an advisor.

income streams are available. One difference here from the world of investment advisors is
that the rule is a simple function(z;;w;), wherez, is timet
: information andv,; are parameters specific to ruleThe func-
B. Agents and Rules f t do, P t pecific to ryleThe f
Agents are defined by intertemporal constant relative rigional form used for each rule is a feedforward neural network
aversion preferences of logarithmic form with a single hidden unit with restricted inputs. It is given by
= . hi =g1 (w1 k2t 1 + wo i) (7
Uit = £y Z 37 log Ci t+s (2) m
s=0 o(z) =go <w2 + ng,khk> (8)
subject to the intertemporal budget constraint k=1
g1(u) =tanh(u) 9)
Wiy = PeSip Ui ciy = (petdy)si—1+(1+75)bi 1. (3) et
g2(u) (10)

si., andb; , are the risky and risk-free asset holdings, respec- Iten
tively, andr s is the risk-free rate of returm, will represent the  "This result is well known in dynamic financial models. See [11] and [12]

; ; ; ; ; ; for early derivations. [13] and [14] provide updated derivations in more general
”Sky assetreturn at timep, is the price of the ”SW securlty at settings. Future versions of this model will generalize these preferences, but this

timet. w,; andc; , are the wealth and consumption of agént pyings in the added dimension of trying to determine optimal consumption given
. . o ) current information. Also related are the analytic policy rules for time varying
®See [9] for some comparisons of social versus individual learning. returns in [15] and [16]. Finally, [17] and [18] present some results showing
6See [10] for a summary of many of the features of aggregate financial serissme of the difficulties in building agents with the capabilities of learning dy-
Also, note that seasonalities in the aggregate dividend process are ignored.namic consumption plans.
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This framework restricts the portfolio to positive weights bemarkets. The information set will include, returns, past returns,
tween zero and one, so there is no short selling or borrowing tie price dividend ratio, and trend following technical trading in-
lowed. The model needs to set borrowing constraints to keeglicators. In the current version, the only types of technical rules
off nonstationary bubble trajectories and to avoid having to unsed are exponential moving averages. The moving average is
wind debt positions when the agents go bankrupt. With these fermed as
strictions in place, agents’ wealth can go to zero, but they cannot
end up with negative wealth. It is also important to note that My = pmg -1+ (1 — p)pr. (12)
this is a very restrictive neural network structure. Each hidden
unit hy is connected to only one information variable. This difformally, the information set, will consist of six items:.
fers from standard neural networks which let all inputs influence 1) »; = log(p; + d¢ — pr—1/D1—1);
each hidden unit. This step was taken to enhance tractability of2) 7;_1;
the learned rules, but it does limit the generality of how agents 3) 7;_2;
can combine input information. It also provides some intuition 4) log(rp:/d;);
for why this might be a sensible and tractable way to build dy- 5) log(p:/m1 +);
namic trading strategies. Each information input is translated 6) log(p;/ma,).
into a variable between 1 and 1. This could be interpreted asseveral of the items are logged to make the relative units sen-
a kind of buy/sell signal. The next stage of the network couklble. The dividend price ratio is normalized around a bench-
then be thought of as a kind of “or” gate across these signatgirk determined in the equilibrium presented in Section II-F.
by summing a weighted version of them together. This createse two moving average indicators; ; andm.; correspond
a rule which can respond by moving the portfolio into stock® values ofp = 0.8 andp = 0.99, respectively.
when any number of individual trading signals are active which |t is important to think about the timing of information as this
seems like a sensible picture of actual trading behavior.  will be important to the trading mechanisms covered in the Sec-

The weights are stored in a population table along witlion 1I-D. As trading begins at timg all ¢ — 1 and earlier infor-
information on performance of this rule in the recent pastmation is known. Also, the dividend at timédas been revealed
A simple real valued vectow; completely describes eachand paid. This means tha can be written as a function pf
dynamic trading strategy. All that is needed to be stored isaad information that is known at time
time series of the portfolio returns from each rule since the
agent’s objective only requires this as an input. o = o(p ). (13)

Agents chose the rule to use in the current period based on its
performance in the past. They look over their own past memof\l variables inl; are known before trading begins in peridd
lengthZ} to evaluate the performance ofthe rule inthe future usirg Will then be determined endogenously to clear the market.

