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Empirical Regularities From Interacting Long- and
Short-Memory Investors in an Agent-Based

Stock Market
Blake LeBaron

Abstract—This paper explores some of the empirical features
generated in an agent-based computational stock market with
market participants adapting and evolving over time. Investors
view differing lengths of past information as being relevant to
their investment decision making process. The interaction of these
memory lengths in determining market prices creates a kind of
market ecology in which it is difficult for the more stable longer
horizon agents to take over the market. What occurs is a dynam-
ically changing market in which different types of agents arrive
and depart depending on their current relative performance. This
paper analyzes several key time series features of such a market.
It is calibrated to the variability and growth of dividend payments
in the United States. The market generates some features that
are remarkably similar to those from actual data. These include
magnifying the volatility from the dividend process, inducing
persistence in volatility and volume, and generating fat-tailed
return distributions.

Index Terms—Agent-based markets, finance, financial fore-
casting, neural networks, volatility.

I. INTRODUCTION

M ODELING the many interactions, diverse beliefs, and
behaviors that are contained in a financial market is a

daunting task. However, much of modern finance theory is based
on careful assumptions and well-crafted theories that allow
simplification to analytically tractable models often involve a
single representative agent. While such models appear to push
one’s notions of stylized representations to the limit, they are a
common part of the economics toolkit for making difficult social
interactions tractable. These heroic attempts at simplifying
markets have generally been unsuccessful at meeting the chal-
lenge of lining up with many empirical features of real markets.
Among these are relative returns, the amount and persistence of
volatility and trading volume, and cross correlations between
volatility, returns, and volume. At the moment, there is no unified
theoretical model capable of replicating all these facts, although
some have been replicated individually.

This paper presents the first results of calibrating agent-based
markets with interacting artificially intelligent agents to aggre-
gate macroeconomic and financial data. The results show that
in some dimensions, agent-based markets show great promise
in solving some of these puzzles, while in others more work
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remains. The model presented is designed to fit prices, trading
volume, and returns for data sampled at the monthly frequency.1

The model used is a relatively new agent-based market.2

Many of its details are developed and presented in [2]. Although
it is similar in spirit to the Santa Fe artificial stock market, it
is a radically different design, built to be more tractable and
closer to the world of more traditional macrofinance models
except for its heterogeneous agent framework.3

The market also stresses many of the coevolutionary features
thatare an interestingpartofagent-basedmodeling. In acoevolu-
tionary setting, the fitness of strategies depends critically on the
current population of other strategies. In this market, rules and
agents are evolved and compete with each other in their trading
activities.Thewealthieragentssurvive,alongwith rules thathave
been actively used. Agents’ decision-making processes differ in
a very special way designed to replicate heterogeneity in the real
world. They use differing amounts of past data in deciding on
their optimal trading strategies. Some traders take a perspective
of looking back 25 years to evaluate a trading rule, while others
viewonly theprevioussixmonthsasbeing important.Thisallows
for interesting evolutionary races across these differing players
and helps to answer some questions about whether there is a
way to judge the most rational and to predict who should end up
wealthier in the long run. This bounded memory perspective on
past information has been approached in many different contexts
and is related to constant gain learning algorithms.4

Section II summarizes the model. Section III gives results
from some computer experiments summarizes and Section IV-
concludes.

II. M ARKET STRUCTURE

The market consists of several different pieces for which
some are more or less standard in economics and finance and
others are new. The market is interesting from an evolutionary

1Agent-based approaches in which a market situation is analyzed from
the bottom up using adaptive agent systems are becoming more preva-
lent in economics. A good summary of this research can be found at
http://www.econ.iastate.edu/tesfatsi/ace.htm. Information specific to fi-
nance can be found at the agent-based computational finance website
http://www.brandeis.edu/~blebaron/acf and in [1].

2The market model used here was built using Matlab version 5.3.
3Results on the Santa Fe Institute artificial market have been presented in [3]

and [4].
4See [5]–[7] for related work on bounded memory. There is also a connection

to the issue of rationality of adaptive expectation forecasts as in [8].
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standpoint for several reasons. First, as mentioned in the
introduction, financial markets are coevolutionary entities
where the fitness of agents depends critically on the strategies
of other evolving agents. Second, this particular market setup
involves evolution for both the agents and the rules. Agents
are evolved over wealth and chosen from a common set of
rules in an attempt to maximize their own objectives. Rules
are evolved separately using only a weak notion of popularity
as their fitness function. This allows some aspects of social
learning and information transfer across agents.5 It also allows
for an endogenous measure of belief dispersions coming from
the number of different rules or strategies in use at a given time.

