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Abstract

In this paper we present both a new formulation of the HARCH process and a study of the

forecasting accuracy of ARCH-type models for predicting short-term volatility.

Using high frequency data, the market volatility is expressed in terms of partial volatilities which

are formally exponential moving averages of squared returns measured at di�erent frequencies. This

new formulation is shown to produce more accurate �ts to the data and, at the same time, to be easier

to compute than the earlier version of the HARCH process. This is obtained without losing the nice

property of the HARCH process to identify di�erent market components.

In a second part, some performance measures of forecasting accuracy are discussed and the

ARCH-type models are shown to be good predictors of the short-term hourly historical volatility with

the new formulation of the HARCH process being the best predictor.

1 Introduction

One of the many challenges posed by the study of high frequency data in �nance is to build models
that can explain the empirical behavior of the data at any frequency from minutes to months at
which they are measured. For instance, the well documented clustering of volatility of �nancial
assets. The most popular model among researchers in the �eld for this behavior is undoubt-
edly the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model (Bollerslev
et al., 1992). This model was originally developed to study data measured at daily or lower
frequencies (Engle, 1982; Bollerslev, 1986). The persistence of volatility has, on the one hand,
also been seen with high frequency data, and, on the other hand, the aggregation properties of
GARCH models have been theoretically derived by two groups (Nelson, 1990; Drost and Nij-
man, 1993). Yet, the question remains whether the GARCH models are able to reproduce the
heteroskedastic behavior under aggregation. Recent studies of this problem show the failure of
simple GARCH models in this respect (Andersen and Bollerslev, 1994; Guillaume et al., 1994;
Ghose and Kroner, 1995) even after a correct treatment of the intra-day seasonality of the volatil-
ity. The level of volatility clustering is relatively constant under aggregation. In other words,
the volatility memory seems quite short-lived when measured with high-frequency data while it
seems long-lived when measured with daily or lower frequency data. We attribute this, along with
other authors (Andersen and Bollerslev, 1996), to the presence of many independent volatility
components in the data. We identify these components to heterogeneous market agents following
various investment strategies depending on their institutional constraints, geographical location
and risk pro�le (M�uller et al., 1993).

Moreover, in a recent paper (M�uller et al., 1997), we have shown that there is asymmetry in
the interaction between volatilities measured at di�erent frequencies. A coarsely de�ned volatil-
ity predicts a �ne volatility better than the other way around. This e�ect is not present in a
simple GARCH model. All these reasons speak for the development of new and more complex
type of ARCH models that would be able to account for the heterogeneity found in high fre-
quency data. We propose to use for this the HARCH (Heterogeneous Autoregression Conditional
Heteroskedasticity) model. We presented a �rst formulation of this model together with its sta-
tionarity properties in two papers (M�uller et al., 1997; Dacorogna et al., 1996a). Because of the
long memory detected in high frequency data (Dacorogna et al., 1993), this initial formulation
of HARCH requires numerous sums of returns measured at di�erent frequencies going from 30
minutes to few weeks. This makes the model optimization heavy and requires a lot of computa-
tional power when the model is evaluated on high frequency data. To overcome this dilemma, we
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propose here a reformulation of the model in terms of exponential moving averages, which both
simpli�es the numerical estimation of the model and preserves the stationarity condition derived
for the original form of the process equation. This new formulation also preserves the idea of
modeling the impacts of market components by de�ning \partial" volatilities originating from
each component. We compare the new and the old formulation of the process in terms of their
optimization results (impacts and likelihoods) and show that they give rise to similar impacts for
the same market component.

The real challenge for a model is its ability to forecast the future behavior of the modeled
quantity. The di�culty in volatility models is a good de�nition of the quantity to which the
forecast should be compared. We develop in this paper a framework to test the forecasting
accuracy of various models. This framework is used to analyze the performance of GARCH and
HARCH models in predicting the hourly realized volatility out-of-sample.

In section 2, the new formulation of the HARCH process is presented and discussed. The
estimation of the model parameters is explained in section 3 together with the results obtained,
for both formulations, over a sample of 10 years of 30m returns. Section 4 deals with the forecasting
performance of volatility models both in establishing the framework and presenting the results for
various models. The conclusions are drawn in section 5. In a technical appendix, we give some
additional results for the estimation of HARCH models on four di�erent foreign-exchange (FX)
rates and the respective forecasting performance.