D. Trading

R 1 &
IH?XE(TP) T Zlog[l + alzek; W )Tt Trading is performed by finding the aggregate demand for
k=1 shares and setting it equal to the fixed aggregate supply of one
+(1 = alz-rwi))rsl (1) ghare Given the strategy space each agent's demand for shares,
s; ¢+ at timet¢ can be written as

The only feature driving heterogeneity across agents’ decisions

is their memoryZ;. This can lead to relatively similar decision ai(pe; It) Pwi
rules, and very unstable markets. Further heterogeneity is added sit(pr) = e (14)
by making the rule decision have a random component. Agents wiy =(py + di)sis—1 + (L +7)bir—1 (15)

compare their current rule to a candidate comparison rule drawn

at random from the pool of active rules. If this new rule beatﬁherewt,i is the total wealth of ageritandd; , ; are the bond

the current one using the above return estimation, then it will rBoldings from the previous period. Summing these demands
place the current one. If not, the agent continues to use the sajives an aggregate demand function

rule. This might appear to give a very weak selection property

for rules, but since agents get to have many chances to evaluate !

rules, they should move to better strategies over time as the fur- D(pr) = Z i (Pr)- (16)

ther the explore the rule set. Further heterogeneity is generated, =1

by having only half the agents, selected at random, update th&élttingD(p,) = 1 will find the equilibrium pricep,. This is es-

rules each period. sentially a simple Walrasian auction in the market for the risky
_ asset. Unfortunately, there is no analytic way to do this given
C. Information the complex nonlinear demand functions. This operation will be

structures which are input to the neural network and used to g@hice attimet is unique. Given the large number of nonlinear de-
erate the trading strategiesz; w;). Obviously, the choice of mand functions involved, it probably is not. A nonlinear search
the information set; is impo_rtant. This set will be chosen to ?n' 8The impact ofp, on the current information vecter, is taken into account
compass reasonable predictors that are commonly used in egatell.
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procedure will start ap;_; as its initial value and stop at theof building relatively robust rules that are not too finely tuned to
first price that sets excess demand to Zero. the preferences of any one agént.

Itis important to remember the equilibrium is found by taking Evolution proceeds as follows. First, the set of rules to be
the current set of trading strategies as given. Qnderevealed, eliminated is identified. Then, for each rule to be replaced, the
then itis possible that agehinight want to change to a differentalgorithm chooses between three methods with equal proba-
trading rule. It is in this sense that the equilibrium is only tenbility.

porary:® 1) Mutation: Choose one rule from the parent set and

add a uniform random variable to one of the network

E. Evolution weightsw. The random increment is distributed uniform
Around this structure of rules, agents, and markets is an evo-  [—0-25,0.25].