The following sections describe the market in greater detail.
Since this market is calibrated to actual data, time increments are
meaningful. The basic time interval of the market is taken to be
one month, which corresponds to many longer range financial
studies in macroeconomics and finance.

A. Securities

The market is a partial equilibrium model with two securi-
ties, a risk-free asset in infinite supply paying a constant interest
rate and a risky security paying investors a random dividend
each period. It is available in a fixed supply of one share for the
population. If is the share holdings of agent, the following
constraint must be met in all periods

(1)

where is the number of agents. The log dividend follows a
random walk, with an annualized growth rate of 2% and a annual
standard deviation of 6%. This corresponds roughly to actual
dividend properties from the U.S.6 The constant interest rate is
set to a value of 1% at an annual rate (compounded monthly),
which is also a common benchmark in economics for the real
rate of interest.

Agents receive only three forms of income: dividends, in-
terest payments, and capital gains from purchases and sales.
These go to building wealth and current consumption. No other
income streams are available.

B. Agents and Rules

Agents are defined by intertemporal constant relative risk
aversion preferences of logarithmic form

(2)

subject to the intertemporal budget constraint

(3)

and are the risky and risk-free asset holdings, respec-
tively, and is the risk-free rate of return. will represent the
risky asset return at time. is the price of the risky security at
time . and are the wealth and consumption of agent.

5See [9] for some comparisons of social versus individual learning.
6See [10] for a summary of many of the features of aggregate financial series.

Also, note that seasonalities in the aggregate dividend process are ignored.

Finally, is the dividend paid at time. These heavily restricted
preferences are used for tractability. It is well known that for log-
arithmic utility, the agent’s optimal consumption choice can be
separated from the portfolio composition and is a constant pro-
portion of wealth7

(4)

The time rate of discount is set to , which corre-
sponds to 0.95 annual rate. This is a common time rate of dis-
count used in macro models and a later section will show that
this provides a reasonable match for the equilibrium dividend
yield in the model. It will be useful to denote the interest rate
corresponding to the time rate of discount as

(5)

A second property of logarithmic preferences is that the
portfolio decision is myopic in that agents maximize the loga-
rithm of next period’s portfolio return. Agents will concentrate
their learning efforts on this optimal portfolio decision. They
are interested in finding a rule that will maximize the expected
logarithm of the portfolio return from a dynamic strategy. The
strategy recommends a fraction of savings to invest in
the risky asset as a function of current information. The
objective is to

(6)

for the set of all available rules, . In general, it would be im-
possible for agents to run this optimization each period, since
the above expectation depends on the state of all other agents
in the market, along with the dividend state. The portfolio de-
cision will therefore be replaced with a simple rule that will be
continually tested against other candidate rules. This continual
testing forms a key part of the learning going on the market.

The trading rules should be thought of as being separate
from the actual agents. The best analogy is to that of an invest-
ment advisor or mutual fund. A population of rules is maintained
and agents select from this set as they might chose an advisor.
One difference here from the world of investment advisors is
that the rule is a simple function , where is time
information and are parameters specific to rule. The func-
tional form used for each rule is a feedforward neural network
with a single hidden unit with restricted inputs. It is given by

(7)

(8)

(9)

(10)

7This result is well known in dynamic financial models. See [11] and [12]
for early derivations. [13] and [14] provide updated derivations in more general
settings. Future versions of this model will generalize these preferences, but this
brings in the added dimension of trying to determine optimal consumption given
current information. Also related are the analytic policy rules for time varying
returns in [15] and [16]. Finally, [17] and [18] present some results showing
some of the difficulties in building agents with the capabilities of learning dy-
namic consumption plans.
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This framework restricts the portfolio to positive weights be-
tween zero and one, so there is no short selling or borrowing al-
lowed. The model needs to set borrowing constraints to keep it
off nonstationary bubble trajectories and to avoid having to un-
wind debt positions when the agents go bankrupt. With these re-
strictions in place, agents’ wealth can go to zero, but they cannot
end up with negative wealth. It is also important to note that
this is a very restrictive neural network structure. Each hidden
unit is connected to only one information variable. This dif-
fers from standard neural networks which let all inputs influence
each hidden unit. This step was taken to enhance tractability of
the learned rules, but it does limit the generality of how agents
can combine input information. It also provides some intuition
for why this might be a sensible and tractable way to build dy-
namic trading strategies. Each information input is translated
into a variable between 1 and 1. This could be interpreted as
a kind of buy/sell signal. The next stage of the network could
then be thought of as a kind of “or” gate across these signals
by summing a weighted version of them together. This creates
a rule which can respond by moving the portfolio into stocks
when any number of individual trading signals are active which
seems like a sensible picture of actual trading behavior.

