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Abstract

This paper shows that occasional breaks generate slowly decaying autocorrelations and other

properties of I(d) processes, where d can be a fraction. Some theory and simulation results show that

it is not easy to distinguish between the long memory property from the occasional-break process

and the one from the I(d) process. We compare two time series models, an occasional-break model

and an I(d) model to analyze S&P 500 absolute stock returns. An occasional-break model performs

marginally better than an I(d) model in terms of in-sample fitting. In general, we found that an

occasional-break model provides less competitive forecasts, but not significantly. However, the

empirical results suggest a possibility such that, at least, part of the long memory may be caused by

the presence of neglected breaks in the series. We show that the forecasts by an occasional break

model incorporate incremental information regrading future volatility beyond that found in I(d)

model. The findings enable improvements of volatility prediction by combining I(d) model and

occasional-break model.
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1. Introduction
There have been several articles analyzing the long-run properties of stock returns.

Granger and Ding (1995a,b) considered long return series, using the well-known Standard
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and Poor’s (S&P) 500 index of about 17,000 daily observations, and established a set of

temporal and distributional properties for such series. They suggested that the absolute

returns are well characterized by an I(d) process, but the parameter estimates of the I(d)

model sometimes vary considerably from one subseries to the next as shown by Granger

and Ding (1996).

There have been several unsuccessful attempts to explain the cause of long memory and

the observed time-varying property of d by occasional regime switches. For example,

Rydén et al. (1998) suggest that the temporal higher-order dependence observed in return

series may be well described by a hidden Markov model. Such a model is estimated for the

series considered by Granger and Ding (1995a,b); however, they failed to explain the one

stylized fact which is the very slowly decaying autocorrelation function for absolute

returns. On the other hand, Lobato and Savin (1998) investigate if the observed evidence

of long memory is, in fact, due to nonstationarity during the long period. They split their

sample (1962–1994) into two periods, taking January 1973 as the breaking point. But they

do not find any evidence that long memory was caused by the structural break of 1973.

We, however, suspect that there are structural changes in the series since Granger and

Ding (1996) examined very long time series of absolute stock returns from 1928 to 1991.

If such structural changes exist, a stationary process that encounters occasional regime

switches will have long memory properties that are similar to those of the I(d) process, as

pointed out by Granger (1998, comment). One plausible model to explain the (time-

varying) long-memory property in the stock market might be derived from the example of

Granger and Teräsvirta (1999), a nonlinear model with level changes.

In this paper, we provide some theoretical arguments and simulation results which show

the claim that it is troublesome in practice to distinguish between the occasional breaks

process and the I(d) process. The plan of the paper is as follows. Section 2 introduces an

I(d) model briefly. Section 3 contains our analysis of long memory properties of a simple

linear model with occasional, or infrequent, breaks in mean. In Section 4, we discuss

spurious breaks in the I(d) processes and over-difference phenomena caused by removing

the estimated breaks. Section 5 is devoted to applications using the S&P 500 stock index

and, finally, Section 6 presents conclusions.
2. I(d) process and long memory

Long memory has been used to model the persistence of stationary economic data ever

since the work of Granger and Joyeux (1980). The I(d) model is widely used for series

with long memory, that is

ð1� LÞdyt ¼ et; ð1Þ

where et is zero mean, i.i.d. with variance re
2, for example. For any real d >� 1, the

fractional difference operator, (1� L)d, is defined by its Maclaurin series, that is,

ð1� LÞd ¼
Xl
j¼0

pjL
j; pj ¼

j� 1� d

j
pj�1; p0 ¼ 1: ð2Þ
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From this expression, we can infer already a potential slow decay in the autocorrelation

function. Traditionally, long memory has been defined in the time domain in terms of

decay rates of the autocorrelations at high lags, that is, the long-term persistence. The long-

term decay is solely determined by d, which is also called the memory parameter. There

are several definitions of the property of ‘long memory’ for � 1/2 < d < 1/2 (refer to

Baillie, 1996). One definition is,

Definition 1. A time series, yt, possesses long memory, if the quantity

lim
T!l

XT
k¼�T

AqkA

is non-finite, where qk is autocorrelation function of yt.