lutionary dynamic that controls adaptation and learning in the 2) New Weight:Chose one rule from the parent set, chose
entire system. Evolution of agents is performed in a very simple ~ One weight at random, and replace it with a new value
fashion based on accumulated wealth. For every period, one chosen uniformly fronj—1,1]. This is the same distribu-
of the five least wealthiest agents is chosen at random and re-  tion used at startup.
moved. One new agent with a memory len@thdrawn ran- 3) Crossover:Take two parents at random from the set of
domly replaces this agent. This new agent chooses an initial 900d rules. Take all weights from one parent and replace
trading rule randomly from the best half of the current rules ~ ©One Set of weights corresponding to one input with the
judged according to its own memory length. The distribution ~ Weights from the other parent. This amounts to replacing
for this draw will be different in different experimental market ~ the two weights that affect the input directly (linear and
runs. Itis initialized with the share holdings of the deleted agent ~ Pias), plus the weight on the corresponding hidden unit.
and receives bond holdings equal to the median over the popula-  Visually, this is equivalent to chopping off a branch of
tion. To make evolution neutral to the overall population wealth, ~ the network for parent one and replacing it with a branch
these new holdings are taken from other agents in the popula- from parent two.
tion. The burden is split evenly between the upper half of agerfig1ew rule is initialized by evaluating its performance over the
sorted by current bond holdings. This gives a weak redistribpast history of prices and information. Agents will use this per-
tional effect to the evolutionary process. formance history to decide on whether this rule should be used
Rule evolution is more complicated. Rules are evolved usig@§ they do with the others.
agenetic algorithmt This method tries to evolve the population Itwould be difficult to argue that there is any particular magic

using biologically inspired operators that take useful rules ai@lthis procedure for evolving rules and it goes without saying
either modify them a little (mutation) or combine them wittthat these mechanisms are ad hoc. However, the objective is to

parts of other rules (crossover). produce new and interesting strategies that must then survive the
One of the crucial aspects of evolutionary learning is the fieompetition with the other rules in terms of forecasting. Exper-
ness criterion, which is used to select good parents from the ciments have shown that the results are robust to different minor
rent generation. It is not clear what makes a rule “fit” in a muodifications of these mechanisms.
tiagent market. For example, it would be tempting to evolve the
rules based onthe historical performance on afixed history of phstEquilibrium
data, but this would not capture the fact that agents are looking aft js useful in multiagent financial simulations to have a bench-
different history lengths. To try to account for agent diversity gark with which the results can be compared. For multiagentsim-
very weak selection criterion is used. A rule can be a parent fgiations, the homogeneous agent world is often the appropriate
the nextgenerationifatleastone agenthas used itover the lastd@fAchmark. It turns out thatin this model, for the given calibrated
periods. Rules that have not been used for ten periods are mafkgehmeters, there is a homogeneous equilibrium in which agents
forreplacement. This is equivalent to eliminating all mutual funglil hold only the risky asset. Prices, dividends, and consumption
managers with no customers. This weak selection procedure algQyrow at the same expected growth rate, which matches the
rulesoutmoreinvolved optimization procedures such asthe maaye for dividends. In this equilibrium, stock returns should be un-
variants of hill climbing often used for neural network weight oppredictable and trading volume should be zero. In this sense, it
timization. This would require a well-defined objective surfacgatches a classic efficient market situation where allinformation
that would be impOSSibIe to define for this set of heterogeneo’g%ontained in prices and agents agreeon functions mapp|ng divi-
agents. Thismethod seems like areasonable compromise integig$ds into prices. Setting current consumption equal to dividends

and assuming all agents are the same gives the function mapping
9Th¢ search uses the matlab built in functior_] zero. Also, the results are g,f?(/idends to prices of
sensitive to starting exactly at,_; Some experiments have been performe
starting the search at,_; plus a small amount of noise. The results were for

these experiments were not different from those starting the seapch aex- (1 - /3) (pt + dt) =cr = dy (17)
actly. 3 dy
10This is similar to the types of learning equilibrium surveyed in [19]. Pe = 1-3 t = P (18)

1IThe genetic algorithm [20] is a widely used technique in computational
learning. [21] provides a good overview and [22] gives a recent perspective12Hill climbing alone would also have to tackle the problem of over fitting in
There are many evolutionary techniques and this modified algorithm also c@eme efficientand sensible fashion. There is no easy solutionto this problem. [24]
tains inspiration from many of these others. [23] provides a broad perspectprevides one solution using an evolutionary bootstrap approach. This method is
to the complete set of methods. too computationally costly to be performed here.
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Fig. 1. (a) Price and (b) trading volume time series for all-memory agents.