The weights are stored in a population table along with
information on performance of this rule in the recent past.
A simple real valued vector completely describes each
dynamic trading strategy. All that is needed to be stored is a
time series of the portfolio returns from each rule since the
agent’s objective only requires this as an input.

Agents chose the rule to use in the current period based on its
performance in the past. They look over their own past memory
length toevaluatetheperformanceof therule inthefutureusing

(11)

The only feature driving heterogeneity across agents’ decisions
is their memory . This can lead to relatively similar decision
rules, and very unstable markets. Further heterogeneity is added
by making the rule decision have a random component. Agents
compare their current rule to a candidate comparison rule drawn
at random from the pool of active rules. If this new rule beats
the current one using the above return estimation, then it will re-
place the current one. If not, the agent continues to use the same
rule. This might appear to give a very weak selection property
for rules, but since agents get to have many chances to evaluate
rules, they should move to better strategies over time as the fur-
ther the explore the rule set. Further heterogeneity is generated,
by having only half the agents, selected at random, update their
rules each period.

C. Information

Agents trading strategies are based on simple information
structures which are input to the neural network and used to gen-
erate the trading strategies . Obviously, the choice of
the information set is important. This set will be chosen to en-
compass reasonable predictors that are commonly used in real

markets. The information set will include, returns, past returns,
the price dividend ratio, and trend following technical trading in-
dicators. In the current version, the only types of technical rules
used are exponential moving averages. The moving average is
formed as

(12)

Formally, the information set will consist of six items:.

1) ;
2) ;
3) ;
4) ;
5) ;
6) .

Several of the items are logged to make the relative units sen-
sible. The dividend price ratio is normalized around a bench-
mark determined in the equilibrium presented in Section II-F.
The two moving average indicators and correspond
to values of and , respectively.

It is important to think about the timing of information as this
will be important to the trading mechanisms covered in the Sec-
tion II-D. As trading begins at time, all and earlier infor-
mation is known. Also, the dividend at timehas been revealed
and paid. This means that can be written as a function of
and information that is known at time8

(13)

All variables in are known before trading begins in period.
will then be determined endogenously to clear the market.

D. Trading

Trading is performed by finding the aggregate demand for
shares and setting it equal to the fixed aggregate supply of one
share. Given the strategy space each agent’s demand for shares,

at time can be written as

(14)

(15)

where is the total wealth of agentand are the bond
holdings from the previous period. Summing these demands
gives an aggregate demand function

(16)

Setting will find the equilibrium price . This is es-
sentially a simple Walrasian auction in the market for the risky
asset. Unfortunately, there is no analytic way to do this given
the complex nonlinear demand functions. This operation will be
performed numerically. Also, it is not clear that the equilibrium
price at time is unique. Given the large number of nonlinear de-
mand functions involved, it probably is not. A nonlinear search

8The impact ofp on the current information vectorz is taken into account
as well.



LEBARON: EMPIRICAL REGULARITIES FROM INTERACTING LONG- AND SHORT-MEMORY INVESTORS 445

procedure will start at as its initial value and stop at the
first price that sets excess demand to zero.9 .

It is important to remember the equilibrium is found by taking
the current set of trading strategies as given. Onceis revealed,
then it is possible that agentmight want to change to a different
trading rule. It is in this sense that the equilibrium is only tem-
porary.10

E. Evolution

Around this structure of rules, agents, and markets is an evo-
lutionary dynamic that controls adaptation and learning in the
entire system. Evolution of agents is performed in a very simple
fashion based on accumulated wealth. For every period, one
of the five least wealthiest agents is chosen at random and re-
moved. One new agent with a memory lengthdrawn ran-
domly replaces this agent. This new agent chooses an initial
trading rule randomly from the best half of the current rules
judged according to its own memory length. The distribution
for this draw will be different in different experimental market
runs. It is initialized with the share holdings of the deleted agent
and receives bond holdings equal to the median over the popula-
tion. To make evolution neutral to the overall population wealth,
these new holdings are taken from other agents in the popula-
tion. The burden is split evenly between the upper half of agents
sorted by current bond holdings. This gives a weak redistribu-
tional effect to the evolutionary process.

