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Abstract 

We propose a new time series representation of persistence in conditional variance called 
a long memory stochastic volatility (LMSV) model. The LMSV model is constructed by 
incorporating an ARFIMA process in a standard stochastic volatility scheme. Strongly 
consistent estimators of the parameters of the model are obtained by maximizing the 
spectral approximation to the Gaussian likelihood. The finite sample properties of the 
spectral likelihood estimator are analyzed by means of a Monte Carlo study. An empirical 
example with a long time series of stock prices demonstrates the superiority of the LMSV 
model over existing (short-memory) volatility models, ~ 1998 Elsevier Science S.A. 

Key u'ords: Fractional ARMA; EGARCII; Spectral likelihood estimators 
JEL chtss(lication." C22 

I. introduction 

A large body o f  research suggests  that the conditional volatility o f  asset prices 

displays long memory  or long-range persistence. I Furthermore,  as we demonstra te  

below, this type of  persistence cannot  be appropriately modeled by autoregressive 

* Corresponding author. 
This paper was presented at a conference in honor of Carl Christ held at the Johns Hopkins 

University in April 1995. We are thankful to our discussant Patrick Asea, seminar participants at the 
University of Pennsylvania, Francis Diebold, Thomas Epps, and two anonymous referees for helpful 
comments. Any remaining errors are our own. 

I See Ding et al. (1993), de Lima and Crato (1993) and Bollerslev and Mikkelsen (1996) for 
evidence that persistence in stock markets' volatility can be characterized as a long memory process. 
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conditional heteroskedastic (ARCH), generalized ARCH (GARCH), exponential 
GARCH (EGARCH) or standard (short-memory) stochastic volatility models. 2 

In light of these recent findings and the limitations of short-memory models 
of stochastic volatility in this paper we propose a new time series representa- 
tion of persistence in conditional volatility that we call a long memory stochastic 
volatility model (LMSV). 3 The LMSV model is constructed by incorporating an 
ARFIMA process in a standard stochastic volatility scheme. We show that the 
parameters of the LMSV models can be estimated by applying a frequency do- 
main likelihood estimator. 4 The finite sample properties of the spectral likelihood 
estimator are evaluated by means of a Monte Carlo study. 

The LMSV model has several advantages. First, because it is well-defined 
in the mean square sense many of its stochastic features are easy to establish. 
Second, because it has well-known counterparts in models for level series it 
inherits most of the statistical properties of those models. 

The rest of the paper proceeds as follows. In Section 2 we review models 
of persistence in volatility (i.e. fractional GARCH and EGARCH models) and 
introduce the long-memory stochastic volatility model. In Section 3 we present 
further empirical evidence on the relevance of long memory by testing the null 
of short memory, for proxies of the conditional variances in an extensive set of 
US stock return indexes. In Section 4 we discuss a Whittle-type estimator for the 
LMSV model parameters obtained by maximizing the spectral approximation to 
the Gaussian likelihood. We present finite-sample simulation evidence about the 
properties of the estimators and, as an example, we study the daily returns for 
the value-weighted CRSP market index, in Section 5 we conclude. Proofs are 
Ibund in the appendicc~,~;. 

Z. Models of persistence in volatility 

Following Brockwell and Davis, (1991) we state that a weakly stationary pro- 
cess has short memory when its autocorrelation function (ACF), say p(h), is 
geometrically bounded 

[p(h)[ ~< Cr II~1 for some C > 0, 0 < r < 1. 

in contrast to a short-memory process with a geometrically decaying ACF, a 
weakly stationary process has long memory if its ACF p(.) has a hyperbolic 

~' See Bollerslev et al. (1992) tbr a review of ARCtt and GARCll-type models, and Taylor (1994) 
tbr a recent review of stochastic volatility models. 

~ Harvey (1993) independently proposed a stochastic volatility model driven by fractional noise 
and applied it to exchange rate series, obtaining smoothed estimates of the underlying volatilities. 

4 This work was directly motivated by the empirical results of de Lima and Crato (1993). 
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decay, 

p(h) , ' , ,  Ch 2d- I as h ~ c~, 

where C # 0 and d <0.5 (e.g., Brockwell and Davis, 1991, Section 13.2). Alter- 
natively, we can say the process has long memory if its spectrum f ( 2 )  has the 
asymptotic decay 

f (2 )  ~ C[21-2a as 2 4 0  with d #0 .  (1) 

If, in addition, d > 0 ,  then the autocorrelations are not absolutely summable, 
Ip(h)l =oo,  and the spectrum diverges at zero, f (2 )T  c¢ as 2 4 0 .  In this 

case we conclude that the process is persistent. For a discussion of alternative 
long-memory characterizations see Sections 2.2 and 2.3 of Baillie (1996). 

2.1. GARCH and EGARCH models 

Following Engle (1982), Bollerslev (1986) and Nelson (1991), let the predic- 
tion error y, satisfy 

yt =ate,, 

where { ~t } is independent and identically distributed (i.i.d.) with mean zero and 
variance one, and tr~ is the variance of yt given information at time t -  1. Among 
the most successful specifications for the conditional variance a~ are the GARCH 
and EGARCtt models. A GARCH specification is given by 

q p 
~ ,,2 (2) 

where to > 0. Constraints on {hi } anti {aj } are discussed below. More compactly, 
we can write Eq. (2) as 

h(B)a  = + . ( 8 ) f i ,  

where B is the backshift operator (Bivt=vt_j, j = 0 , : h l , + 2 , . . . ) ,  b(z)= 1 - b l z  
. . . . .  bqZ q and a(z)=alz + . . .  + apZ p. 

As an alternative to the GARCH specification, Nelson (1991) proposes the 
Exponential GARCH (EGARCH) model 

o o  

log ,r, 2 = + E ,) ,  - !, (3 )  
j=0 

where no restriction is needed for the signs of the coefficients. The function g(.) 
may be chosen to allow for asymmetric changes, depending on the sign of ~t. 

It is known that the GARCH model (Bollerslev, 1986) can also be written in 
an ARMA(max { p, q}, q) form, with the process { y2 } being driven by the noise 



328 F Jay Breidt et aL/Journal of Econometrics 83 (1998) 325-348 

vt = y2 _ 0.2. From this representation it is clear that the autocorrelation function 
for {yt 2 } has a short-memory geometric decay. 

EGARCH models have the general representation as in (3), but they are also 
usually parameterized with weights { qtj } corresponding to an ARMA(p, q). Thus, 
the usual EGARCH specification can be written as: 

~b(B)(log a2 _ i t , )  = O(B)ff(~t_y_l ), 

where q~(z) = 1 - ~plz . . . . .  dppz p ~ 0 for Izl ~< 1 is an autoregressive polynomial, 
0(z)= 1 +Olz  + . . . + O q z  q is a moving average polynomial and O(z) has no roots 
in common with tp(z). 