2 A new formulation of the HARCH process equation

The original formulation of the HARCH process has a variance equation based on price changes
over intervals of di�erent sizes. The returns r(t) of a HARCH(n) process are de�ned with the
help of the random variable "(t) which is i. i. d. and follows a distribution function with zero
expectation and unit variance (in this paper, we take a normal distribution).

r(t) = �(t) "(t) ;

�2(t) = c0 +
nX

j=1

cj

 
jX

i=1

r(t� i�t)

!2

; (2.1)

where

c0 > 0 ; cn > 0 ; cj � 0 for j = 1 : : : n� 1 (2.2)

and �t is the grid interval of the original time series. The returns are computed from the
logarithmic price x as follows: r(t) = x(t) � x(t � �t) (Guillaume et al., 1997). The equation
for the variance �2(t) is a linear combination of the squares of aggregated returns. Aggregated
price changes may extend over some long intervals from a time point in the distant past up to
time t ��t. The heterogeneous set of relevant interval sizes leads to the process name HARCH
for \Heterogeneous interval, autoregressive, conditional heteroskedasticity". The �rst \H" may
also stand for the heterogeneous market if we follow that hypothesis as proposed in (M�uller et al.,
1993). The HARCH process belongs to the wider ARCH family, but di�ers from all other ARCH-
type processes in the unique property of considering the volatilities of price changes measured over
di�erent interval sizes. The Quadratic ARCH process (Sentana, 1991) is an exception; although
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it was not developed for treating di�erent interval sizes, it can be regarded as a generalized form
of HARCH.

In (M�uller et al., 1997), the coe�cients c1 : : : cn are not regarded as free parameters of the
model. The heterogeneous market approach leads to a low number of free model parameters
which determine a much higher number n of dependent coe�cients modeling the long memory of
volatility.

The new idea is to keep in the equation only a handful of representative interval sizes instead
of keeping all of them, and replace the in
uence of the neighboring interval sizes by an exponential
moving average (EMA) of the returns measured on each interval. This has also the advantage of
including a memory of the past intervals. Let us now introduce the concept of partial volatility
�2j , which can be regarded as the contribution of the jth component to the total market volatility

�2. Here the volatility �2j is de�ned as the volatility observed over an interval of size kj�t. We
can reformulate the HARCH equation in terms of �j as follows:

r(t) = �(t) "(t) ;

�2(t) = c0 +
nX

j=1

Cj �
2
j (t) (2.3)

where n is now the number of time components in the model (we choose here 7 as in (M�uller
et al., 1997)). It is also why the coe�cients are termed Cj instead of cj in the old formulation.
Unlike the standard HARCH but similar to the generalized HARCH introduced in (M�uller et al.,
1997), the partial volatility �2j has a memory of the volatility of past intervals of size kj�t. The

formal de�nition of �2j is

�2j (t) = �j �
2
j (t��t) + (1� �j)

0
@ kjX

i=1

r(t� i�t)

1
A

2

(2.4)

where kj is the aggregation factor of the returns and takes n possible values following the relation

kj = pj�2 + 1 for j > 1 with k1 � 1 : (2.5)

The same value p = 4 as in (M�uller et al., 1997) is chosen here. Thus, kj can only take the values
1; 2; 5; 17; 65; 257; 1025; � � � ; 4n�2+1. Eq.(2.4) is the iterative formula for an exponentially weighted
moving average. The volatility memory is de�ned as a moving average of recent volatility. The
depth of the volatility memory is determined by the constant �j :

�j = e
�

�t
M(kj�t) (2.6)

where the memory decay time constant of the component is given as the function M of the com-
ponent's volatility interval kj�t. Instead of introducing new parameters for the characterization
of M(kj�t), it is simply chosen as

M(kj�t) =
(kj+1 � kj) �t

2
: (2.7)
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The memory is de�ned by the start and the end point of the component interval kj . In principle,
a more complicated function M can be chosen with independent parameters.

It is easy to prove that a necessary stationarity condition for the new formulation is

nX
j=1

kjCj < 1 : (2.8)

The proof relies on the fact that the expectation of the exponential moving average is the same
as the expectation of the underlying time series and that the expectation of cross terms is zero.
A similar proof as in (Dacorogna et al., 1996a) can be given for the su�ciency of this condition.

We can now de�ne the impact Ij of each component:

Ij = kjCj : (2.9)

There is no need for a summation here since each time component is represented by only one
coe�cient.