Rule evolution is more complicated. Rules are evolved using
a genetic algorithm.11 This method tries to evolve the population
using biologically inspired operators that take useful rules and
either modify them a little (mutation) or combine them with
parts of other rules (crossover).

One of the crucial aspects of evolutionary learning is the fit-
ness criterion, which is used to select good parents from the cur-
rent generation. It is not clear what makes a rule “fit” in a mul-
tiagent market. For example, it would be tempting to evolve the
rulesbasedonthehistoricalperformanceonafixedhistoryofpast
data, but this would not capture the fact that agents are looking at
different history lengths. To try to account for agent diversity a
very weak selection criterion is used. A rule can be a parent for
the nextgeneration if at leastoneagenthasused it over the last ten
periods. Rules that have not been used for ten periods are marked
for replacement. This is equivalent to eliminating all mutual fund
managers with no customers. This weak selection procedure also
rulesoutmoreinvolvedoptimizationproceduressuchasthemany
variants of hill climbing often used for neural network weight op-
timization. This would require a well-defined objective surface
that would be impossible to define for this set of heterogeneous
agents.Thismethodseemslikeareasonablecompromise in terms

9The search uses the matlab built in function zero. Also, the results are not
sensitive to starting exactly atp Some experiments have been performed
starting the search atp plus a small amount of noise. The results were for
these experiments were not different from those starting the search atp ex-
actly.

10This is similar to the types of learning equilibrium surveyed in [19].
11The genetic algorithm [20] is a widely used technique in computational

learning. [21] provides a good overview and [22] gives a recent perspective.
There are many evolutionary techniques and this modified algorithm also con-
tains inspiration from many of these others. [23] provides a broad perspective
to the complete set of methods.

of building relatively robust rules that are not too finely tuned to
the preferences of any one agent.12

Evolution proceeds as follows. First, the set of rules to be
eliminated is identified. Then, for each rule to be replaced, the
algorithm chooses between three methods with equal proba-
bility.

1) Mutation: Choose one rule from the parent set and
add a uniform random variable to one of the network
weights . The random increment is distributed uniform

.
2) New Weight:Chose one rule from the parent set, chose

one weight at random, and replace it with a new value
chosen uniformly from . This is the same distribu-
tion used at startup.

3) Crossover:Take two parents at random from the set of
good rules. Take all weights from one parent and replace
one set of weights corresponding to one input with the
weights from the other parent. This amounts to replacing
the two weights that affect the input directly (linear and
bias), plus the weight on the corresponding hidden unit.
Visually, this is equivalent to chopping off a branch of
the network for parent one and replacing it with a branch
from parent two.

A new rule is initialized by evaluating its performance over the
past history of prices and information. Agents will use this per-
formance history to decide on whether this rule should be used
as they do with the others.

It would be difficult to argue that there is any particular magic
to this procedure for evolving rules and it goes without saying
that these mechanisms are ad hoc. However, the objective is to
produce new and interesting strategies that must then survive the
competition with the other rules in terms of forecasting. Exper-
iments have shown that the results are robust to different minor
modifications of these mechanisms.

F. Equilibrium

It is useful in multiagent financial simulations to have a bench-
markwithwhichtheresultscanbecompared.Formultiagentsim-
ulations, the homogeneous agent world is often the appropriate
benchmark. It turns out that in this model, for the given calibrated
parameters, there is a homogeneous equilibrium in which agents
all hold only the risky asset. Prices, dividends, and consumption
all grow at the same expected growth rate, which matches the
rate for dividends. In this equilibrium, stock returnsshould be un-
predictable and trading volume should be zero. In this sense, it
matches a classic efficient market situation where all information
iscontained inpricesandagentsagreeonfunctionsmappingdivi-
dends intoprices.Settingcurrentconsumptionequal todividends
and assuming all agents are the same gives the function mapping
dividends to prices of

(17)

(18)

12Hill climbing alone would also have to tackle the problem of over fitting in
someefficient andsensible fashion. There isnoeasysolution to thisproblem. [24]
provides one solution using an evolutionary bootstrap approach. This method is
too computationally costly to be performed here.
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(a)

(b)

Fig. 1. (a) Price and (b) trading volume time series for all-memory agents.