The empirical evidence previously discussed points in the direction of long 
memory, both in the squared process {yt 2 } and in the process of log squares 
{log y2}. This contrasts with the usual short-memory formulations of GARCH 
and EGARCH models. We will look for the formulation of models with persistent 
properties. 

2.2. Long-memory  G A R C H  models 

In order to accommodate the findings of long memory, a sensible approach 
is to generalize GARCH models by using fractional differences, along lines ear- 
lier suggested by Robinson (1991, p. 82). The fractional differencing operator is 
defined through the expansion 

r(j - d )  
(i - B)d= ~ )B J, 

• /~o F ( j  + I ) F ( - d  

from which Baillie et al. (1996) tbrmulated the fractionally integrated GARCH 
(FIGARCH) model 

( I  - a)'q)(B)(~ - t~) = a(B)(y, 2 - ~). 

Baillie et al. (1996) suggested quasi-maximum-likelihood estimation methods for 
this model. 

In order to have a well-defined process, the parameters {aj }, {bj }, and d are 
constrained so that the coefficients ~j in the representation 

#," = u + ( !  - a ) - ' ~ a ( a ) b - ' ( a ) y ,  - = l~ + ~ ¢, j ty~_~_/ 
j=O 

- l~), (4) 

are all nonnegative. Otherwise we have af <0  with a positive probability. This 
implies that the parameters {a i } and {bj } are constrained as in the standard 
GARCH models. This also implies that the parameter d is constrained to be 
positive, and so ~]j~0 ~J = ~x~. However, this means that the sum of all coefficients 
is greater than one. It follows fi'om a now standard result in Bollerslev (1986) 
that {yt } is not covariance stationary. Consequently, the autocovariance function 
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(ACVF) of the process {yt 2 } is not defined, s the series Y]~j=0 ~'Jt.}'LI-j - #) 

is not defined in L 2, and the use of spectral and time-domain autocorrelation 
methods is not justifiable in a standard way. In addition, initializing the quasi- 
likelihood, which is usually done with unconditional moments of out-of-sample 
trt 2, can be problematical, although Baillie et al. (1996) reported good results for 
the quasi-maximum-likelihood estimation method. 

As an alternative, Nelson (1991, p. 352) notes that persistence can be mod- 
eled in the log squares with a long-memory specification of an EGARCH model. 
Bollerslev and Mikkelsen (1996) have explicitly formulated a fractionally inte- 
grated EGARCH model of the form 

loga 2 =,ut + O(B)~b(B)-I(I - B)-dg(¢t_~), (5) 

where ~(z) and O(z) are defined above. This generalization of EGARCH with 
fractional noise gives a strictly stationary and ergodic process. The condition 
for the covariance stationarity of {logat z - #t} is Y~'~j~0 ~bi z <1 (Theorem 2.1 of 

i Nelson, 1991 ), which is satisfied for a parameter value d < i. 
EGARCH models have the convenient feature that the coefficients in the mov- 

ing average expansion (5) are not restricted to be positive. However, asymptotic 
results about the estimators have proven to be extremely hard to obtain, even 
when d = 0. 

2.3. A long memory  stochastic volatility model 

In this subsection we introduce a different approach, based on stochastic volatil- 
ity (SV) models similar to those discussed by Melino aad Turnbull (1990) and 
Harvey et al. (1994). 

The stochastic volatility model is defined by 

3'~ =ate.t, at =aexp(vd2),  (6) 

where {v,} is independent of {~., }, {~, } is independent and identically distributed 
(i.i.d.) with mean zero and variance one, and { vt } is an ARMA model. 

The long memory stochastic volatility (LMSV) model we now introduce is 
defined by (6) with { vt } being a stationary long-memory process. 

Restricting our attention to a Gaussian {vt }, it follows that {yt } is both covari- 
ance and strictly stationary. Denote by 7(') the ACVF of {vt }. The covariance 
structure of )'1 is obtained from properties of th,. • Iognormal distribution: 

E[yt]=0,  Var(yt)= exp{7(0)/2}a 2 and 

Cov(.vt, y, +h ) = 0 for h ~ O, 

5 However, this model displays the important property of having a bounded cumulative impulse- 
response function tbr any d < l  as Baillie et al. (1996)have shown. 
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so that {Yt } is a white noise sequence. In fact, {Y t} is a martingale difference, 
a property inherited from {~t }. An appealing property of this model in terms of 
its empirical relevance is the excess kurtosis displayed by yt, which is 

E[y 4] 
3 = 3 (exp{7(0)} - l)  E[y2] 2 

when the driving noise {~t } is Gaussian. 
The process {y2} is also both covariance and strictly stationary. Moments of 

y2 are again obtained from properties of the lognormal distribution: 

E[y 2] = exp{?(0)/2}a 2, 

Var(y 2) = 0"4[{ | + Var(~2)} exp{2"/(O)} - exp{~(0)}], 

Cov(yt 2,y2+h) = a4[exp{7(0) + y(h)} - exp{?(0)}] for h #0 .  

The series is simple to analyze after it is transformed to the stationary process 

xt = log y2 = log o 2 + E[log ~2] + vt + (log ~2 _ E[log ~2]) 

where {rt } is i.i.d, with mean zero and variance ~ .  For example, if ~t is standard 
normal, then log ~t 2 is distributed as the log of a X~ random variable, E[log ~t 2] = 

i.27 and ~ = n2/2 (Wishart, 1947). 
The process {xt} is thus a long-memory Gaussian signal plus an i.i.d, non- 

Gaussian noise, with E[xt ] -  # and 

7~.(h) = Cov(xt,xt~h ) = 7(h) + a,~/Ih .... o~, (7) 

where lib 0} is one if h = O  and zero otherwise. It turns out that the ACVF of 
the process {log y~} is the same as that of a fractionally integrated EfiARCH 
model whenever 62 = 0 (see Appendix 2). 