Equivalently, Definition 1 implies that the spectral density f(x) of this series is

unbounded at low frequencies, i.e.,

f ðxÞ ! l

as x! 0. Alternatively, long memory can be defined in terms of decay rates of

autocorrelations. An autocovariance function, ck, of the long memory process is given by

ckcckk
2d�1

where d>0 and ck is a slowly varying function at infinity. Then, the autocorrelation

function qk is proportional to k2d� 1 as k increases. Consequently, the autocorrelations of

this process decay hyperbolically to zero as k!l, in contrast to the exponential decay in

a covariance-stationary ARMA process. Among the several definitions of long memory,

we shall use Definition 1 for our analysis in Section 3.

There are several methods of testing long memory of time series. We use the following

two methods in this paper. The first method of estimating the value of d is the Geweke and

Porter-Hudak (1983) (henceforth GPH) method, which is based on the following

regression,1

lnfIðxjÞg ¼ c� dlnf4sin2ðxj=2Þg þ uj; j ¼ 1; . . . ; n: ð3Þ

where IðxjÞ ¼ 1
2p

PT
i¼1 ytexpðixjtÞ

�� ��2 is the periodogram at frequency xj = 2pj/T. The
window size n depends on the sample size T. Then, the OLS estimator of d will be

asymptotically normal and with the variance p2/6n. Alternatively, we use Lobato and

Robinson’s (1998) LM statistic, which tests H0: d = 0 against Ha: d p 0 (or d>0). Lobato

and Robinson (1998) provide conditions that establish under the null that LM statistics

converge to v1
2 in distribution. For the detailed discussion and summary of the earlier work

on I(d) model, see Baillie’s (1996) paper.
1 As pointed out by a referee, Robinson (1995) corrected the log periodogram regression; j cannot start at 1 in

his regression. In our paper, however, we use the GPH method, because our results will not be affected by the

choice of starting value of j.
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3. Occasional break process and long memory

A time series may perhaps show long memory, not because it is really I(d) but because

of the neglected occasional breaks in the series. In this section, we show that occasional

level shifts in mean give rise to the observed long memory phenomenon. The condition

under which occasional level shifts in mean can exhibit long memory is described. Some

comparison between this model and an I(d) model are also made. For notational

convenience, let an occasional-break model denote a time series model with occasional

structural breaks in mean.

3.1. Occasional break process

We shall consider a model with only a few breaks in the mean. For an example of this

process, we can use an ‘occasional-break model’ (Chen and Tiao, 1990; Engle and Smith,

1999) as the following:

yt ¼ mt þ et; t ¼ 1; . . . ; T ; ð4Þ

where et is a noise variable and occasional level shifts, mt, are controlled by two variables

qt (date of break) and gt (size of jump), as

mt ¼ mt�1 þ qtgt; ð5Þ

where gt is i.i.d. (0,rg
2). For the simulation in the following sections, the distribution of gt is

taken to be N(0,rg
2) although this distribution has no particular relevance. We assume that

qt follows an i.i.d. binomial distribution, that is,

qt ¼
0;with probability 1� p

1;with probability p

8<
: ð6Þ

The following assumption is used in this model throughout the paper.

Assumption 1. The probability of breaks p converges to zero slowly as the sample size

increases, i.e., p! 0 as T!l, yet limT!lTp is a non-zero finite constant.

This assumption implies that the expected number of breaks, Tp, is bounded from

above even in the extreme case that T increases to infinity. To preserve memory properties

which are induced by breaks, the number of breaks has to remain finite as the size of

sample increases; however, we do not interpret this sample size-dependent probability as a

truly time-varying parameter. Assumption 1 is an example of letting p decrease with

sample size, so that regardless of the sample size, realization tends to have just finite

breaks. For a related discussion, refer to Diebold and Inoue (2001).

Combine Eqs. (4) with (5), then yt is represented by

yt ¼ fm0 þ q1g1 þ : : : þ qtgtg þ et: ð7Þ

The time-varying mean of yt is {m0 + q1g1 + . . . + qtgt}, which shows infrequent level

shifts.
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One problem with the binomial model in Eq. (6) is that this model implies sudden

changes only. It may, however, be the case that structural changes occur gradually. For

this reason, one may wish to use a regime switching model, which is actually a

simple generalization of Eq. (6). Let st be a latent random variable with two discrete

values: 0,1. Each value of st represents a different state in the length of memory of

shock. st is assumed to be governed by the following Markov probability law:

pij = Pr(st =jjst� 1 = i). Then, one can use a regime switching model of qt such that qt=

0, when st = 0, and qt = 1, when st = 1. In this specification, the state of st will

determine if the shock of gt is permanent or not. A regime with st = 1 represents a

period of structural change.

Graphical examples of these DGPs are provided in Fig. 1, which will be explained in

detail in Section 3.4.