An iterative formula needs an initial value for �2j at the very beginning of the time series. A

reasonable assumption of that initial value is the unconditional expectation of �2j (t) but the �rst
value is computed here from a data sample prior to the �rst optimization point. We term this
sample the \buildup" sample.

3 Optimization of HARCH { determining market components

We use time series homogeneous in #-time (Dacorogna et al., 1993) to remove the seasonal pattern
of intra-day volatility. In this section, the basic time interval is 30 minutes which means only
some 7 minutes during the daily volatility peaks around 14:00 GMT, some 80 minutes during
the Far Eastern lunch break, and even more during weekends and holidays with their very low
volatility. Our optimization sample includes 10 years of data from 1.1.87 to 31.12.96. For getting
a reasonable starting value for the iterations of eq.(2.4), some data before the �rst point in the
optimization sample are used.

To achieve parsimony in the old HARCH formulation, we chose only seven market components.
The choice was guided by the typical horizons of traders present in the market from intra-day
market makers to long-term investors and central banks. We settled on seven components because
the optimization did not show any signi�cant improvement of the likelihood when adding an eighth
one. For the computation of the new HARCH, we optimize the model with 7 components. This
time, the component is built from only one time interval but includes, according to eq.(2.4), a
moving average that extends over a certain range which should account for the neighboring time
intervals. In fact, we now have two parameters controlling the component de�nition: the time
interval size over which price changes are computed, kj�t, and the range of the moving average,
M(kj�t). We �x both of them and let the optimization �nd the Cj parameters.

The optimization is done by searching for the maximum of the log-likelihood function. The
method we follow to �nd this maximum is a two-step method { �rst a genetic algorithm (GA)
search (Pictet et al., 1995) and then the use of the Berndt, Hall, Hall and Hausman (BHHH)
algorithm (Berndt et al., 1974).
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USD-DEM HARCH EMA-HARCH

coe�cient estimate standard error t-statistics estimate standard error t-statistics

c0 1.276�10�7 0.03994�10�7 31.94 0.529�10�7 0.04399�10�7 21.01

I1 0.1309 0.007151 18.30 0.1476 0.008295 17.80

I2 0.1930 0.010010 19.28 0.1875 0.012297 15.25

I3 0.1618 0.009179 17.62 0.1829 0.012545 14.58

I4 0.0703 0.007363 9.55 0.0507 0.010324 4.91

I5 0.1003 0.006774 14.81 0.1434 0.010952 13.10

I6 0.1014 0.006892 14.71 0.1120 0.011835 9.47

I7 0.0990 0.006118 16.18 0.1145 0.010540 10.86

Log-likelihood 5.794741 5.801367

Table 1: Comparison between the coe�cients and impacts of the two HARCH processes, �tting a half-hourly
USD-DEM series which is equally spaced in #-time over 10 years. Instead of the coe�cients Ci,
the impacts Ii are given. These provide a direct measure of the impacts of the market components
on the HARCH variance. The market components are those de�ned in (M�uller et al., 1997) for
HARCH and as in eqs.(2.4 and 2.6) for EMA-HARCH. The distribution of the random variable "(t)
is normal with zero mean and unit variance.

We initialize a �rst generation of potential solutions for the parameters and store them in
\genes" which will form an initial population. The log-likelihood of these solutions are evaluated
and constitutes the \�tness" of the genes. Starting from this population, the genetic algorithm
construct a new population using its selection and reproduction method (Pictet et al., 1995). The
best solutions found by the genetic algorithm are then used as initial solutions for the BHHH
algorithm. The BHHH algorithm is a variant of gradient descent which helps the convergence to
the local maximum. Once convergence of the BHHH is achieved, the next generation of the GA is
computed on the basis of the previous solutions obtained with the BHHH algorithm and the set
of solutions of the previous generation. This iterative procedure continues until no improvement
of the solution is found. The two-step procedure ensures that the optimization algorithm is not
trapped in a local minimum.