A simple long-memory model for {vt } is the fractionally integrated Gaussian 
noise defined as the unique stationary solution of the difference equations 

(I - B)dvt =~l,, {~/,} i.i.d. N(0,0-,~), (8) 

where d E (-0.5,  0.5). The spectral density, ACVF, and ACF of { t't }, denoted by 
f ( ' ) ,  7('), and p(.), respectively, are given by 

ff~ -i;. -2d f ( , ; , )= - e  I , 

;,(0) = a,~F(I - 2d)/!'2(I - d), 

r(h+d)r(l -d )  
p(h) = h = 1,2,... 

r ( h  - d + I ) r ( d )  ' 

(e.g., Brockwell and Davis, 1991, p. 522). 
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More generally, {vt } can be modeled as an ARFIMA( p, d, q ), defined as the 
unique stationary solution of the difference equations 

(1 - B)ddp(B)vt=O(B)rh, {rh} i.i.d. N(0,tr2). (9) 

The spectral density of {xt}, denoted by ~(.), is then given by 

O'~ 10(e-i;.)l :' 0.2 
.~(2)--2nll_e_i;.12dldp(e_i;.)12 t 2r r, -n<~Z<~rr, (10) 

where fl = ( d ,  t72, ~2,  ~ i , .  . . , ~p,  Oi , .  . . ,  Oq )t. 

3. Evidence of long memory in volatility 

In this section we formally test for the existence of long memory in the volatili- 
ties of stock markets' series. This is achieved by analyzing two traditional volatil- 
ity proxies, namely the squared series and the logarithm of the squared series. 

3.1. Testing jbr hmg memotT in r, olatilio, 

There are several methods to test tbr long memory, ranging from fully paramet- 
ric to nonparametric approaches. The present paper uses both a semiparametric 
and a nonparametric test. 

The first test is implemented by regressing the logarithm of the periodogram at 
low frequencies on a function of the frequencies; the expected slope is dependent 
on the long-memory parameter d, as can be seen from Eq. (1). This method was 
introduced by Geweke and Porter-Hudak (1983) and developed by Robinson 
(1993). 

Geweke and Porter-Hudak suggest the use of only the first ordinates of the 
periodogram, up to mu, say, and argue that the resulting regression estimator for d 
could capture the long-memory behavior without being 'contaminated' by the 
short-memory behavior of the process. Further, Robinson suggests an additional 
truncation of the very first ordinates, up to mE, say, in order to avoid biases. 
However, no clear rule exists about the choice of either mu or mE. Therefore, 
we adhere to the common practice of experimenting with a few different values. 
To test the null hypothesis of short memory against long-memory alternatives, we 
perform the usual t-test for the hypothesis that d = 0 against d -~ 0. The standard 
deviation is obtained from the output of the regression. 

It should be emphasized that we will apply this regression as a test of short 
memory without assuming any particular form of long-memory alternatives. The 
asymptotics in Eq. ( l )  define long-memory processes. 
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The second test used in this paper is the normalized rescaled range, the R/S 
statistic (see, e.g., Beran, 1994). The adjusted ranoe R is defined as 

max ~ X~ - k , ~  - rain Y~ Xi - k,X , R(n)=  l<.k.<n i=! l.<k.<n i=l 

where ,~ represents the sample mean. The normalization factor S can be defined 
as the square root of a consistent estimator for the variance, given by 

q 
S2(n,q)= y~ Wq(j)r/(j), 

j = - q  

with "7,(j) representing the usual estimators for the autocovariances. The weights 
Wq(j) w e  used are those from the Bartlett window. The R/S statistic is 

R(n) 
Q(n,q)= S(n,---~ )' 

and when q = 0 we have the classical R/S statistic of Hurst. The so-called Hurst 
exponent J is estimated as 

J(n,q) = 
log Q( n, q) 

log n 

If only short memory is present, then J(n,q) converges to ½. if persistent long 
memory is present, then J(n,q) converges to a value larger than [ (see, e.g., 
Mandelbrot and Taqqu, 1979). 

If a process satisfies a set of regularity conditions, including the existence of 
moments of order 4+6, with 6 > O, Lo ( 1991 ) shows that under the short memory 
null the statistic V= n-J/'-Q(n,q) converges weakly to the range of the Brownian 
bridge on the unit interval. The distribution function for this range, say Fv, is 

Ft,(v)= ~, (I-4v2ka)e-2':~'. 

If a short-memory process does not have finite second-order moments then the 
classical Hurst estimate J (n ,0 )  :;till converges to ~, as discussed in Mandelbrot 

and Taqqu (1979). Therefore, the estimate J(n, 0) continues to provide an in- 
dication of long memory. However, no distribution theory is available in this 
case. 

in the absence of clear rules for the choice of q, we experimented with a few 
values. First, we used q = 0, corresponding to the classical estimate• Second, we 
used q = q*, chosen by Andrews' ( 199 ! ) data-dependent tbrmula as in Lo ( 199 l, 
p. 1302). Finally, we tried q = 200 in an attempt to yield statistics which are 
more robust against short-memory effects. 
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3.2. Finite sample perJbrmance of the lono-memoo, tests 

In this section we consider the finite sample performance of the spectral regres- 
sion test and the R/S analysis under both short and long memory. The generated 
processes were long memory (d ¢ 0) and short memory (d = 0) stochastic volatil- 
ity models, defined in Eqs. (6) and (9) above. Here, we focus on detecting long 
memory in the log-squared observations; results for the squared observations are 
qualitatively similar. An analogous Monte Carlo study for long memory in the 
levels series is reported by Cheung (1993). 

In designing this simulation experiment, we chose as a short memory bench- 
mark the first-order autoregressive stochastic volatility (ARSV) model given by 
Eqs. (6) and (9) with p = 1, d = 0 and q =0.  This model has been studied ex- 
tensively; see Jacquier et al. (1994) and the referetces therein. We chose four 
ARSV parameter settings from Table 4 of Jacquier et al. (1994). To make the 
LMSV results comparable, we chose for each ARSV model an ARFIMA(0, d, 0) 
LMSV model which matched the ARSV parameterizations in two ways: first, the 
ratio 

Var (a~ 2 )/E2 [at 2 ] 

is the same for both models (implying that the excess kurtosis of y~ is the same 
for both models), and second, the lag-one autocorrelation of vt is the same for 
both models. Under these parameterizations, the job of distinguishing long and 
short memory is quite challenging. Finally, we consider an ARFIMA(I, d, 0) 
LMSV model similar to the one fitted to the value-weighted CRSP data in 
Section 4.3. All processes are simulated with ¢~ and ~1~ Gaussian. 

Simulation means and standard deviations over 1000 simulated realizations of 
each model are given for the spectral regression test in Table I. The table also 
presents the proportion of rejections of the short-memory null hypothesis d = 0, 
using the standard t-test with nominal significance level 0.05. Some conclusions 
t'rom the results reported in Table I are as tbllows: 

® Under the short-memory null, the size of the test is not far from nominal if 
the upper truncation is taken to be less than [n°'5]; [n °45] seems to be an 
appropriate choice. For this sample size, larger upper truncations have little 
value: they distort the size under short memory and bias the point estimates 
under all models considered. 

® The spectral regression test has high power against all the long memory mod- 
els considered. Power is lower for the third and fourth LMSV models, since 
these models have a weaker long memory signal (i.e., a smaller value of 
Var(a~Z)/E"[at2]) than the first and second LMSV models. 