The existence of such an equilibrium provides an important
benchmark for the model. Given the complexity of agent-based
financial markets, it is not simply enough to match empirical
facts. The model should also be able to show that for some re-
gion of the parameters it can do something consistent with ex-
isting economic theory. The market can then be “taken out of
the box” to perform more realistic studies of market dynamics.

G. Timing

The timing of the market is crucial since it is not an equilib-
rium model, where everything happens simultaneously. A spe-
cific ordering must be prescribed to events. The following list
shows how things proceed.

1) Dividends are revealed and paid.
2) The new equilibrium price is determined and trades are

made.
3) Rules are evolved.
4) Agents update their rule selection using the latest infor-

mation.
5) Agents are evolved.

Although this appears to be a sensible ordering, it is not clear if
other sequences might give different results. The fact that there
needs to be an ordering is limited by usual computing tools. The
best situation would be for things to be happening asynchro-
nously and software tools are becoming available to tackle this
problem. However, this would open some very difficult prob-
lems in terms of trading and price determination.

H. Initialization and Parameters

While this market is intended to be relatively streamlined, it
still involves a fair number of parameters that may not have as
mucheconomiccontentasonewouldlike.Thefirstofthesearethe
initializationparametersthatcontroltheagentandrulestructureat
startup.Rulesarestartedwithparametersdrawnfromauniform

distribution foreachneuralnetworkweight.Agentsbegin
witha memory drawn from a specifieddistribution,which will
be set differently in various experiments. Bond holding levels are
setto0.1.Thesharesaredividedequallyamongallagents.Finally,
initial price anddividendseriesaregeneratedusing thestochastic
dividend process, setting .

There are several other parameters that will remain fixed in
these runs, which may be interesting to change in the future. The
number of agents is set to 1000, the number of rules to 250, and
the maximum history is set to 250. The period of inactivity after
which a rule is deleted due to lack of use is fixed at ten for all runs.

III. RESULTS

The computer experiments presented here emphasize the key
difference between two cases. In the first case, agents of many
memory lengths are allowed to interact in the market. This is
referred to as theall-memorycase. Initial agents are drawn from
a uniform distribution and new entrants are drawn from
the same distribution. This experiment is designed to explore
the dynamics of the completely heterogeneous market setup. A
comparison experiment, referred to as thelong-memorycase, is



LEBARON: EMPIRICAL REGULARITIES FROM INTERACTING LONG- AND SHORT-MEMORY INVESTORS 447

(a)

(b)

Fig. 2. (a) Price and (b) trading volume time series for long-memory agents.

provided by starting the market with a set of only longer memory
agents drawn from a uniform distribution.

A. Run Summaries

Fig. 1 presents plots of prices and volume for the final 500 pe-
riods of a 10 000 period run of the all-memory case. Remember
that periods are being calibrated to be one month in actual cal-
endar time, so the 500 period plot represents over 40 years of
real price data. Fig. 1(a) shows a strong upward trend over the
period, which is due to the trending random walk of the under-
lying dividend process. It also displays a large amount of vari-
ability about this trend with some very dramatic dips and sharp
rises during the period. The corresponding volume series [see
Fig. 1(b)] shows a moderate amount of trading activity with
turnover rates of nearly 5% per month. There also appears to
be some clumping to volume activity along with a connection
between volume and large price moves. These features will be
demonstrated in future sections.

Fig. 2 shows the same features for the long-memory case.
Fig. 2(a) displays a price series which appears to be following a
random walk and Fig. 2(b) shows volume series, which is nearly
zero. In the homogeneous equilibrium, the price series should
be proportionate to the dividend series and, therefore, follow a
random walk as well. In the equilibrium, all agents are in agree-
ment on valuations, so trading volume should be zero. The sim-
ulation can occasionally generate some minor blips in trading as
several agents may explore some out of equilibrium strategies,

but they are quickly convinced to come back and join the rest of
the crowd.

A dramatic comparison of the two cases is given by Fig. 3,
which displays the continuously compounded (logged) returns,
including dividends in the two different cases. In the heteroge-
nous case [see Fig. 3(a)], there is clearly greater volatility and
several very large moves. There appear to be a few more large
negative than positive returns as well. The homogeneous case
[see Fig. 3(b)] shows a much smaller amount of volatility and
very few large jumps in the return process. These same returns
are plotted as histograms in Fig. 4. In both cases, the histograms
include a Gaussian distribution superimposed on the return dis-
tributions. In Fig. 4(a), the all-memory case displays strong de-
viations from Gaussianity, which are typical of most financial
series. Fig. 4(b) displays a distribution much closer to normality
and, therefore, different from actual return series.