The result of the optimization procedure is a set of Cj coe�cients from which we can compute
the component impact using eq.(2.9). The sum of impacts Ij must be below 1 for stationarity
of the process (eq.(2.8)). In Table 1, the coe�cients for both the HARCH and EMA-HARCH
are shown with their t-statistics for USD-DEM. They are obtained on the exact same dataset.
The likelihoods (here log-likelihoods) can be compared since both models have the same number
of independent coe�cients (the values displayed in Table 1 are per observation). Clearly, the
log-likelihood is improved by going to EMA-HARCH. In both cases, all coe�cients are highly
signi�cant according to the t-statistics and contribute to the variance equation. The stationarity
property is ful�lled in both cases. The HARCH has a sum of impacts of of 0.8567 and the EMA-
HARCH of 0.9386. The impacts of the di�erent components are remarkably similar. Two small
di�erences are worth noticing: the relative importance of the long-term components is slightly
higher for EMA-HARCH (37% instead of 35%) and the minimum for the fourth component is more
pronounced in EMA-HARCH. The t-statistics is also consistently smaller for EMA-HARCH than
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for HARCH but still highly signi�cant in all cases. In the appendix, we present similar tables for
four other FX-rates they show the same behavior: improved log-likelihood, slightly stronger long-
term components, more pronounced minimum for the fourth component, stationarity condition
ful�lled in all cases. The residuals in both formulations still present an excess kurtosis as was
noticed in (M�uller et al., 1997) for HARCH.

These results show that we have achieved the goal of redesigning the HARCH process in
terms of moving averages. We are able to keep and even improve on the properties of the original
HARCH and to considerably reduce the computational time to optimize the model. The new
formulation of the process equation reduces this time by a factor 1,000, making the problem of
computation of HARCH volatility much more tractable even with limited cpu power. In the next
section, we will explore the forecasting ability of these models and compare it to a more traditional
approach to volatility.

4 Forecasting performance of ARCH-type models

The true test of the veracity of a volatility model is its ability to forecast future movements. Since
the seminal work of Meese and Rogo� in 1983 , the forecasting quality of a model of �nancial data
is known to be best measured out-of-sample. This means that the data used to test the model
are distinct from the data used to �nd the model parameters. All the analyses described in this
section are performed out-of-sample.

There is some added complexity in the case of volatility models: the de�nition of the quantity
against which the model should be tested. There is no unique de�nition of volatility. We choose
here a path similar to that proposed in (Taylor and Xu, 1997). We construct a time series of
realized hourly vh(t) from our time series of returns as follows,

vh(t) =

ahX
i=1

r2(t� i�t) (4.1)

where ah is the aggregation factor and �t the time interval size. In this case, we use data every
�t = 10minutes in #-time so the aggregation factor is ah = 6. We do not need any factor in front
of the summation if we assume Gaussian random walk aggregation properties for the variance.

We produce a forecast using di�erent models that are compared to the realized volatility of
eq.(4.1). In order to simply test the one-step ahead forecast, we consider models based on hourly

returns, �t = 1h in #-time to treat the seasonality. The advantage of using hourly returns instead
of 30-minute returns as in the previous section is that hourly forecasts are compatible with the
historical hourly volatility de�ned in eq.(4.1). Four models are studied here.

1. The �rst model, which is also used as a benchmark, is a naive historical model inspired by
the e�ect described in (M�uller et al., 1997): low frequency volatility predicts high frequency
volatility. We compute the historical volatility over one day measured from returns com-
puted over 1 hour (lower frequency than the volatility we want to predict). This quantity,
properly normalized, is used as a predictor for the next hour volatility, v(t+�t), as de�ned
in eq.(4.1). Formally the forecasting model vb is

vb(t) =
1

24

24X
j=1

0
@ 6jX

i=6(j�1)+1

r(t� i�t)

1
A

2

(4.2)
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where the factor in front of the summation is here to normalize vb to hourly volatility.

2. GARCH(1,1):

vgarch(t) = h(t) = �0 + �1"
2(t��t) + �1h(t��t) (4.3)

where "(t) is i.i.d. and follows a normal distribution function with zero expectation and unit
variance.

3. the old HARCH model following eq.(2.1) and the 7 components proposed in (M�uller et al.,
1997).

4. the new EMA-HARCH model following eqs.(2.3) and (2.4) with 7 components.

The three parameter-dependentmodels are optimized over a sample of 5 years of hourly data using
the �tting procedure described in section 3. The forecast is then analyzed over the 5 remaining
years. We term this procedure the static optimization. To account for possible changes in the
model parameters, we also recompute them every year using a moving sample of 5 years. We
term this procedure dynamic optimization. In this case, the performance is always tested outside
of the gliding sample to ensure that the test is fully out-of-sample. In both studies, we use an
out-of-sample period of 5 years of hourly data which represents more than 43,000 independent
observations.