The existence of such an equilibrium provides an importaht Initialization and Parameters

Iqench_mark for the _m_odel. G|yen the complexity of agent-l_af_;lsedWh”e this market is intended to be relatively streamlined, it

financial markets, it is not simply enough to match empmcegti” involves a fair number of parameters that may not have as

fa}cts. The model shoulq also be able to ;how th&.lt for SOME Ficheconomic contentas onewouldlike. Thefirstofthese are the

gion of the par.ameters it can do something consistent with Sjtialization parametersthatcontroltheagentandrule structure at

isting economic theory. The mquet can then be “taken ogt artup. Rules are started with parametestsawn from a uniform

the box” to perform more realistic studies of market dynamlc?._L 1] distribution for each neural network weight. Agents begin
withamemoryl; drawn from a specified distribution, which will

G. Timing be set differently in various experiments. Bond holding levels are
setto0.1. Thesharesaredivided equallyamongallagents. Finally,

The timing of the market is crucial since it is not an eqUIIIbi'nitial price and dividend series are generated using the stochastic

rium model, where everything happens simultaneously. A SP@Vidend process, setting = dy/r

Cg'c orierln?h_must be prejcrlbed to events. The following list There are several other parameters that will remain fixed in
Shows how things proceed. these runs, which may be interesting to change in the future. The

1) Dividendsd, are revealfed qnd paid. . number of agents is set to 1000, the number of rules to 250, and
2) The new equilibrium price, is determined and trades are&he maximum history is set to 250. The period of inactivity after
made. which aruleis deleted due to lack of use s fixed atten for all runs.

3) Rules are evolved.

4) Agents update their rule selection using the latest infor-

mation.

5) Agents are evolved. The computer experiments presented here emphasize the key
Although this appears to be a sensible ordering, it is not cleadifference between two cases. In the first case, agents of many
other sequences might give different results. The fact that thenemory lengthg’; are allowed to interact in the market. This is
needs to be an ordering is limited by usual computing tools. Theferred to as thall-memorycase. Initial agents are drawn from
best situation would be for things to be happening asynchmuniform[5, 250] distribution and new entrants are drawn from
nously and software tools are becoming available to tackle thiee same distribution. This experiment is designed to explore
problem. However, this would open some very difficult probthe dynamics of the completely heterogeneous market setup. A
lems in terms of trading and price determination. comparison experiment, referred to aslttreg-memoncase, is

Ill. RESULTS
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Fig. 2. (a) Price and (b) trading volume time series for long-memory agents.

provided by starting the market with a set of only longer memofyut they are quickly convinced to come back and join the rest of
agents drawn from a uniforfi220, 250] distribution. the crowd.
A dramatic comparison of the two cases is given by Fig. 3,
_ which displays the continuously compounded (logged) returns,
A. Run Summaries including dividends in the two different cases. In the heteroge-
. . i nous case [see Fig. 3(a)], there is clearly greater volatility and
, Fig. 1 presents plo_ts of prices and volume for the final 500 PSaveral very large moves. There appear to be a few more large
riods of_a 10000 pgrlod run of the all-memory case. Remem gative than positive returns as well. The homogeneous case
that perlods are being cahb_rated to be one month in actual ke Fig. 3(b)] shows a much smaller amount of volatility and
endar time, so the 500 period plot represents over 40 yearlg‘éy few large jumps in the return process. These same returns
rea! price F‘a“”?- Fig. 1(a) shows a strong upward trend over plotted as histograms in Fig. 4. In both cases, the histograms
period, which is due to the trending random walk of the undejs e a Gaussian distribution superimposed on the return dis-
Iylrjg dividend Process. I_t also displays a Iarge_z amount of Valfibutions. In Fig. 4(a), the all-memory case displays strong de-
ability about this trend with some very dramatic dips and shafp, i n from Gaussianity, which are typical of most financial
rises during the period. The corresponding volume series [S€gioq Fig. 4(b) displays a distribution much closer to normality