B. Stock Returns

Monthly continuously compounded excess returns with div-
idends are sampled from periods 5000 to 10 000 and are given
by

(19)

Sampling far out into the simulation run allows the system to
move beyond the initial learning phase during which time some
of the worst randomly initialized strategies are removed. Table I
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(a)

(b)

Fig. 3. Return time series. (a) All and (b) long-memory return.

presents summary statistics for these returns in the two dif-
ferent cases along with comparison numbers for the Standard
and Poor’s (S&P) 500 index.13 The first four columns corre-
spond to the series mean, standard deviation, skewness, and kur-
tosis. All three series show relatively similar mean monthly ex-
cess returns. The long-memory case is actually the closest of the
simulations to the actual data here. The most interesting value
is the standard deviation. Here, the all-memory case shows a
clear amplification of return volatility as compared to the long-
memory case. There is an increase by nearly a factor of four
from this benchmark. The volatility of the all-memory case is
much closer to the actual S&P volatility, although it does give a
value slightly higher than the actual returns process. The column
labeled kurtosis shows that all three series generate some ex-
cess kurtosis, indicating some deviations from normality in all
the cases. The columns labeledratio present quantile ratio
values. These give another measure of the distribution shape.
They are the ratio in the left and right tails of the distribution
of the 25th–5th and the 75th–95th quantiles, respectively. For
a Gaussian distribution, these would be 0.41 for both tails. The
table shows values close to Gaussian for the long-memory case,
but deviating in the tails for the all-memory and actual data. The
probability in the tails is slightly larger for the all-memory sim-
ulation than for the actual data.

Information on return dynamics is presented in Figs. 5–7.
Fig. 5 summarizes the autocorrelation features of the monthly
return series for the two simulated markets along with the S&P.

13The S&P numbers are sampled from 1926 to 1998 and are taken from the
Ibbotson data set.

All three show little evidence for strong autocorrelation with
only a few slightly large values of about 0.1 coming from the
all-memory case. Fig. 6 turns to volatility by reporting the auto-
correlations of the absolute value of returns. This picture clearly
shows the all-memory case following the actual market data in
generating large positive volatility autocorrelations. The long-
memory case generates no persistence to volatility. This is con-
sistent with a picture of what appears to be a near independent
returns series for this important benchmark.

Finally, Fig. 7 tests the leverage relationship discovered by
[25], which documented an inverse relationship between returns
today and future volatility. In other words, when the market
price falls volatility tends to go up. Fig. 7 displays the cross
autocorrelations between returns and volatility. The figure com-
pares the all- and long-memory cases to the S&P and shows a
strong inverse relationship for the all-memory case, indicating
both a contemporaneous and a lagged relationship from returns
to volatility as in many stock return series. The results for the
long-memory case are dramatically different, displaying a posi-
tive cross correlation. The relationship in the actual S&P data is
close to zero with a small negative correlation between lagged
returns and future volatility. This is clearly different from the
all horizon case in magnitude. This relationship is much more
pronounced in higher frequency returns data.

C. Predictability

Much of modern finance has been concerned with searches for
predictabilityofsometype.Recently, theareahasbeenfilledwith
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(a)

(b)

Fig. 4. Return distributions. (a) All and (b) long memory.

TABLE I
EXCESSRETURN SUMMARY STATISTICS

“Mean” and “Std” are the mean and standard deviation of the returns series inclusive of dividends.
Skewness and kurtosis are estimated at the monthly horizon. Values for the S&P are the total re-
turns less the 30-day T-bill rate monthly from January 1926 through June 1998. Q-ratio is the ratio
of the 25th–5th quantile in the left tail and the 75th–95th quantile in the right tail. These values
should be 0.41 for a Gaussian.

various standard predictability regressions. Lagged values of fi-
nancial data ranging from dividend price ratios to technical indi-
cators haveshown some use in forecasting future returns.14 How-
ever, the long-term stability of these predictors has occasionally
been called into question.15 This section explores a subset of pos-
sible predictors and looks at their stability through time.