We compare the accuracy of the four forecasting models to the realized hourly volatility of
eq.(4.1). The quantities of interest are the forecasting signal

sf = ~vf(t) � vh(t) (4.4)

where ~vf is any of the forecasting models, and the real signal

sr = vh(t+�t) � vh(t) : (4.5)

The quantity ~vf (t) can be used as is or could be rescaled by the ratio of the averages < vh > and
< ~vf > taken in the optimization sample. This makes the forecast values on average closer to the
historical volatility and does not imply using any future information. In the rest of the paper, we
call the quantity ~vf(t)� < vh > = < ~vf > the rescaled forecast.

Formulated like this, performance measures proposed in (Dacorogna et al., 1996b) can be
applied because the quantities de�ned in eqs.(4.4) and (4.5) can take positive and negative values
contrary to the volatilities which are positive de�nite quantities. One of these measures is the
direction quality:

Qd =
N (f~vf j sf � sr > 0g)

N (f~vf j sf � sr 6= 0g)
(4.6)

where N is a function that gives the number of elements of a particular set of variables. It should
be noted that this de�nition does not test the cases where either the forecast is the same as the
current volatility or when the volatility at time t + �t is the same as the current one. This
occurrence is, of course, unlikely to occur in our particular case. A detailed statistical discussion
of this measure can be found in (Pesaran and Timmerman, 1992).

O&A Preprint -7-



USD-DEM Qd Qr Qf

Static Optimization

benchmark 67.7% (67.6%) 54.2% (54.3%) 0.000

GARCH(1,1) 67.8% (67.3%) 58.5% (59.7%) 0.085 (0.072)

HARCH(7c) 69.2% (68.7%) 58.3% (59.2%) 0.134 (0.129)

EMA-HARCH(7c) 69.4% (68.8%) 60.7% (62.5%) 0.140 (0.128)

Dynamic Optimization

benchmark 67.7% (67.4%) 54.2% (54.6%) 0.000

GARCH(1,1) 67.0% (66.0%) 59.5% (59.8%) 0.074 (0.057)

HARCH(7c) 67.7% (66.8%) 60.1% (60.8%) 0.113 (0.102)

EMA-HARCH(7c) 68.8% (67.7%) 62.4% (62.9%) 0.133 (0.117)

Table 2: The forecasting accuracy of various models in predicting the short-term market
volatility. The performance is measured every hours over 5 years which means
43,230 independent observations. In parentheses, the accuracy of rescaled forecasts
is shown.

In addition to this measure, we use a measure that combines the size of the movements and
the direction quality. It is often called the realized potential

Qr =

P
sign(sf � sr) jsrjP

jsr j
(4.7)

In fact, the measures Qr and Qd are not independent and Qr is a weighted average of sign(sf � sr)
whereas 2Qd � 1 is the corresponding unweighted average. It is easy to show that if

Qr > 2 Qd � 1 ; (4.8)

the forecast of the sign of sr for large jsrj values is better than average.

A more traditional measure is also used: the comparison of the absolute error of a model to
a benchmark model. This benchmark model is chosen to be the historical volatility as de�ned in
eq.(4.2), vb. We compute the following quantity

Qf = 1 �

P
jsr � sarchf jP

jsr � sbenchmark
f

j
: (4.9)

This particular form is chosen to have a quality measure that increases with increasing performance
of the model. If Qf > 0, the model outperforms the benchmark. If Qf < 0, the benchmark
outperforms the model.

The summations (including N ) in eqs. (4.6), (4.7) and (4.9) are over all hours in the out-
of-sample period. The number of independent observations is so large that all the statistical
results presented in this study are highly signi�cant. We did not use performance measures
based on squares such as the signal correlation or squared errors since we are testing a forecast for

O&A Preprint -8-



essentially squared returns and the fourth moment of the distribution of returns does not converge
(Dacorogna et al., 1994).