3.2. The sample autocorrelation function

Now, we examine the sample autocorrelation of occasional break model when the

probability of level shift is small. We consider time series of Eq. (7) for a finite number of

observations, T, which allows us to focus on the effects of occasional level shifts on

memory.

For simplicity, let es, gt and qs be independent for all s, t and s. For the initial

conditions, assume m0 = 0, qt = 0, et = 0 and gt = 0 for all tV 0, then the mean of yT is

E( yT) = 0, and its variance is

varðyT Þ ¼ Tpr2
g þ r2

e

Similarly, one finds that the covariance between yT and yT + k is

covðyT ; yTþkÞ ¼ Tpr2
g

Taken together, one gets the following k-th autocorrelation equation of this process,

corrðyT ; yTþkÞ ¼
Tpr2

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tpr2

g þ r2
e

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT þ kÞpr2

g þ r2
e

q

It is obvious that the sum of absolute values of autocorrelations are not bounded as

T!l, even with finite number of breaks.

Proposition 1. A time series is generated from Eqs. (4–6), and if the probability of breaks

p satisfies Assumption 1, then an occasional-break model possesses a long memory by

Definition 1.

The proof of this proposition is obvious. corrðyT ; yTþkÞ ! ð1þ r2
e

Tpr2
g
Þ�1 > 0 as T!l

for all k.



Fig. 1. (1) A series with occasional breaks (binomial case). (2) A series with occasional breaks (Marcov switching case).
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We can derive properties of a sample autocorrelation function. Our subsequent

results are based on the sample autocorrelation function. After some tedious algebra,

we get the following approximation of the sample autocorrelation function,

q̂T ðkÞ ¼

XT�k

t¼1

ðyt � ȳÞðytþk � ȳÞ

XT
t¼1

ðyt � ȳÞ2
c

Tpr2
g

6
1� k

T

	 

1� 2

k

T
þ 4

k

T

	 
2
 !

Tpr2
g

6
þ r2

e

ð8Þ

where ȳ ¼ 1
T

PT
t¼1 yt and c denotes approximate equality for any k such that k/T! 0

as T increases. The value of Tp implies an expected number of structural breaks with

the sample size T, and rg
2 is related to the size of breaks. As explained in Proposition

2, these parameters are closely linked to the memory properties of the occasional break

model.

Proposition 2. A time series is generated from Eqs. (4–6), and if the probability of breaks

p satisfies Assumption 1, then the k-th sample autocorrelation in Eq. (8), qˆT(k), converges
to nonzero value for any k such as k/T! 0 as T!l,

q̂T ðkÞ ! 1þ 6r2
e

Tpr2
g

 !�1

where 0 < 1þ 6r2
e

Tpr2
g


 ��1

< 1:

Remark 1. There are two trivial cases. First, if 0 < p < 1 and p is fixed, the break process is

obviously I(1) and ÛT(k)! 1 as T!l. Second, when p = 0, i.e., no break, then this

process is I(0) and ÛT(k)! 0 as T! l.

We focus on the case of long-memory caused by occasional breaks in this paper.

Proposition 1 shows that a series with finite breaks may have similar autocorrelations

to an I(d) process. Typically the I(d) process has slow hyperbolically decaying

autocorrelations after the initial drop-off from k = 0 to k = 1. The autocorrelations in

Eq. (8) do not decline exponentially (even if et of Eq. (4) has serial correlation), but

decays very slowly as k increases. For any given k, the sample autocorrelation

approaches a nonzero constant as T!l. As Tp increases, there are more breaks

and the value of the sample autocorrelation tends to be higher. An increase of rg
2,

which means a larger magnitude of breaks, has similar effects on the autocorrelations.

The intuition is that increases of Tp or rg
2 make an occasional-break process closer to a

random walk.

There are other properties of the I(d) process which are heavily used by researchers,

which are also true for a series with breaks. Granger and Marmol (1997) show that the

correlogram of I(d) is low, but remains positive for many lags. We found that it is also

true for a series with breaks from Proposition 2 and from unreported simulation
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studies. Mikosch and Stărică (1999) show similar results from the volatility series with

breaks. These findings show the long memory property of the occasional-break process

in a finite sample. In Section 3.3, we show the long memory property of an occasional

break process in the frequency domain.

3.3. Long memory in the frequency domain

In Section 3.2, we showed that neglected breaks generate a long memory effect in the

autocorrelation function. In this section, we present similar analysis in the frequency

domain. We show the bias of the GPH estimator explicitly when there are neglected

breaks.