• The point estimates of d under long memol), have large negative biases, which 
increase with mu, reflecting contamination by short-memory effects. Even with 
this downward bias, estimates of d under long memory are clearly different 
from those under short memory. 
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Table 1 
Finite sample performance of the spectral regression tests and the R/S analysis under stochastic 
volatility (Simulation means and standard deviations (in parentheses) over 1000 replications of esti- 
mated d parameters and of Hurst exponents J(n,q). Also reported is the proportion of rejections of 
the short-memory null hypotheses d = 0 and J = ½ using two-sided tests with nominal significance 
level 0.05. The d parameters were estimated by spectral regression using the periodogram of the 
log squares. Indices of the Fourier frequencies used in the regression have a lower truncation at 
mL = [n °'! ] and different upper truncations mu = [n u] with u = 0.45, 0.50, and 0.55. Hurst exponents 

J(n,q) were estimated from log squares with q = 0, q = q*, which is the value chosen by Andrew's 
data-dependent formula, and q = 200. Sample size is n = 6144.) 

Model d,,=0.45 d,,--0.50 d,:0.55 J(n,O) J(n,q*) J(n,200) 

ARSV: 0 = 0.9, ~ : 0.45 

Rejection proportion 
LMSV: d = 0.47, a,~ = 0.37 

Rejection proportion 

ARSV: q~ = 0.95, ~,~ = 0.23 

Rejection proportion 
LMSV: d = 0.49, ~ = 0.19 

Rejection proportion 

ARSV: cb 0.9, ~ .... 0.13 

Rejection proportion 
LMSV: d ........ {),47, g~ ....... 0,11 

Rejection proportion 

ARSV: (/, :., 0,95, g~ 0,07 

Rejection proportion 
LMSV: d ~ 0.49, #,)2 = 0.05 

Rejection proportion 

LMSV: d = 0.44, g~ = 0.003, ~6 : 0.93 

Rejection proportion 

0.031 0.061 0.112 0.627 0.549 
(0.118) (0.089) (0,070) (0.025) (0.025) 
0.057 0.1 !0 0.388 0.190 
0.423 0.392 0.356 0.707 0.669 

(0.120) (0.087) (0.067) (0.039) (0.032) 
0.923 0.992 0.999 0.997 

0.522 
(O.O22) 
O.024 
0.562 
(0.023) 
0.428 

0.111 0.189 0.278 0 . 6 6 1  0 . 5 7 1  0.522 
(0.115) (0.088) (0.069) (0.027) (0.026) (0.023) 
O. 145 0.562 0.978 0.507 0.030 
0.384 0.348 0.307 0.688 0.667 0.564 

(0.121) (0.089) (0.070) (0.039) (0.034) (0.023) 
0.885 0,965 0.988 0.995 0.438 

0,026 0.049 0.085 0.585 0.556 0.523 
(0.119) (0.085) (0.067) (0,026) (0.025) (0,021) 
0,054 0,083 0.238 {),285 0,025 
0.302 0.263 0.224 0.651 0.643 0.562 

(0.121) (0.089) (0.068) (0.039) (0.036) (0.024) 
0.704 0.832 0.907 0.967 0.399 

0.092 0.157 0 . 2 2 1  0,614 0.581 0.523 
(0.117) (0.086) (0.067) (0.027) (0,026) (0.022) 
O. 133 0.425 0.906 0.651 0.026 
0.255 0.212 0.176 0.629 0.626 0.560 

(0.120) (0.091) (0.069) (0.038) (0.037) (0.023) 
0.587 0.665 0.746 0.929 0.362 

0.459 {).455 0.442 0.717 0.677 0.560 
(0.121) (0.092) (0.068) (0.038) (0.030) (0.024) 
0.¢~57 0.998 1.000 0.998 0.366 

Simulation means and standard deviations for the R/S analysis over 1000 sim- 
ulated realizations of each model are also provided in Table 1. Some general 
conclusions that follow from the results in Table i are as follows: 

• Long and short memory are distinguishable. 
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• The classical Hurst exponent is substantially larger than ½ under the short 
memory models we have considered. 

• Andrews' data-dependent formula for choice of q goes a long way toward 
reducing the bias of the classical Hurst exponent, though J(n, q*) is still above 

i on average. 
® The Hurst exponents estimated with values of q = 200 provide some robustness 

against even highly correlated short memory. 

The overall conclusions from these tables are that the spectral regression tests 
and the R/S analyses can be useful indicators of long memory in stochastic 
volatility, but as with any asymptotic tests, they should be interpreted with cau- 
tion. We recommend that additional diagnostics, in particular the shape of the 
estimated autocorrelation function, be used to help assess the usefulness of LMSV 
in any particular application. 

3.3. Empirical evidence 

The tests for long memory were performed over several market indexes' daily 
returns. The data and the designations used in the tables are as follows. 

From the Center for Research in Security Prices (CRSP) tapes we used series 
starting on the first trading day of July 1962 and ending on the last trading 
day of July 1989. We computed returns for both the equally weighted and the 
value-weighted data, here denoted ECRSP and VCRSP, respectively. 

Using the same raw data, we also constructed the excess returns series based 
on the monthly Treasury bill returns We tbllowed the usual simplification of 
assuming the riskless returns were constant within each month and subtracted 
these latter returns l'rom the ones in the stock market indexes. 

We have also used the long series constructed by Schwert (1990), comple- 
mented with the more recent CRSP value-weighted index. This series, here de- 
noted SCHWERT, spans from the first trading day of February 1885 to the last 
trading day of 1990. 

In each case, in order to whiten the series of returns, we followed the usual 
practice of first removing any apparent correlation in the data, namely the day- 
of-the-week and the month-of-the-year effects, by applying standard filters. 

For each of the series we applied the long-memory tests over the squared 
returns and the logarithms of the squared returns. 

in the first three columns of Table 2 we show the results of the spectral 
regression tests. We immediately note that in almost all cases and all series 
the tests are highly significant, even when the high-frequency cut-off is severe 
(u = 0.40). Interestingly, the memory of the volatilities is reduced when the excess 
returns are computed. In the case of the equally weighted index the tests are less 
significant. In some cases, they do not reject the null of sole existence of short 
memory in the volatilities. We note, however, that the equally weighted indexes 
are economically much less sensible as representatives of the overall financial 
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Table 2 
Resu!,s of the spectral tests and the R/S analysis (The integration parameters d are estimated with a 
lower truncation at mL = [n °i ] and different upper truncations mu = [n u] with u = 0.45, 0.50, and 0.55. 
Hurst exponents d(n,q) are estimated with q = 0, q = q*, which is the value chosen by Andrew's 
data-d~pendent formula, and q=200.  Unilateral test p-values for d and for V=n-l/2Q(n,q) are 
displayed within parentheses.) 