Fig. 8 displays the dividend yield for both the all- and long-
memory cases. This is the ratio of the dividend to the price of the
risky asset. It is annualized by multiplying the dividend at each
date by 12. In a stationary equilibrium, this value should be con-
stant, since there is no change in the fundamental riskiness of the
equity asset. This is very nearly the case for the long-memory
simulations. Fig. 8(a), corresponding to the all-memory case,
shows a much more realistic picture with a highly variable div-
idend price ratio. As we will see in Table II, these wide swings
are indicative of potential return predictability.

14See [26] for a survey.
15See [27], [28], and [29] for examples of changes in predictability.

.Table II presents results of univariate ordinary least squares
regressions of current returns on several candidates of lagged
information. These include the dividend yield, lagged returns,
and two exponential moving average trading indicators. Each
of these corresponds to information variables included in the
agents’ information set, contributing to evolved dynamic strate-
gies. Table II presents both the t-statistic for the coefficient on
the linear predictor along with the-squared for the regression.
The regressions are estimated on a 250 length time series ending
at the point given in the table. Results are reported for several
different time periods. This is done both to document the un-
usual nature of the initial time periods and to show how the pre-
dictability properties appear to be changing over time. The re-
sults in the table show many interesting features. Among these
are an unusually large amount of predictability at time period
500. Some of the regressions generate ansquared of nearly
75%, which is unheard for any financial series. This should be
expected since the agents are behaving with a large amount of
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Fig. 5. Return autocorrelations.

Fig. 6. Volatility (absolute return) autocorrelations.

randomness at startup and this probably leaves many patterns
of predictability in the returns series. As learning takes over,

these gross market inefficiencies are dissipated. The later time
period regressions reduce-squared values to much more typ-
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Fig. 7. Volatility and return cross correlations (j = 0 refers to contemporaneous correlation).

(a)

(b)

Fig. 8. Dividend yield: dividend/price ratio, annual rate. (a) All and (b) long memory.
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TABLE II
FORECASTINGREGRESSIONS—ALL MEMORY

Results for univariate predictive regressions. T-ratio refers to the t-statistic for the OLS coeffi-
cient on the corresponding predictor.R refers to the r-squared value from this linear regres-
sion. In each case, the regression is estimated for the 500 periods (months) ending at period.

Fig. 9. Volume autocorrelation.

ical values of a few percent to near zero. For the dividend price
ratio, the results are fairly stable over time, but for the other
values, there are some changes as one moves across the simula-
tion time periods. In some cases, the predictors change sign and
also move from being insignificant to significant.

These preliminary results are suggestive of a market that is
changing continuously from the perspective of these linear re-
gressions and information variables.16 Although markets are
predictable according to normal tests of significance, the best
predictors may be changing over time.17

16See [30] and [31] for similar theoretical questions related to stationarity.
17Some caution should be used in interpreting theset-statistics since there

is some possibility for data snooping here and one would naturally expect the
t-statistics to change purely by chance. Second, given the excess kurtosis in the
series, the ordinary least squares (OLS) regression estimates of significance may
not be correct.

D. Trading Volume

This agent-based stock market generates trading volume
series along with price series. In a less than efficient market,
these are just as important as returns in characterizing what is
happening.18 Fig. 9 displays the autocorrelation for volume in
the all-memory, long-memory, and New York Stock Exchange
(NYSE), respectively. For the NYSE, volume is taken to be
monthly shares traded divided by total shares outstanding
which is known as the turnover ratio. This is normalized by
a 12-month moving average. At one to two months, both the
NYSE and the heterogeneous market display a large amount
of positive autocorrelation. The actual data displays a slightly
faster decay. The long-memory market shows a small amount

18See [32] for an early survey, and [33] for a more recent display of
price/volume facts.
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Fig. 10. Volume/volatility cross correlation (j = 0 refers to contemporaneous correlation).

of erratic autocorrelation. Given the small amount of volume in
these series, these numbers should be viewed with some care.

Fig. 10 shows the cross correlation between trading volume
and return volatility measured as the absolute value of returns.
This is well known to be positive for contemporaneous volume
and volatility. The graph displays this property for all three se-
ries. The all-memory case generates a much larger positive cor-
relation than either the long-memory case or the NYSE volume
data. The differences in magnitude with the actual data could be
related to the fact that trade in this market takes place over one
asset yielding a very strong linkage between price and volume.