Suppose that mt is the series from Eq. (5). From filtering considerations, the spectrum

of mt can be thought of as

fmðxÞ ¼ A1� zA�2 1

2p
pr2

g;x p 0

where z = e� ix. For small x,

fmðxÞ ¼ cx�2

where c = prg
2/2p. Since mt is independent of es for all t and s, the spectrum of yt in Eq. (4)

can be thought of as

fyðxÞ ¼ fmðxÞ þ feðxÞ ¼ A1� zA�2 1

2p
pr2

g þ
1

2p
r2

e ;x p 0 ð9Þ

It follows that

fyðxÞ ¼ cðxÞ�2 þ cV; ð10Þ

for x small, where c = prg
2/2p, cV = re

2/2p.
When attention is confined to frequencies near zero, the differencing parameter can be

estimated consistently from the GPH regression since

� 1

2

Blnf zðxÞ
Blnx

¼ d ð11Þ

with a time series zt which is I(d) process where fz(x) is the spectrum of zt. The

relationship underlying Eq. (11) holds only for frequencies close to zero. For example,

the consistency of the estimate d in the GPH regression (3) requires that the window size n

grows with sample size, but at a slow rate, which ensures x! 0.
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Similarly, the elasticity in Eq. (10) is a negative, but a nonlinear function of x such as

� 1

2

BlnfyðxÞ
Blnx

¼ 1þ x2 r2
e

pr2
g

 !�1

: ð12Þ

The RHS of Eq. (12) is increasing as x! 0. It is evident that the estimated value of d from

GPH regression depends on the probability of breaks and on the relative variance of the

innovations. For some x close to zero frequency, but which approaches zero slowly such

that x2/p!C as x! 0, then the elasticity is

� 1

2

BlnfyðxÞ
Blnx

! 1þ C
r2

e

r2
g

 !�1

: ð13Þ

where C is a non-zero, finite constant number. Thus, the time series yt seems to have long

memory since the elasticity of spectrum near zero frequency is bound away from zero.

In the trivial case of no break, p = 0, the elasticity is � BlnfyðxÞ
Blnx ¼ 0 from Eq. (9), which

implies no long memory in the frequency domain. Another obvious case 0 < p < 1 and p is

fixed, then � 1
2

BlnfyðxÞ
Blnx ! 1 as x! 0, which is the unit root case.

The log-periodogram regression estimation procedure in Eq. (3) by Geweke and Porter-

Hudak (1983) would suffer from a serious bias, if there are neglected breaks since the GPH

estimation is focusing on the elasticity of the spectral density close to zero frequency.

Proposition 3. When yt is generated from Eqs. (4–6), and the probability of breaks p

satisfies Assumption 1, then the estimated value of d by the GPH method in Eq. (3) using

n= T1/2 would be non-zero positive. One would get a positive value of d by the GPH only

because p is small enough (but not zero) to counter-balance small x, that is, x! 0 but

x2/p =O(1).

The Proposition 3 is confirmed along the lines of simulation studies in the following

section. A heuristic comment of this proposition follows: we can calculate a lower bound

for the GPH estimator from Eq. (13) since the RHS function in Eq. (12) is monotonically

increasing as x! 0 and the GPH estimator is based on xj, j= 1,. . .,n. For example, when

n = T1/2 then C ¼ 4p2

Tp
at xn = 2pn/T. The lower bound of the RHS function in Eq. (12) is2

1þ 4p2 r2
e

Tpr2
g

 !�1

: ð14Þ

As
r2

e
Tpr2

g
decreases, the estimated value of d is likely to increase, as well. This result holds

for which all parameters are known and T!l. It may not necessarily carry over to

estimated processes in finite samples.
2 The choice of n= T1/2 is not the only necessary condition to obtain the Proposition 3. So long as x2/p=O(1)

p=O(1) as x! 0, any choice of n would provide a similar result with Proposition 3.



3.4. Simulation

In this section, we discuss some simulation studies. The model used in the simulation is

the change in mean model from Eqs. (4) and (5). The following two artificial data sets

illustrate the long memory property of occasional breaks model with different parameters. It

should be noted that even though the series in the following examples are not I(d) processes,

the correlograms and the GPH estimators show a clear evidence of long memory.