Series du:o.45 du=o.5o d,=o.55 J(n, O) J(n,q* ) J(n, 200) 

VCR3P 0.295 0.314 0.435 0.740 0.67 ! 0.567 
(Jul62-Jul89) (0.003) (0.000) (0.000) (0.000) (0.036) 
lnVCRSP 0.382 0.342 0.365 0.732 0.696 0.575 
(Jul62-Jul89) (0.002) (0.000) (0.000) (0.000) (0.015) 
ECRSP 0.333 0.218 0.295 0.696 0.619 0.538 
(Ju162-Ju189) (0.024) (0,029) (0.000) (0.000) (0.232) 
inECRSP 0.263 O. ! 86 0.248 0,703 0,667 0.565 
(Jul62-Jul89) (0.020) (0.018) (0.000) (0.000) (0.044) 
ExRt-VCRSP 0.075 0.01 ! 0.153 0,618 0.566 0.517 
(Ju162-Ju189) (0.140) (0.006) (0.000) (0.039) (0.591) 
InExRt-VCRSP 0.446 0.391 0.347 0.746 0.703 0.583 
(Ju162-Ju189) (0.001) (0.000) (0.000) (0.000) (0.005) 
Ex Rt-ECRSP 0.032 0.063 0. 101 0.588 0.5 ! 9 0.490 
(Jul62-Jul89) (0.316) (0.099) (0.003) (0.562) (0.908) 
InExRt-ECRSP 0.346 0.322 0.303 0.660 0.650 0.557 
(Ju162~Ju189) (0.005) (0.001 ) (0.000) (0.000) (0.061) 
SCHWERT 0.781 0.482 0,407 0.742 0.667 0.560 
(Feb1885~Dec1990) (0 .000)  ( 0 . 0 0 0 )  (0.000) (0.000) (0.000) 
InSCHWERT 0,582 0,540 0.501 0.736 o.684 0.593 
( Feb 1885Dcc 1990 ) ( 0,000 ) (0,000) ( 0,000 ) ( 0.000 ) (0,000) 

VCRSP 0,399 (},432 0,409 0.667 (},652 0,546 
( Jan 78Sep87 ) (0,005) (0.000) (0,000) (0.000) ( 0.240 ) 
InVCRSP 0.437 0,386 0,384 0.653 0.653 0.550 
(Jan78~Sep87) (0,003) (0.000) (0,000) (0.000) (0.197) 
ECRSP -0.019 -0,072 ~0.017 0,654 0.603 0.561 
(Jan78~Sep87) (0.460) (0.287) (0.427) (0.002) (0.106) 
InECRSP 0.165 0,168 0.142 0,660 0.650 0,557 
(Jan78-Sep87) (0,164) (0,107) (0.073) (0.000) (0.131) 
ExRt-VCRSP 0,399 0,435 0.410 0,667 0.652 0.546 
(Jan78-Sep87) (0.005) (0,000) (0.000) (0,000) (0,238) 
InExRt-VCRSP 0.408 0,351 0,335 0,654 0,654 0.551 
(Jan78-Sep87) (0.011 ) (0,002) (0,000) (0.000) (0,189) 
ExRt-ECRSP -0.017 -0,071 -0.016 0,654 0.603 0,561 
(Jan78-Sep87) (0,464) (0.228) (0.121) (0.002) (0.106) 
InExRt-ECRSP 0,244 0,240 0,190 0,661 0,651 0,555 
(Jan78-Sep87) (0,082) (0,047) (0,032) (0,000) (0,149) 

Abbreviations used in the table are as tbllows. 
VCRSP: squared returns from the filtered value-weighted CRSP series 
ECRSP: squared returns from the filtered equally weighted CRSP series 
In: logarithms of the squared return series 
ExRt: series of excess returns 
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markets' activity than the value-weighted ones. Finally, it is interesting to note 
that the log squared series reveal the existence of a considerably more significant 
long-memory component. 

In the last three columns of Table 2 we show the estimates J(n,q) and the 
p-values for the statistic Y = n-I/2Q(n,q) for all the series described. All esti- 
mates point in the direction of persistent long memory. The J estimates computed 
with Andrews' (1991 ) data-dependent formula are highly significant for all series 
but the squared excess returns of the equally-weighted index. When the number 
of lags q increases, the significance of all statistics is reduced, as it is natural 
to expect in persistent processes. Even so, most of the computations show J 
estimates significantly larger than i. 

These tests can be questioned on the grounds that long data sets may display 
nonstationarity in the variances and that we may be detecting nonstationarity 
instead of long memory. In particular, the evidence indicates this for the Schwert 
long indexes, since some d estimates are larger than ~. Diebold (1986), among 
others, interprets the findings of persistence in volatility as the outcome of shifts 
in the unconditional variances. 

We complement the results with tests tbr shorter series, beginning with January 
1978 and ending in September 1987. These shorter series avoid the crashes of 
1976 and 1987 and display a period known for its relatively stable volatility. 

The same tests, reproduced in the second part of Table 2, continue to reveal 
long memory in the conditional variances, with the exception of the already noted 
equally weighted index. This fact is significant and suggests that long-menaory 
models provide an alternative to nonstationarity tbr volatility modeling. 

4. Estimating an LMSV model 

The exact likelihood of the parameter vector fl given (yt . . . . .  .V,,) involves 
an n-dimensional integral and as a consequence is extremely difficult to evalu- 
ate. Jacquier et al. (1994) have developed a Markov chain simulation methodol- 
ogy fbr likelihood-based inference in an autoregressive stochastic volatility model 
(ARSV). Their algorithm, a cyclic independence Metropolis chain, requires spec- 
ification of prior distributions on all parameters and relies heavily on the special 
Markovian structure of pure autoregressive processes. Other simulation-based es- 
timation methods for the first-order ARSV exist, see, e.g., Danielsson (1994), but 
it is not clear whether they apply to more general stochastic volatility models. 
However, these methods are computationally intensive. Here we consider simpler 
estimation strategies since the LMSV model is far more complicated than the 
ARSV model. 

Other methods |br estimation from SV models have been proposed. A method 
of moments (MM) estimator, which avoids the problem of evaluating the likeli- 
hood function, was suggested by Taylor (1986) and Melino and Turnbull (1990). 
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While easy to implement, MM estimators for parameters in the ARSV model have 
a number of disadvantages. The MM method seems relatively inefficient when 
some kind of persistence in the autocorrelations is present, as it is the case of 
nearly nonstationary AR models (see Jacquier et al., 1994; Anderson and Soren- 
son, 1994, for a discussion). Moreover, the choice of appropriate moments can 
be problematic. 