Finally, Fig. 11 shows the cross correlation between volume
and returns. This has been shown to be generally positive in
actual data and it is replicated here for the NYSE series. The
two market simulations generate different features with one: the
all-memory case, displaying a strong negative correlation and
the long-memory displaying zero autocorrelation. This is one
of the strongest counterfactuals produced by the market so far
and it is interesting to think about what might be different about
the agent simulation in comparison to actual markets here.

E. Consumption

As a standard infinite horizon investment and consumption
model, this market generates a consumption time series as well
as financial market prices. This adds another interesting dimen-
sion with which to test the results. Table III gives a summary of
some of the results for aggregate consumption from the model.
Given that all the series are nonstationary, results are given
for annualized growth rates, determined from the monthly

consumption series aggregated to quarterly frequencies. The
table shows general agreement in mean growth rates, which is
not surprising given the calibration done with actual data. What
is interesting is the amplification in volatility in both the all-
and long-memory cases. In particular, aggregate consumption
for the all-memory case is over 20%, but for the actual macro
series, it is only about 3%.19 Since consumption is proportional
to wealth in the simple log consumption case, it is easy to see
why the increased financial market volatility is transferred
directly into consumption.

This is a very important counterfactual for the agent-based ap-
proach to fitting macroeconomic facts. Even though the market
is a good mechanism for magnifying fundamental volatility into
stock prices, it is important to remember that part of the puzzle
of financial markets is also that this volatility does not appear
in other macro series. In order to match this feature, it will be
important to think about other aspects of the consumption deci-
sion-making process. Mechanisms such as habit persistence or
some kind of lagged wealth estimation may be necessary.

IV. CONCLUSION

The results in this paper show that an agent-based model
is capable of quantitatively replicating many features of actual

19It should be noted that the rate of 6% for the long-memory case is not sur-
prising either. This is the volatility of the dividend process, which is higher than
the volatility of aggregate U.S. consumption. If the dividends had been lined up
with consumption as in [34], then this would line up with the actual consump-
tion variability.
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Fig. 11. Volume/return cross correlation (j = 0 refers to contemporaneous correlation).

TABLE III
CONSUMPTIONGROWTH RATES

Annual consumption growth rates and variability. For the U.S., this
comes from annual data and is measured from 1891 to 1995 (the
values come from [10]). For the market simulations, quarterly se-
ries are aggregated from the simulated monthly consumption series
and multiplied by 4 and

p
4 to get the annual mean and standard

deviations, respectively. The correlations are quarterly.

financial markets. Comparisons show favorable results for re-
turns and volatility and their persistence. The data also replicate
the well-known feature of excess kurtosis, or too many large
moves, in the returns series. It also was able to generate pictures
of volume/volatility cross correlations, along with the leverage
asymmetry that matched features of real data. Given the market
is forced to rely on a dividend process fitted to the U.S. aggre-
gate and to keep within the bounds of well-defined restrictive
intertemporal preferences, these successes are quite remarkable.

In addition to these features, there were places where the
market appears weak. The biggest of these is consumption. As
one could easily predict given the proportionality of consump-
tion to wealth, consumption moves around considerably, given
asset-price volatility. This shows that while artificial markets
can be viewed as a type of volatility generating engine, they
cannot immediately solve one of the basic problems of macro-
economics and finance, the dichotomy between return and con-
sumption variability. Other preferences and consumption rules

will need to be considered to solve this puzzle. Also, it appears
that returns generate too many large moves. Kurtosis levels and
quantile ratio statistics reveal a distribution with too much prob-
ability mass in the tails relative to the center as compared to
actual returns series. This problem is probably due to the large
amount of similarity across agents. Adding further external het-
erogeneity will probably reduce the large moves. Finally, the
volume/return relation is dramatically different in the artificial
data. Markets tend to fall on rising volume while the reverse is
true in the real world. Further tests on this need to be made both
on the artificial markets and on data for individual stock returns.

This market can only be viewed as an initial test of an
emerging technology for finance and economics. Previous
simplified analytic models have not fared well in matching
financial data and the time and technology have now arrived to
turn toward agent-based approaches. However, several impor-
tant questions still remain. The model presented is complicated
and contains many deep parameters controlling evolution and
learning for which we have only very weak notions of what
their values should be. These apparent degrees of freedom
could potentially be used to fit just about any feature of the
data. On the other hand, these models appear to fit many
features with relative ease that more traditional models do not
even consider.
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