Fig. 1(b)] shows a moderate amount of trading activity Wit therefore, different from actual return series.
turnover rates of nearly 5% per month. There also appears to

be some clumping to volume activity along with a connection

between volume and large price moves. These features will Be Stock Returns

demonstrated in future sections. Monthly continuously compounded excess returns with div-
Fig. 2 shows the same features for the long-memory caggends are sampled from periods 5000 to 10000 and are given

Fig. 2(a) displays a price series which appears to be followingg

random walk and Fig. 2(b) shows volume series, which is nearly

zero. In the homogeneous equilibrium, the price series should e+ dy

be proportionate to the dividend series and, therefore, follow a log < i1 7’)‘) :

random walk as well. In the equilibrium, all agents are in agree- '

ment on valuations, so trading volume should be zero. The si@ampling far out into the simulation run allows the system to

ulation can occasionally generate some minor blips in tradingm®ve beyond the initial learning phase during which time some

several agents may explore some out of equilibrium strategie$the worst randomly initialized strategies are removed. Table |

(19)
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Fig. 3. Return time series. (a) All and (b) long-memory return.

presents summary statistics for these returns in the two difH three show little evidence for strong autocorrelation with
ferent cases along with comparison numbers for the Standardy a few slightly large values of about 0.1 coming from the
and Poor’'s (S&P) 500 indei. The first four columns corre- all-memory case. Fig. 6 turns to volatility by reporting the auto-
spond to the series mean, standard deviation, skewness, and &oirrelations of the absolute value of returns. This picture clearly
tosis. All three series show relatively similar mean monthly esshows the all-memory case following the actual market data in
cessreturns. The long-memory case is actually the closest of lemerating large positive volatility autocorrelations. The long-
simulations to the actual data here. The most interesting valmemory case generates no persistence to volatility. This is con-
is the standard deviation. Here, the all-memory case showsistent with a picture of what appears to be a near independent
clear amplification of return volatility as compared to the longreturns series for this important benchmark.
memory case. There is an increase by nearly a factor of fourFinally, Fig. 7 tests the leverage relationship discovered by
from this benchmark. The volatility of the all-memory case iR25], which documented an inverse relationship between returns
much closer to the actual S&P volatility, although it does givetaday and future volatility. In other words, when the market
value slightly higher than the actual returns process. The coluiprice falls volatility tends to go up. Fig. 7 displays the cross
labeled kurtosis shows that all three series generate some axtocorrelations between returns and volatility. The figure com-
cess kurtosis, indicating some deviations from normality in ghlares the all- and long-memory cases to the S&P and shows a
the cases. The columns label€dratio present quantile ratio strong inverse relationship for the all-memory case, indicating
values. These give another measure of the distribution shapeth a contemporaneous and a lagged relationship from returns
They are the ratio in the left and right tails of the distributioto volatility as in many stock return series. The results for the
of the 25th—5th and the 75th—-95th quantiles, respectively. Hong-memory case are dramatically different, displaying a posi-
a Gaussian distribution, these would be 0.41 for both tails. Thee cross correlation. The relationship in the actual S&P data is
table shows values close to Gaussian for the long-memory cadese to zero with a small negative correlation between lagged
but deviating in the tails for the all-memory and actual data. Theturns and future volatility. This is clearly different from the
probability in the tails is slightly larger for the all-memory sim-all horizon case in magnitude. This relationship is much more
ulation than for the actual data. pronounced in higher frequency returns data.