Example 1. Let qt have a binomial distribution of Eq. (6). T= 2000, re
2 = 1, rg

2 = 0.25,

p = 0.01. If Tp is a small positive integer, a plot of yt against t shows about 20 breaks in

level since the value Tp is an expected number of breaks within the sample period. The

third graph of Fig. 1(1) plots sample autocorrelations of this series up to lag 500. Sample

autocorrelations start around 0.44 (quite close to 0.45 calculated by Eq. (8) with k = 1), but

decrease very slowly. These figures might suggest that this series has long memory. By the

GPH method, d̂, is 0.747 with t-value 6.17, a clear indication of long memory. For the first

differenced series, d̂ is � 0.212 with the standard error 0.13, which implies that taking

difference of this series may cause over-difference.

Example 2. A series from Eqs. (4) and (5) when qt has a regime switching process instead

of Eq. (6). T= 2000, re
2 = 1, rg

2 = 0.01, p11 = 0.998, p22 = 0.99, implying unconditional

probability of state 2 (break) is 0.167. The second graph of Fig. 1(2) plots the value of qt,

which is determined by the state variable, and for this series d̂ is 0.860 with t-value 5.38.

We observe gradual changes in the series when qt = 1. For the first differenced series, d̂ is

� 0.103 with the standard error 0.11.

In Table 1, the number of replications for each experiment was 1000 with a sample size

of 2000, re
2 = 1 and different values of p and rg

2. In the first rows of Table 1, we report

averaged values of the estimated sample autocorrelations. The numbers in brackets are

C.W.J. Granger, N. Hyung / Journal of Empirical Finance 11 (2004) 399–421408
Table 1

Autocorrelation and GPH estimates of the occasional break process

p(Tp) 0.0025(5) 0.005(10) 0.01(20) 0.05(100)

rg
2 = 0.005 0.0046 [0.0041] 0.0085 [0.0083] 0.0163 [0.0164] 0.0741 [0.0768]

0.0020 [0.0036] 0.0051 [0.0071] 0.0112 [0.0142] 0.0549 [0.0665]

0.076 (0.70) 0.119 (1.09) 0.178 (1.64) 0.384 (3.51)

0.01 0.0086 [0.0083] 0.0163 [0.0164] 0.0314 [0.0322] 0.1328 [0.1426]

0.0051 [0.0071] 0.0110 [0.0142] 0.0228 [0279] 0.0989 [0.1235]

0.118 (1.08) 0.175 (1.60) 0.252 (2.31) 0.488 (4.49)

0.05 0.0379 [0.0399] 0.0708 [0.0768] 0.1293 [0.1426] 0.3936 [0.4539]

0.0272 [0.0346] 0.0524 [0.0665] 0.0970 [0.1235] 0.2873 [0.3930]

0.265 (2.41) 0.363 (3.30) 0.477 (4.40) 0.736 (7.05)

0.1 0.0699 [0.0768] 0.1258 [0.1426] 0.2174 [2496] 0.5431 [0.6241]

0.0512 [0.0665] 0.0936 [0.1235] 0.1622 [0.2161] 0.3903 [0.5403]

0.352 (3.22) 0.464 (4.23) 0.587 (5.47) 0.825 (8.09)

The values are averaged from 1000 simulations with 2000 sample size and re
2 = 1. Tp means expected number of

structural breaks and rg
2 is related to the size of breaks. The numbers in the first row are averaged values of the

autocorrelations and the numbers in brackets are theoretical values from Eq. (8) with k = 1. The numbers in the

second row are the autocorrelation when k= 100. The numbers in the third row are the estimated values of d by

the GPH method and t-values are in the parentheses.
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theoretical values of autocorrelation in Eq. (8) when k = 1. The second rows contain the

values of autocorrelations when k= 100%, which decay little from the values when k = 1.

The average of estimated value d by the GPH is presented in the third rows. When

rg
2 = 0.01 as Tp increases from 10 to 20, the averaged value of estimated d increases from

0.175 to 0.252. As Tp increases there are more breaks and a higher value of d̂ is obtained

from the GPH regression. An increase of rg
2 has similar effects on d̂ since breaks are more

likely to be detected. The percentiles d̂ of the last column of Table 1 are presented in Fig.

2. For reference, the theoretical lower bounds for the GPH estimator in Eq. (14) are

0.0125, 0.0247, 0.1124 and 0.2021 for rg
2 = 0.005, 0.01, 0.05 and 0.1, respectively, with

Tp = 100, re
2 = 1. The majority of the GPH estimates are above these lower bounds, as

expected. And we observe a clear tendency of increasing d as rg
2 increases.