In Table 2, the results for the di�erent performance measures are presented for the most traded
FX-rate, USD-DEM, in the case of static and dynamic optimization. In parentheses, we give also
the results for the scaled forecasts. For all measures, the three parameter-dependent models
perform better than the benchmark and the new model, EMA-HARCH, performs the best. The
forecast accuracy is remarkable for all ARCH-type models. The signi�cance of the values shown
on Table 2 is very high since the number of independent observations is 43,230 which means that
the 95% signi�cance level for a Gaussian random walk for Qd is less than 0.5%. The signi�cance
levels for the two other measures (Qr and Qf) are more di�cult to compute but the relative error,
in Gaussian approximation, is 1=

p
n which, in our case, is about 5 � 10�3. One of the advantages

of working with high frequency data is to be able to achieve very high statistical signi�cance.

In more than 2/3 of the cases, the forecast direction is correctly predicted and the mean
absolute errors are smaller than the benchmark errors in for all the models. The realized potential
measure shows that the forecast of volatility change is good not only for small jsrj but also for
large ones. The condition expressed in eq.(4.8) is always satis�ed for all models. Neither the scaled
forecast nor the dynamic optimization seem to signi�cantly improve the forecasting accuracy; the
best results achieved so far are with the plain models. The realized potential Qr is the only
measure that consistently improves with dynamic optimization. Examining the model coe�cients
computed in moving samples shows that they oscillate around mean values. No structural changes
in the coe�cients were detected. The accuracy improvement in Qr together with the loss in Qf

in the case of dynamic optimization shows that the prediction of large movements is improved at
the cost of the prediction of direction and of small real movements. From the point of view of
forecasting short-term volatility, the EMA-HARCH is the best of the models considered in this
study and compares favorably to HARCH. Similar conclusions can be drawn from the results
shown in the table of appendix B for four other FX rates. The cross rate JPY-DEM presents
results slightly less good than the other currencies but it should be noted that the early half of
the sample has been synthetically computed from USD-DEM and USD-JPY. This may lead to
noise in the computation of hourly volatility and a�ect the forecast quality.

5 Conclusion

By introducing partial volatilities, the HARCH formalism can be signi�cantly improved both
from the computational point of view and its ability to describe the real market volatility both
in-sample (higher maximum likelihood) and out-of-sample (more accurate forecasts). The partial
volatility can be interpreted straightforwardly as the contribution of one market component to
the market volatility. The optimization results allow us to assess the relative impacts of all
components which are very close to those published in (M�uller et al., 1997). Formulating �2j as
a function of its past values introduces an element that was missing in the early formulation of
HARCH and brings it slightly closer to a GARCH-type of model.

In general ARCH-type models are able to signi�cantly predict the realized hourly short-term
volatility out-of-sample with a limited optimization e�ort. Models including volatility measured
at di�erent temporal resolutions (as in HARCH and EMA-HARCH) outperforms those that do
not consider this e�ect. This is further evidence of the market heterogeneity. It also emphasizes
the need of high frequency data to properly analyze �nancial markets. The next research step
will be to study how from the EMA-HARCH one can model volatilities measured at low temporal
resolution such as daily or even monthly.
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With EMA-HARCH, the use of volatility measured at di�erent temporal resolutions becomes
relatively cheap to implement as far as the computational time is concerned. It can be a good
starting point to extend the formalism for predicting daily or even longer-term volatilities which
are needed for option-pricing, risk management, and other portfolio management purposes. An-
other important use of HARCHmodels can be the study of market structures and possible changes
in the in
uence of various market components over time.
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A Tables of comparative optimization results

USD-JPY HARCH EMA-HARCH

coe�cient estimate standard error t-statistics estimate standard error t-statistics

c0 1.291�10�7 0.03706�10�7 34.83 0.640�10�7 0.03962�10�7 16.17

I1 0.1342 0.006346 21.14 0.1520 0.007589 20.03

I2 0.1979 0.009112 21.72 0.1829 0.011498 15.90

I3 0.1815 0.009688 18.73 0.2292 0.013041 17.57

I4 0.0942 0.008671 10.86 0.0868 0.011622 7.47

I5 0.1360 0.007412 18.35 0.1642 0.011366 14.45

I6 0.0932 0.006845 13.62 0.1063 0.011687 9.10

I7 0.0486 0.004448 10.93 0.0376 0.008709 4.31

Log-likelihood 5.824818 5.833673

Table 3: Comparison between the coe�cients and impacts of the two HARCH processes, �tting a half-hourly USD-
JPY series which is equally spaced in #-time over 10 years. Instead of the coe�cients Ci, the impacts Ii are

given. These provide a direct measure of the impacts of the market components on the HARCH variance.