Though the process {xt } is non-Gaussian, a reasonable estimation procedure is 
to maximize the quasi-likelihood, or likelihood computed as if {xt } was Gaussian 
with ACVF 7x(h). See Nelson (1988) and Harvey et al. (1994) for discussion of 
QML in the context of short-memory stochastic volatility models. In the context 
of ARFIMA models, exact computation of the quasi-likelihood is possible (e.g., 
Soweli, 1992). However, it presents convergence problems and is extremely slow 
especially for long time series. An alternative version of this method can be 
conceived for LMSV models. However, the computational problems are likely to 
be amplified. 

We suggest a spectral-domain estimator. This is a computationally simple 
method for which we provide an asymptotic characterization. 

4. I. The spectral-likelihood est#nator 

A simple alternative to maximizing the time-domain Gaussian-likelihood is to 
maximize its frequency-domain representation, as discussed in a long-memory 
context by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis 
(1990). The simulation results of Cheung and Diebold (1994) suggest that 
spectral-likelihood estimators have efficiency comparable to exact QML estimators 
when the process has an unknown mean. The following result gives the strong 
consistency of estimators obtained by minimizing the negative of the logarithm 
of the spectral likelihood ftmction, 

= = log ./i~(tuk ) 4 , (11) 
k=, 

where [.] denotes the integer part, cok = 2nkn -~ is the kth Fourier frequency, and 

) ( ! ! ~ xt sin cokt 

is the kth normalized periodogram ordinate. For a general justification of the 
method see, e.g., Beran (1994, chapter 6). 

Theorem I. Assume that the parameter vector 

= (d ,  . . . . .  O ,  . . . .  , Oq )' 

is an element o f  the compact parameter space t9 and assume that ~ , ( to)  - 
./~:(~o) ]br all ¢o in [0,n] implies that IIi =//2, where ~ ( . )  is defined 01 (10). 
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Let ~, minimi'_e (11) ot, er 0 and let flo denote the vector o f  true parameter 
rabies. Then ~,, ~ flo almost surely. 

The proof is provided in Appendix A. 

Remarks. 1. The proof follows Dahlhaus (1989) in avoiding the special param- 
eterization of Fox and Taqqu (1986). Dahlhaus' (1989) result is not directly 
applicable to our case because his explicit assumptions include Gaussianity and 
his objective function is an integral version of (11). For the non-Gaussian case, 
we verify Dahlhaus' remark (p. 1753) that his results extend to the function (11). 

2. The component 11 - e - i / [  - 2 d  - -  ( x / 2  - 2 cos 2)-2a of ./~(2) introduces in the 
likelihood a term proportional to 

In/2] 
d ~ log(2 - 2cos~ok)2nn-l; (12) 

k=! 

the corresponding integral is improper, but converges to zero (see Appendix A). 
In the course of the proof, we show that the effect on the estimators of dropping 
the term (12) is negligible. 

3. The identifiability condition in Theorem 1 is met if a, 2 is known from an 
assumed distribution for ~t; for example, ct "~ N(0, 1) implies tr, 2 = r1:2/2. If a, 2 is 
not known, the model is identifiable only if the ARFIMA component is not white 
noise; that is, if t/~ t, # 0 for some p, Oq ~ 0 for some q, or d-7¢: 0. 

4.2. Finite sample properties of  the spectral likelihood estimator 

This subsection presents a simulation study of the finite sample properties of the 
maximum-likelihood spectral estimator previously proposed. In this experiment 
we consider two different sample sizes (n = 1024 and n = 4096) and three classes 
of LMSV models given, respectively, by ARFIMA(0, d, 0), ARFIMA(I, d, 0), 
and ARFIMA(I, d, 1). Within each class of models, several combinations tbr 
the parameters of these models are considered - see Table 3. The variance of 
the i.i.d, innovations in the ARFIMA component are set to one as well as the 
variance of the noise component. 

All the results reported in this section are obtained from 1000 realizations of 
each model. Table 3 presents simulation means and standard deviations for the 
parameter estimates. Fig. I presents box plots tbr some of the models considered 
in the simulation. The cases considered in this figure are representative of the 
overall results. 

Some general conclusions from the table and the box plots are: 

® Maximum likelihood estimation in the spectral domain perform well for rel- 
atively large samples, such as those found in the high frequency financial 
markets' data. 
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Table 3 
Finite-sample results for the spectral-likelihood estimator 
(For each model and set of parameters, 1000 replications were performed with length n = 1024 and 
n = 4096. The LMSV model parameters are given within parentheses. The values in the table represent 
the simulation means and standard deviations (in parentheses) for the estimated parameters.) 

Parameters 4, d 0 
,b,d.O 

n = 1024 n = 4096 n = 1024 n = 4096 n = 1024 n =4096 

(0 , -0 .4 ,0 )  -0.550 -0.419 
(0.550) 10.189) 

(0, -0 .2 ,0 )  -0.337 -0.223 
(0.521) (0,152) 

(0,0.0,0) -0.0678 -0,0169 
(0,296) 10,1071 

(0,0.2,0) O. 189 O, 196 
(0.187 ) (0,042) 

(0,0.4,0) 0.407 0,401 
(0.086) (0,036) 

(0.8, -0.4,0) 0.756 0.781 -0.369 -0.389 
10.1691 (0. I 14) (0.234) 10,1721 

(0.8,- 0.2,0 ) 0.771 0.795 -0.211 -0,215 
(0.1571 (0.081) (0.207) 10,1291 

(0.8,0.0.01 0.773 0,797 -0.0213 -0,0142 
(0,147) (0.063) (0.188) (0.1011 

(0,8,0.2.0) 0.774 0.798 O. 180 0,187 
(0,158) (0,057) 10.1911 (0.096) 

(1), 8,0,4,0 ) O, 774 0,797 0,381 0,394 
(0,147) (11,052) ((1,196) (0,(1~;51 

(0,4,. 0,4,0 ) O, 36i', 0,391 ....... 0,4211 --1),41)11 
(0,300) (0,228) (0,389) (0,247) 

(0,4, 0,2,0) 0,398 0,435 -0.242 ...... 0!55 
(0.293) (11.2121 10.271 ) 10,213) 

(0,4,0,0,0) 11,434 0.427 -.0.0828 -0.0423 
(0,279) (0.169) (0.233) (0.1451 

( 0,4,0,2,0 ) 0.425 0.403 O. 142 O, 191 
(0.250) (0.1211 (0.1721 (0,059) 