In Table 2, Lobato and Robinson’s LM test was conducted for the various values of

parameters, T= 200, p = 0.025, 0.05, 0.1, re
2 = 1, and rg

2 = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,

1. As the value of Tp or rg
2 is getting larger, the rejection rate of the null hypothesis of no-

long-memory is increasing spuriously. Overall, tests by LM statistics and the GPH method

show similar results. Note that the rejection rates are similar for the same value of Tp
rg
2.

This confirms the conjecture of Section 3.3, that is, the value Tp
rg
2 determines the degree

of long memory of the occasional break model where re
2 remains equal for all cases. For

example, when p = 0.1 (20 expected breaks for sample size 200) and rg
2 = 0.05, the

rejection rate of the LM test is 52.8%, and on the other hand the rejection rate is 54.4%

when p = 0.05 (10 breaks) and rg
2 = 0.1.

To sum up, we find that an occasional break model generates a long memory property.

Similar to the examples of Granger and Teräsvirta (1999), an occasional break model has

long-memory rather than short-memory, if we just consider the linear properties of the

data, such as autocorrelation. So, disentangling of the properties of autocorrelation of

break model and I(d) model becomes difficult as the size of the break or the number of

breaks increases. Furthermore, we get the time varying property of d which Granger and

Ding (1996) find in the financial time series. From other simulation studies (not reported

here), we find that the values of estimated d depend on the realized breaks, which are
Fig. 2. Quantiles of the estimated d by GPH (re
2 = 1, Tp= 100).



Table 2

Rejection rates of the null of stationarity against I(d) process in the occasional break process

p(Tp) 0.025(5) 0.05(10) 0.1(20)

rg
2 = 0.001 6.6 6.4 8.5

1.0 1.6 1.9

rg
2 = 0.005 7.2 9.9 12.9

1.7 3.3 7.2

rg
2 = 0.01 10.4 12.7 20.0

2.5 7.0 14.0

rg
2 = 0.05 23.6 36.5 55.0

17.7 33.6 52.8

rg
2 = 0.1 33.6 52.6 72.7

30.9 54.4 70.6

rg
2 = 0.5 69.2 86.1 93.1

68.9 85.9 93.9

rg
2 = 1 81.6 91.1 95.7

80.2 90.0 94.8

The first numbers equal the % of t-value>1.645 in GPH. The numbers in the second row are the % of p-value of

LM test which is less than 0.05. The results are based on 1000 replications with 200 sample size.
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varying across subsamples when the series was generated by an occasional break model. A

similar result was shown by Granger and Teräsvirta (1999).
4. I(d) process and spurious breaks

In the previous sections, we discussed that structural change is easily confused with

the fractional integration. There exists another type of difficulty: the fractional

integration of the DGP causes many breaks to be detected spuriously by standard

estimation methods. Unlike I(0) processes, I(d) or I(1) processes would have different

effects on the estimated number of breaks. Under assumptions of weakly dependent,

heterogenous error term, the consistency of a quasi-maximum likelihood estimator, or

the least-squares estimator of the break, is well demonstrated by several researchers

(Yao, 1988; Nunes et al., 1995). But, the estimator shows quite different properties for

the time series that is integrated by fraction or integer. One might get a break

spuriously near the middle of the time series even though there is no break. When the

DGP is an integrated or fractionally integrated series without breaks, spuriously many

breaks (but with different numbers of break depending on the value of d, as shown in

the following simulation study) will be inferred.

Let us consider the Schwarz or Bayesian Information criterion as a method of

choosing the number of breaks in mean. The R breaks are given in Eq. (4) where

mt = lr for ra(kr� 1,kr], r = 1,. . .,R + 1, such that 0 = k0 < k1 < k2 < . . . < kR< kR + 1 = T. The

estimator of re
2 is

r̂2
e ðRÞ ¼ min

: : :

1XT
y2t �

1XRþ1
1 Xkr

yt

 !2

: ð15Þ

0<k1< <kR<T T

t¼1
T

r¼1
kr � kr�1 t¼kr 1þ1



Table 3

Percentage of breaks selected by the SBC

RU R I(0) d= 0.2 d= 0.4 d= 0.6 d= 0.8 I(1)