The market components are those de�ned in (M�uller et al., 1997) for HARCH and as in eqs.(2.4 and 2.6)
for EMA-HARCH. The distribution of the random variable "(t) is normal with zero mean and unit variance.

GBP-USD HARCH EMA-HARCH

coe�cient estimate standard error t-statistics estimate standard error t-statistics

c0 1.489�10�7 0.03430�10�7 43.42 0.876�10�7 0.03198�10�7 27.38

I1 0.1455 0.007284 19.98 0.1672 0.008498 19.67

I2 0.1809 0.009423 19.19 0.1621 0.011263 14.39

I3 0.1469 0.008744 16.80 0.1609 0.011251 14.30

I4 0.0732 0.007307 10.02 0.0491 0.009415 5.22

I5 0.1077 0.007099 15.18 0.1420 0.010769 13.18

I6 0.0655 0.006114 10.71 0.0823 0.011088 7.42

I7 0.0502 0.004026 12.46 0.0759 0.007694 9.87

Log-likelihood 5.856335 5.864520

Table 4: Comparison between the coe�cients and impacts of the two HARCH processes, �tting a half-hourly GBP-

USD series which is equally spaced in #-time over 10 years. Instead of the coe�cients Ci, the impacts Ii are

given. These provide a direct measure of the impacts of the market components on the HARCH variance.

The market components are those de�ned in (M�uller et al., 1997) for HARCH and as in eqs.(2.4 and 2.6)

for EMA-HARCH. The distribution of the random variable "(t) is normal with zero mean and unit variance.
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USD-CHF HARCH EMA-HARCH

coe�cient estimate standard error t-statistics estimate standard error t-statistics

c0 2.156�10�7 0.05376�10�7 40.10 1.000�10�7 0.06646�10�7 15.05

I1 0.1342 0.006670 20.13 0.1530 0.007736 19.78

I2 0.1822 0.009068 20.09 0.1659 0.011189 14.83

I3 0.1436 0.008065 17.81 0.1781 0.011465 15.53

I4 0.0556 0.006661 8.35 0.0446 0.009663 4.62

I5 0.0905 0.006312 14.34 0.1293 0.010249 12.61

I6 0.0968 0.007037 13.75 0.1350 0.011312 11.93

I7 0.0761 0.005717 13.30 0.0915 0.010395 8.79

Log-likelihood 5.662343 5.668801

Table 5: Comparison between the coe�cients and impacts of the two HARCH processes, �tting a half-hourly USD-

CHF series which is equally spaced in #-time over 10 years. Instead of the coe�cients Ci, the impacts Ii are

given. These provide a direct measure of the impacts of the market components on the HARCH variance.
The market components are those de�ned in (M�uller et al., 1997) for HARCH and as in eqs.(2.4 and 2.6)

for EMA-HARCH. The distribution of the random variable "(t) is normal with zero mean and unit variance.

DEM-JPY HARCH EMA-HARCH

coe�cient estimate standard error t-statistics estimate standard error t-statistics

c0 1.110�10�7 0.02466�10�7 45.01 0.607�10�7 0.02504�10�7 24.23

I1 0.1554 0.006465 24.04 0.1697 0.007544 22.49

I2 0.1627 0.008697 18.67 0.1485 0.010434 14.24

I3 0.1411 0.008057 17.52 0.1767 0.011027 16.03

I4 0.0856 0.007121 12.02 0.0765 0.010345 7.40

I5 0.0940 0.006382 14.73 0.1470 0.011048 13.30

I6 0.0752 0.005814 12.85 0.1013 0.010310 9.82

I7 0.0781 0.004442 17.60 0.0704 0.007451 9.44

Log-likelihood 5.958331 5.968624

Table 6: Comparison between the coe�cients and impacts of the two HARCH processes, �tting a half-hourly DEM-

JPY series which is equally spaced in #-time over 10 years. Instead of the coe�cients Ci, the impacts Ii are

given. These provide a direct measure of the impacts of the market components on the HARCH variance.

The market components are those de�ned in (M�uller et al., 1997) for HARCH and as in eqs.(2.4 and 2.6)

for EMA-HARCH. The distribution of the random variable "(t) is normal with zero mean and unit variance.
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B Tables of forecasting performance

We present here forecasting performance results for 4 other FX rates. They are computed on the
same sample as the results in Table 2. Because of slight variations in the #-time, the number of
observations can also vary slightly. This number is reported in each table.