10.4,0.4,01 0.373 0.390 0.382 0,399 
(0.240) (0. I 12) 10.1291 (0.046) 

(0,8,0,2,0,3) (I.788 0,800 0.161 0,186 
(0,128) (0,050) (0,175) (0,083) 

(0.8.0.2. -0.3 ) 0,908 0.839 O. 167 0.183 
10.251) (0.134) (11.172) (0.093) 

(0.4,0.2,0.3) 0.345 0.371 0.128 0,188 
(0.410) (0.243) (0.204) (0.067) 

(0.4.0,2.--0.3 ) 0,30 t) O. 3t14 O. 123 O. 187 
(11,374) (0.2291 (0.210) (0.060) 

(0,8,0.4,0.3) 0.790 0.802 0.367 0,390 

(0.113) (0.050) (0.177) (0.088) 
(0.8,0.4,-0.3) 0.978 0.893 0.369 0.388 

(0,316) (0.190) 10.172) (0,089) 
(0,4,0.4,0,3) 0.302 0.365 0.362 0,393 

(0,419) (0.220) (0.151) (0,050) 
(0.4,0,4,-0,3) 0.395 0,374 0.348 0,394 

(0.352) (0,221 ) (0.172 ) (0,051 ) 

0.319 0,134 
(0,521) (0.378) 
0.308 0.144 

(0.530~ (0.368) 
0.303 0,114 

( 0.525 ) ( 0.373 ) 
0.277 0.0864 

( 0.555 ) ( 0.400 ) 
0.320 0.147 
(0.548) (0.403) 
0.349 0.188 
(0.557) (0.422) 
0.371 0.177 

(0.551) (0.426) 
0.297 O. 147 
(0.587) (0.427) 
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Fig, !. Boxplots represent the deviations of tile estirnated parameters fforn tile true values. 

o The biases arc relatively small and decrease uniformly from n =  1024 to 
n = 4096. The increase in the sample size also reduced significantly the dis- 
persion of  the results. 

® The box plots in Fig. I also show that some less positive aspects of  the 
results obtained for n = 1024 tend to be smoothed out for n = 4096, namely, 
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the asymmetry of the distribution of the estimates. An extreme case was the 
LMSV model with an ARFIMA(0, -0.4, 0) component. 

® The maximum-likelihood spectral estimator provides less biased and more pre- 
cise parameter estimates in processes in which the fractional parameter d was 
positive. This includes both the estimate of d and the estimates of the other 
parameters in the model. 

• The performance of the maximum-likelihood spectral estimator in small sam- 
ples might be less than ideal as is illustrated by the box plots of the smaller 
sample size. Moreover, some very large outlie~s occurred when n = 1024. 

® The procedure encountered some difficulties in estimating the moving average 
term, even when the number of observations was 4096 (although the magnitude 
of the problem decreased for the larger sample size). 

Given the overall good performance of the estimator when n = 4096, these sam- 
pling experiments indicate that maximum-likelihood spectral estimation of LMSV 
models may be a very effective method for the type of financial applications that 
have led to this line of research. 

Moreover, this maximum-likelihood estimator is easy to implement. Conver- 
gence for a LMSV model with an ARFIMA(0, d, 0) component and n=4096  
was typically attained in less than 20 iterations and less than 4 s of CPU time 
on a Pentium 100 MHz. 6 

43. Modelinff rolatility t~'stock returns 

Nelson (1991) introduces the EGARCH model using as an example the daily 
returns Ibr the value-weighted market index from the CRSP tapes for July 1962- 
December 1987. He selects an ARMA(2, I) model lbr log ~2 and linds the largest 
estimated AR root to be 0.99962, suggesting substantial persistence. 

For comparison, we littcd a model with long-memory stochastic volatility to 
the log squares of the VCRSP series described in Section 3.3 above This log 
squared series, denoted {xt }, consists of n = 6801 mean-corrected observations 
modeled as 

Xt ~ t~t "4" i:t, 

where {,:t} is i.i.d. (O,q: 2) independent of {c,} and {r,} is the ARFIMA(I, d, 0), 

( I - B)'t( I - ,bB)ct = ~lt, 

with {'l, } i.i.d. (0, a,~ ). 

t, in these simulations w¢ used the set of routines for maximum likelihood estimation provided 
by the GAUSS programming language. The algorithm used is the derivative-based procedure of 
Broyden, Fletcher, Goldfarb, and Shanno, as described in the GAUSS manual. Analytical derivatives 
were provided, The code is available from tile authors upon request. 
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Fig. 2. Empirical and fitted autocorrelation functions for the log squares VCRSP series. 

The spectral likelihood tbr the xt's was formed as in Eq. ( ! ! )  replacing (12) 
with zero, which we have ibund useful though this needs further investigation. 
'l'he resulting likelihood was maximized with respect to the parameters a,~, d, ~/~ 

-2 and q~ yielding the estimates a,, = 0.00318, d = 0.444, ~ = 0.932 and 42 = 5.238. 
Fig. 2 shows the empirical and fitted autocon'elations for the series {xt}. 

The empirical autocorrelations show a slow decay, remaining non-negligible for 
hundreds of lags. The ACF of the fitted LMSV model was derived from the 
ARFIMA( I, d, O) fonnulae in Hosking (1981) and adjusted for the bias due to 
the existence of long memory as in Theorem 5 of Hoskinlt; (1995). In Fig. 2, the 
bias-adjusted ACF for LMSV accurately reflects the slow decay of the empirical 
ACF. 

We also fitted short-memory GARCH and EGARCH models as well as an 
IGARCH model to the same VCRSP series, in order to compare the properties 
of fitted GARCH, IGARCH, EGARCH, and LMSV models with the observations, 
we computed the autocorreiations of the fitted models and plotted them against 
the sample atttocorrelations of the series. The order of the models was selected 
by SIC. 

As it is often observed in practice, the fitted GARCH and IGARCH are 
very similar: SIC selected a GARCH(I,2) and an IGARCH(I,2). The fitted 
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GARCH had parameter estimates 6l =0.923,/~i =0.143, and b2 =-0 .067 .  Their 
sum is 0.999. The fitted IGARCH has parameter estimates ti=0.923,/~l =0.145, 
and /~_~ = -  0.068. Using the GARCH parameter estimates, we simulated 1,000 
GARCH realizations, each of length n = 6801, and computed the sample ACF 
of the log squares for each realization. The same simulations were done for 
IGARCH. The average of the GARCH sample ACF's, plotted in Fig. 2 and la- 
beled 'GARCH/IGARCH', is almost indistinguishable from the average of the 
IGARCH sample ACF's (not plotted). The GARCH models, nearly integrated or 
integrated, seem 'too persistent' to model these data. 