Information on return dynamics is presented in Figs. 5-7.
Fig. 5 summarizes the autocorrelation features of the mont Predictabilit
return series for the two simulated markets along with the S&P: y

13The S&P numbers are sampled from 1926 to 1998 and are taken from theMl_JCh O.f_mOdem finance has been concerned with Sea_-rCheS. for
Ibbotson data set. predictability of some type. Recently, the area has beenfilled with
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TABLE |

EXCESSRETURN SUMMARY STATISTICS

Mean | Std | Skewness | Kurtosis | Q-ratio(L) | Q-ratio(R)
All Memory 0.66 | 0.083 -2.80 44 0.22 0.27
Long Memory || 0.58 | 0.018 0.10 4.9 0.40 0.40
S&P 0.58 | 0.056 -0.43 11.1 0.35 0.38

“Mean” and “Std” are the mean and standard deviation of the returns series inclusive of dividends.
Skewness and kurtosis are estimated at the monthly horizon. Values for the S&P are the total re-
turns less the 30-day T-bill rate monthly from January 1926 through June 1998. Q-ratio is the ratio
of the 25th—5th quantile in the left tail and the 75th—-95th quantile in the right tail. These values
should be 0.41 for a Gaussian.

various standard predictability regressions. Lagged values of.fiable 1l presents results of univariate ordinary least squares
nancial data ranging from dividend price ratios to technical indiegressions of current returns on several candidates of lagged
cators have shown some use in forecasting future retéiiew-  information. These include the dividend yield, lagged returns,
ever, the long-term stability of these predictors has occasionadiid two exponential moving average trading indicators. Each
been called into questioa This section explores a subset of posef these corresponds to information variables included in the
sible predictors and looks at their stability through time. agents’ information set, contributing to evolved dynamic strate-
Fig. 8 displays the dividend yield for both the all- and longgies. Table Il presents both the t-statistic for the coefficient on
memaory cases. This is the ratio of the dividend to the price of tlﬂ% linear predictor a|0ng with thﬁ-squared for the regression_
risky asset. It is annualized by multiplying the dividend at eacthe regressions are estimated on a 250 length time series ending
date by 12. In a stationary equilibrium, this value should be cogt the point given in the table. Results are reported for several
stant, since there is no change in the fundamental riskiness of §i¥gsrent time periods. This is done both to document the un-
equity asset. This is very nearly the case for the long-memQqg¥ | nature of the initial time periods and to show how the pre-
simulations. Fig. 8(a), corresponding to the all-memory casgciapility properties appear to be changing over time. The re-
shows a much more realistic picture with & highly variable digjts in the table show many interesting features. Among these
idend price ratio. As we will see in Table II, these wide swingg;e a5y unusually large amount of predictability at time period
are indicative of potential return predictability. 500. Some of the regressions generateRasguared of nearly
lSee [26] for a survey. 75%, which is unheard for any financial series. This should be
155ee [27], [28], and [29] for examples of changes in predictability. expected since the agents are behaving with a large amount of
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randomness at startup and this probably leaves many pattehese gross market inefficiencies are dissipated. The later time
of predictability in the returns series. As learning takes oveeriod regressions reduégsquared values to much more typ-



LEBARON:

EMPIRICAL REGULARITIES FROM INTERACTING LONG- AND SHORT-MEMORY INVESTORS

04 T T T T T T T - I
- — All Memory
: -+ Long Memory
e - - 8&P
03 o g
0.21- J

o
-

Cross Correlation
L]

_04 [l 1 1 [} 1 | 1 L A
-10 -8 -6 -4 -2 0 2 4 6 8 10
Volatility(t} and Return(t+])

Fig. 7. Volatility and return cross correlations £ 0 refers to contemporaneous correlation).

10 T T T 1 [} T T T T
@
o
>
®
a
B}
%
o]
E
[
=
<
2+ i
| | 1 1 1 1 1} N ]
50 100 150 200 250 300 350 400 450 500
Period
(@)
10 T T T T T T T T T
a
2 gt i
o
Q
i |
g I Y
g4 :
(o)}
§
| ok i
1 1 ] ] I 1 1 1 i
50 100 150 200 250 300 350 400 450 500
Period
(b)

Fig. 8. Dividend yield: dividend/price ratio, annual rate. (a) All and (b) long memory.