USD-JPY Qd Qr Qf

Static Optimization

benchmark 67.9% (67.4%) 49.0% (50.5%) 0.000

GARCH(1,1) 68.6% (67.9%) 53.1% (54.3%) 0.065 (0.070)

HARCH(7c) 69.8% (69.5%) 53.8% (54.9%) 0.123 (0.139)

EMA-HARCH(7c) 70.2% (69.7%) 54.5% (55.8%) 0.140 (0.148)

Dynamic Optimization

benchmark 67.9% (67.2%) 49.0% (50.9%) 0.000

GARCH(1,1) 68.6% (67.5%) 53.0% (54.8%) 0.070 (0.073)

HARCH(7c) 69.5% (68.4%) 56.1% (56.4%) 0.105 (0.115)

EMA-HARCH(7c) 69.9% (68.6%) 55.5% (57.1%) 0.126 (0.129)

Table 7: The forecasting accuracy of various models in predicting the short-term market
volatility. The performance is measured every hours over 5 years which means
43,040 independent observations. In parentheses, the accuracy of rescaled forecasts
is shown.

GBP-USD Qd Qr Qf

Static Optimization

benchmark 67.7% (67.8%) 52.7% (52.4%) 0.000

GARCH(1,1) 66.8% (66.6%) 58.3% (58.5%) 0.090 (0.069)

HARCH(7c) 68.1% (68.1%) 59.0% (59.1%) 0.120 (0.105)

EMA-HARCH(7c) 69.4% (69.2%) 59.0% (59.4%) 0.134 (0.113)

Dynamic Optimization

benchmark 67.7% (67.9%) 52.7% (52.4%) 0.000

GARCH(1,1) 67.4% (67.3%) 58.5% (58.7%) 0.089 (0.071)

HARCH(7c) 67.7% (68.0%) 58.9% (59.0%) 0.108 (0.099)

EMA-HARCH(7c) 68.8% (68.8%) 59.3% (59.5%) 0.125 (0.108)

Table 8: The forecasting accuracy of various models in predicting the short-term market
volatility. The performance is measured every hours over 5 years which means
43,215 independent observations. In parentheses, the accuracy of rescaled forecasts
is shown.
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USD-CHF Qd Qr Qf

Static Optimization

benchmark 67.7% (67.6%) 53.7% (54.1%) 0.000

GARCH(1,1) 68.9% (68.5%) 58.9% (59.5%) 0.099 (0.090)

HARCH(7c) 69.2% (68.6%) 55.9% (55.9%) 0.115 (0.112)

EMA-HARCH(7c) 69.3% (68.7%) 57.9% (58.3%) 0.117 (0.107)

Dynamic Optimization

benchmark 67.7% (67.6%) 53.7% (54.3%) 0.000

GARCH(1,1) 68.3% (67.5%) 59.1% (59.5%) 0.088 (0.076)

HARCH(7c) 68.4% (67.8%) 57.1% (57.6%) 0.102 (0.097)

EMA-HARCH(7c) 68.9% (68.2%) 58.5% (59.1%) 0.112 (0.103)

Table 9: The forecasting accuracy of various models in predicting the short-term market
volatility. The performance is measured every hours over 5 years which means
43,261 independent observations. In parentheses, the accuracy of rescaled forecasts
is shown.

JPY-DEM Qd Qr Qf

Static Optimization

benchmark 66.2% (64.2%) 58.4% (58.3%) 0.000

GARCH(1,1) 66.2% (63.4%) 60.0% (60.4%) 0.063 (0.061)

HARCH(7c) 65.3% (62.7%) 59.1% (56.8%) 0.072 (0.092)

EMA-HARCH(7c) 65.3% (62.3%) 61.6% (58.6%) 0.072 (0.075)

Dynamic Optimization

benchmark 66.2% (65.7%) 58.4% (58.6%) 0.000

GARCH(1,1) 65.4% (64.5%) 59.8% (59.6%) 0.050 (0.045)

HARCH(7c) 64.2% (63.3%) 59.3% (58.8%) 0.044 (0.050)

EMA-HARCH(7c) 65.0% (63.9%) 62.1% (61.3%) 0.074 (0.064)

Table 10: The forecasting accuracy of various models in predicting the short-term market
volatility. The performance is measured every hours over 5 years which means
43,292 independent observations. In parentheses, the accuracy of rescaled forecasts
is shown.
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