The SIC criterion selected an EGARCH(2, 0). The fitted EGARCH had param- 
eter estimates t~! =0.0185, t~2 =0.200, ~b I =0.577 and t~., =0.359. The ACF for 
the log squares corresponding to the fitted EGARCH model was obtained theoret- 
ically through the formulae derived in Appendix B. The short-memory EGARCH 
model clearly fails to reflect the slow decay of the empirical ACF. 

5. Conclusions 

Empirical evidence suggests that the recent interest in long-memory conditional 
variance models tbr stock market indices is well-founded. We find evidence of 
long memory in variance proxies using both a nonparametric and semiparametric 
test tbr many series. A simulation exercise shows that these tests are able to 
distinguish long from short memory in the volatilities. 

The long memory stochastic volatility (LMSV)model  is an analytically 
tractable model of this persistence in the conditional variances. The LMSV is 
easily fitted and analyzed using standard tools tbr weakly stationary processes, in 
particular, the LMSV model is built from the widely used ARFIMA class of long- 
memory time series models, so that many of its properties arc well-understood. 
The spectral-likelihood estimator proposed tbr this model is strongly consistent 
and finite-sample simulation results show it has reasonable properties tbr series 
of the length usually tbund in financial data. 

An example with a long series of stock prices shows that short-memory mod- 
els are unable to reproduce more than the short-term structure of the auto- 
correlations, in contrast, a parsimonit, us LMSV model fit to the data is able 
to reproduce closely the empirical autocorrelation structure of the conditional 
volatilities. 

These results are encouraging and suggest some avenues lbr future research. 
We believe it would be interesting to investigate further the empirical rele- 
vance of the LMSV model, namely, its relevance tbr estimating and tbrecasting 
the volatilities and pricing derivatives. We also believe that it would be use- 
ful to compare properties of the LMSV with other models of persistence in the 
volatilities. 
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Appendix A. Proof of strong consistency for spectral-likelihood estimators 

Let/~,, minimize (11) and let 

~( f l )  = 2 logj~(o~) + 
h,,(~o) 
~(to) } dog, 

where fl0 denotes the vector of true parameter values. Then 

+ 

~< [n/2l fOrc 2rtn-I ~ gidtok ) - 2 k=l 

+ 

In/21 ~°rc I 
2rcn- I ~ d log(2 - 2 cos to, ) - 2 d log(2 - 2 cos to) dro ~=1 
2~,1 -I 1~1 ln(tOk) 2 f0 n ]i~"(t'))dto 

hook) . 

= Ml, , ( f l )+ M2,,(fl)+ M3,,(fl), 

where 

gl~(} . )=log{~'O(e- i ; )12+tr ,~ '~(e- i ; )12 ' l -  e-i;" 2d } 
2rtl,/,(e-i; ) -' 

Now Ml,,(fl) converges to zero uniformly in fl by Riemann inlegrability of 
C.l#(+,J), continuity in fl of the integral and cmnpactness of (9. Given 6 > 0 ,  Ml,,(fl) 
can be bounded above and below by the upper Riemann sum plus 6 and tile lower 
Rie,nann sum minus 6 for a partition .g, of [0,re], where .',4, comains the mh- 
order Fourier ti~equencies and .'P,, c .~,~i c . . . .  For each fl, these bounds converge 
to zero :t:: r~i monotonically, and so uniform convergence in fl t'ollows by Dini's 
theorem. 

Next, Ma,,(fl) can be bounded uniformly in fl by 

I.,'21 fO n [ 
0.5 2nn- I  ~ log(2 - 2 cos v~ ) - 2 log(2 - 2 cos.J)  doJ , 

k=l  

which converges to zero since 

.L ~ log(2 - 2 cos t,~) dt,J = O. 

Finally, M3,,(fl) can be shown to converge almost surely (a.s.) to zero uni- 
tbrmly in fl by modifying Lemma I of Hannan (1973) (see also Lemrna I of 
Fox and Taqqu, 1986; Dahlhaus, 1989). First, l/./it(to) satisfies the continuity 
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condition of HannaH (1973) and so the C6saro sum of its Fourier series con- 
verges uniformly in (t~,fl) for fl E O. Second, the process {xt} is ergodic since 
{vt } is a linear process with i.i.d, innovations and square-summable coefficients 
(e.g., HannaH, 1970, p. 204) and {~:t} is i.i.d., independent of {vt}. From these 
two facts, Lemma 1 of HannaH (1973) follows. 

Hence, 

sup I~, , (P) - ~(P) t  ---' o a.s. 
/ ~ 0  

Since - logx t> 1 - x, with equality holding if and only if x = !, 

,~(fl) = 2 fo '~ 

~>2fo ~ 

= 2 ~  ~ 

- log A'(°~) ~. (~o)  } 
~(~o----S + log A,(,:o) + h(o~ ) 

.];~((o) + I°gh"(~o) ~ ~j(o9) 

{ logJi~,,(¢o) -t ];~,,(co) } d¢o 

= ~(Po) ,  

dco 

and so (using the identifiability condition)/'k) uniquely minimizes .~(/~). Thus 

• ~ , ( / } , , ) ~ < , ~ ; , ( P o )  and ,'./'(fl0)~< ~'(1},,), 

¢"  " ' S which implies that Y(#,,)--, 'd"lfl0) a ..... and theretbre also ft, ~ rio a.s. by com- 
pactness of O. [1 

Appendix B. Autocovariance function of log ,squares under EGARCH 

Under an EGARCH model for {Y,}, the ACVF for the series {xt} = {Iogy 2 - 
Pt}, where {/it} are the deterministic volatility changes in Eq. (3), can be com- 
puted as follows: 

Cov(xt ,  Xt ~th ) 

= C o y  ~ a ( ~ , - ; - , )  + log ..2 .2 • ~.,, ~ ~.q(¢,+h--i-~ ) + log ;,.,.h 
i = o  i = o  

= Var{,q(~,)};,th)+ ff~,_ ~ E[,q(#,)log #~l + Var(log #~)i{h~,~o}, 

where ;,(h) is the autocovariance fimction 

/ = 0  
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and ~b-i := O. If, as it was originally suggested by Nelson (1991), the function 
g(-) is chosen to be 

o(~,) = 6~¢, + 62(1~,1- EIC, I), 

then we have 

Var{g(~,)} =6~ + 62(1 -- E21C, I). 

For Gaussian et, EI ,I= Var(iog~t2)=n2/2 and 

E [ g ( ~ , ) l o g ~ ]  = 262 ( log2 - x + 1.27), 
" 

where x _~ 0.577216 is Euler's constant. Thus, if 62 - O ,  the Gaussian EGARCH 
ACVF has the same form as the SV ACVF in (7). 
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