451



452 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 5, OCTOBER 2001

TABLE I
FORECASTINGREGRESSIONS—ALL MEMORY

Period | D/P Ratio | Return lag 1 | Return lag 2 | MA(1) | MA(2)
500 t-ratio -2.66 25.85 19.16 19.55 0.10
R? 0.028 0.728 0.596 0.606 0.000
5000 | t-ratio -3.19 -0.10 -0.91 1.03 -2.23
R? 0.039 0.000 0.003 0.004 0.020
7500 | t-ratio -2.58 5.23 -1.48 1.71 -1.49
R? 0.026 0.099 0.009 0.011 0.009
10000 | t-ratio -4.25 2.02 2.57 -1.24 -3.88
R? 0.068 0.016 0.026 0.006 0.057

Results for univariate predictive regressions. T-ratio refers to the t-statistic for the OLS coeffi-
cient on the corresponding predict@®? refers to the r-squared value from this linear regres-
sion. In each case, the regression is estimated for the 500 periods (months) ending at period.
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Fig. 9. Volume autocorrelation.

ical values of a few percent to near zero. For the dividend pri€e Trading Volume

ratio, the results are fairly stable over time, but for the other 1p;g agent-based stock market generates trading volume
values, there are some changes as one moves across the singglass along with price series. In a less than efficient market,
tion time periods. In some cases, the predictors change sign gike are just as important as returns in characterizing what is
also move from being insignificant to significant. happening? Fig. 9 displays the autocorrelation for volume in
These preliminary results are suggestive of a market thagjig all-memory, long-memory, and New York Stock Exchange
changing continuously from the perspective of these linear ®YSE), respectively. For the NYSE, volume is taken to be
gressions and information variablgs Although markets are monthly shares traded divided by total shares outstanding
predictable according to normal tests of significance, the bgghich is known as the turnover ratio. This is normalized by
predictors may be changing over tirfie. a 12-month moving average. At one to two months, both the
16see [30] and [31] for similar theoretical questions related to stationarity.NYSE_E:Jlnd the heterogeneous market dlspla_y a Iarge a_mount
17Some caution should be used in interpreting thestatistics since there of positive autocorrelation. The actual data displays a slightly

is some possibility for data snooping here and one would naturally expect fi&ster decay. The long-memory market shows a small amount
t-statistics to change purely by chance. Second, given the excess kurtosis in the

series, the ordinary least squares (OLS) regression estimates of significance ma§See [32] for an early survey, and [33] for a more recent display of
not be correct. price/volume facts.
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of erratic autocorrelation. Given the small amount of volume iconsumption series aggregated to quarterly frequencies. The
these series, these numbers should be viewed with some catable shows general agreement in mean growth rates, which is

Fig. 10 shows the cross correlation between trading volumet surprising given the calibration done with actual data. What
and return volatility measured as the absolute value of returisinteresting is the amplification in volatility in both the all-
This is well known to be positive for contemporaneous volumand long-memory cases. In particular, aggregate consumption
and volatility. The graph displays this property for all three sder the all-memory case is over 20%, but for the actual macro
ries. The all-memory case generates a much larger positive csgries, it is only about 3%. Since consumption is proportional
relation than either the long-memory case or the NYSE volunte wealth in the simple log consumption case, it is easy to see
data. The differences in magnitude with the actual data couldy the increased financial market volatility is transferred
related to the fact that trade in this market takes place over atieectly into consumption.
asset yielding a very strong linkage between price and volume.This is a very important counterfactual for the agent-based ap-

Finally, Fig. 11 shows the cross correlation between volunpeoach to fitting macroeconomic facts. Even though the market
and returns. This has been shown to be generally positiveisra good mechanism for magnifying fundamental volatility into
actual data and it is replicated here for the NYSE series. Th®ck prices, it is important to remember that part of the puzzle
two market simulations generate different features with one: tbéfinancial markets is also that this volatility does not appear
all-memory case, displaying a strong negative correlation aimdother macro series. In order to match this feature, it will be
the long-memory displaying zero autocorrelation. This is onmportant to think about other aspects of the consumption deci-
of the strongest counterfactuals produced by the market so $an-making process. Mechanisms such as habit persistence or
and it is interesting to think about what might be different abogbme kind of lagged wealth estimation may be necessary.
the agent simulation in comparison to actual markets here.