1 0 95.8 59.9 22.0 5.5 1.0 0.1

1 4.2 40.1 78.0 94.5 99.0 99.9

2 0 94.6 49.3 9.7 0.8 0.0 0.0

1 4.1 26.3 24.1 10.6 3.0 0.5

2 1.3 24.4 66.2 88.6 97.0 99.5

3 0 94.6 48.3 8.5 0.8 0.0 0.0

1 4.0 24.4 15.5 3.7 0.6 0.0

2 1.2 19.5 31.6 16.1 4.9 1.5

3 0.2 7.8 44.4 79.4 94.5 98.5

4 0 94.6 48.2 7.9 0.8 0.0 0.0

1 4.0 24.3 14.9 2.6 0.2 0.0

2 1.2 18.2 24.6 8.8 1.1 0.1

3 0.2 6.3 26.7 21.4 9.4 2.5

4 0.0 3.0 25.9 66.4 89.3 97.4

Results based on 1000 replications with 100 observations. We consider six different DGPs: white noise, I(d)

processes and unit root process.
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The estimated number of break points R is found by

arg min log
R

ðr̂2
e ðRÞÞ þ ð1þ 2RÞ logT

T
ð16Þ

subject to R <RU, with RU a given fixed upper bound for R.

When yt is generated from the DGP of Eq. (1), with no break, one finds break points

near the middle of the time series when d>0 (see Kuan and Hsu, 1998). Lavielle and

Moulines (2000) show that, to get a consistent number of breaks in the least squares

estimation, typically the penalization for the time series with 0 < d < 1/2 should be higher

than the one of Eq. (16), such as RlogðTÞ=T 1�2d. Otherwise, the estimated R of Eq. (16) in

the I(d) process results in over-estimation of the number of breaks. This is true for dz 1/2.
Table 4

Estimated number of breaks and memory parameter in I(d) process and residuals

DGP No. of breaks yt yt� m̂t

d d̂ LM d̂ LM

0.2 2.91 0.203 (1.90) 8.13 (0.12) � 0.006 (� 0.06) 0.95 (0.51)

0.4 8.35 0.410 (3.82) 40.79 (0.00) � 0.159 (� 1.42) 1.13 (0.44)

0.6 13.36 0.620 (5.79) 101.88 (0.00) � 0.285 (� 2.49) 1.71 (0.32)

0.8 17.10 0.827 (7.79) 167.98 (0.00) � 0.33 (� 2.87) 1.91 (0.28)

Occasional breaks are estimated by Bai’s (1997) method: To obtain consistent estimates for the error variance, we

assume the number of breaks is 20 in the first step, where the size of test is chosen to be 0.05 with corresponding

critical values 10.61. After identifying break dates, decompose yt into break component (m̂t) and break-free

component (i.e., residuals = yt� m̂t). m̂t is a sample mean of yt of each regime. d and LM are estimated by the

GPH method and Lobato and Robinson method, respectively. t-statistics for d and p-values for LM are given in

parentheses below statistic values. Results are averaged based on 1000 replications with 2000 observations.



C.W.J. Granger, N. Hyung / Journal of Empirical Finance 11 (2004) 399–421412
For the cases when dz 1, Bai (1998) provides rigorous proof. The estimated number of

breaks is closely related to the value of d as shown by the following proposition and the

small sample simulation in Tables 3 and 4.

Proposition 4. Suppose the DGP of yt is given by Eq. (1), with no break, then the expected

value of estimated numbers of breaks, RT, in Eq. (16) as T!l are (a) RT! 0, with d = 0;

(b) RT! R̄ <l, with 0< d< 1/2. For any choice of RU, (c) RT! RU, with d>1/2.

Proof. (a) Refers the proof from Yao (1988) and Nunes et al. (1995). (b) The first part of

Eq. (16) is bounded as

r̂2
e ðRÞV

1

T

XT
t¼1

y2t ! VarðytÞ

in probability. Thus, the number of breaks cannot grow to infinity since the increase of R

will be penalized by the second term of Eq. (16). (c) The sums of squared residual for

given R breaks in Eq. (16) obeys

1

T 2d�1
r̂2

e ðRÞ ¼ Opð1Þ: ð17Þ

Since the second term of Eq. (16) goes to zero as T increase, Eq. (17) implies that, for any

fixed R, only the first term in Eq. (16) matters asymptotically. Since r̂e
2(R) is monotonically

decreasing in R for any given data set, an Eq. (16) is minimized at R =RU for T large

enough. Therefore, if one allows T increases to infinity for any level of RU, one tends to

choose RU as an estimated number of breaks. 5

In small sample, the estimator of the number of breaks will have some distribution. In

Table 3, we present the simulation results of Proposition 3 in small samples. In our

experiments, we generate six different DGPs. I(d) series are generated by using Eq. (2),

where it is assumed pj = 0 for j>1000 and the first 2000 observations are discarded. The

numbers of breaks are estimated by Eq. (16). We set the maximum possible number of

breaks, RU, at 1, 2, 3 and 4. Table 3 shows a positive relation between the number of breaks

and the value of d in a finite sample. When the DGP is an I(d) with d>1/2 or a random walk,

the maximum permitted number of breaks are selected on the majority of occasions. Clearly,

the I(d) process is an intermediate process between I(0) and I(1) in terms of the estimated

number of breaks in finite sample. Nunes et al. (1996) simulated the cases of white noise and

a random walk. We find similar results in the first and last columns of Table 3.