) IV. CONCLUSION

E. Consumption

As a standard infinite horizon investment and consumptiqg
model, this market generates a consumption time series as we
as financial market prices. This adds another interesting dimen-
sion with which to test the results. Table Il gives a summary of 19t should be noted that the rate of 6% for the long-memory case is not sur-
some of the results for aggregate consumption from the modgising either. This is the volatility of the dividend process, which is higher than
Given that all the series are nonstationary, results are givf%avgljantlshty of_aggreg_ate uU.S. consgmptlon. I_fthe d|V|(_jends had been lined u_p

umption as in [34], then this would line up with the actual consump:

for annualized growth rates, determined from the monthiipn variability.

The results in this paper show that an agent-based model
ﬁapable of quantitatively replicating many features of actual
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TABLE Il will need to be considered to solve this puzzle. Also, it appears

CONSUMPTION GROWTH RATES

Mean | Std | ACF(1)
All Memory 1.89 | 23.3 0.34
Long Memory | 1.89 | 6.02 | -0.04
U.S. 1.77 1 3.26 | -0.12

Annual consumption growth rates and variability. For the U.S., this
comes from annual data and is measured from 1891 to 1995 (the
values come from [10]). For the market simulations, quarterly se-
ries are aggregated from the simulated monthly consumption series
and multiplied by 4 and/4 to get the annual mean and standard
deviations, respectively. The correlations are quarterly.

that returns generate too many large moves. Kurtosis levels and
guantile ratio statistics reveal a distribution with too much prob-
ability mass in the tails relative to the center as compared to
actual returns series. This problem is probably due to the large
amount of similarity across agents. Adding further external het-
erogeneity will probably reduce the large moves. Finally, the
volume/return relation is dramatically different in the artificial
data. Markets tend to fall on rising volume while the reverse is
true in the real world. Further tests on this need to be made both

on the artificial markets and on data for individual stock returns.
financial markets. Comparisons show favorable results for re-This market can only be viewed as an initial test of an
turns and volatility and their persistence. The data also replic&teerging technology for finance and economics. Previous
the well-known feature of excess kurtosis, or too many largémplified analytic models have not fared well in matching
moves, in the returns series. It also was able to generate pictdieancial data and the time and technology have now arrived to
of volume/volatility cross correlations, along with the leveragirn toward agent-based approaches. However, several impor-
asymmetry that matched features of real data. Given the marta@t questions still remain. The model presented is complicated
is forced to rely on a dividend process fitted to the U.S. aggrand contains many deep parameters controlling evolution and
gate and to keep within the bounds of well-defined restrictivearning for which we have only very weak notions of what
intertemporal preferences, these successes are quite remarkéigd. values should be. These apparent degrees of freedom
In addition to these features, there were places where gmuld potentially be used to fit just about any feature of the
market appears weak. The biggest of these is consumption.d&a. On the other hand, these models appear to fit many
one could easily predict given the proportionality of consumpeatures with relative ease that more traditional models do not
tion to wealth, consumption moves around considerably, givesen consider.
asset-price volatility. This shows that while artificial markets
can be viewed as a type of volatility generating engine, they
cannot immediately solve one of the basic problems of macro- ) i .
. . . [1] B. LeBaron, “Agent-based computational finance: Suggested readings
economics and finance, the dichotomy between return and con=~ _ 4 early research,J. Economic Dyn. Controlol. 24, no. 5-7, pp.
sumption variability. Other preferences and consumption rules  679-702, 2000.
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