Next, we estimate breaks by another method to show the robustness of our results.

Further, we examine the effects of removing break components to the estimated value of d.

In Table 4, the number of breaks is estimated by Bai’s (1997) method3 for various values

of d in the DGP. Fig. 3 shows examples of I(d) processes and estimated means of each
3 The admissible break points in the estimation procedure are given symmetrically with e, which indicates the

fraction of break point k
T
a½e; 1� e�. We calculate critical values via 10,000 simulation with 10,000 sample size,

when e= 0.01,0.02. For details, refer to Bai and Perron (1998). In each case, corresponding critical values are

10.61 and 10.26 with the size of test 0.05. The choice of e is corresponding to the assumption of minimum

observations between two consecutive breaks. When T= 2000, e= 0.01 implies that the minimum number would

be 20, for example.



Fig. 3. (1) I(d) with d= 0.2 and estimated breaks. (2) I(d) with d= 0.4 and estimated breaks. (3) I(d) with d= 0.6 and estimated breaks. (4) I(d) with d= 0.8 and estimated breaks.
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regime. In these specific realizations of I(d) process, 2 breaks are detected when d = 0.2, 3

breaks when d = 0.4, 13 breaks when d = 0.6 and 14 breaks when d = 0.8. These graphs

clearly suggest a positive relation between the number of breaks and the value of d as

Table 3. After removing breaks from the original series, we find some evidence of over-

differencing, i.e., the estimated value of d is less than zero in the fifth column of Table 4.

The break estimation methods reflect what would be inferred from visual inspection. It

appears that such inspection is very dependent on DGP. The simulation results suggest that

caution should be exercised in estimating breaks of fractionally integrated series. Indeed,

as the degree of integration of DGP increases, more breaks are inferred in a finite sample.

It reflects the facts that a fractionally integrated process itself contains some portion of

permanent shock, which might be interpreted as a break in some sense.
5. Occasional breaks in the stock market and long memory

In this section, we analyze the long-term properties of absolute stock returns from January

4, 1928 to October 30, 2002, with 19,868 daily observations.We plot absolute returns in Fig.

4. The correlogram of absolute stock returns in Fig. 4(2) declines steadily but not

exponentially. It starts with q
ˆ
T(1)c 0.4, say, and then declines only slowly from this value.

We observe another stylized fact of absolute returns, that is, the correlogram is low but

remains positive for many lags in Fig. 4(2). Granger and Ding (1996) suggest a fractionally

integrated model amongst the models known to generate series having such properties. By

the GPH method, d̂ is 0.450 with t-value 7.997. However, it can be seen from Fig. 4(1) that

large absolute returns are more likely to be followed by large absolute returns than small

returns. As a preliminary analysis, we plot the 240 days moving average of absolute returns

in Fig. 4(3). In the beginning of the series, for example, the levels of absolute returns are

significantly higher than the rest of the period. There would exist several competing models

for the explanation of the long memory properties, and also time-varying d in the absolute

stock returns. In this section, we examine two alternative models, an occasional break model

and the I(d) model as a possible generating mechanism of long memory property.

The long memory in absolute stock return due to structural breaks was already

investigated by Lobato and Savin (1998). They examine if the observed evidence of long

memory is due to the structural break of 1973 during their sample (1962–1994). Instead of

Lobato and Savin’s approach that uses a pre-determined break, we estimate unknown

structural breaks in the stock market and check whether or not these breaks contain a long

memory component. In our analysis, the structural breaks are estimated by Bai’s (1997)

method and the absolute stock returns are decomposed into break components and residuals.

For 12 subperiods of S&P 500 daily absolute returns, Table 5 provides the estimated d

with t-statistics and a number of breaks. Fig. 5 presents plots of absolute stock returns for

each subperiod. The solid line shows the sudden changes detected by plotting the mean of

absolute returns, where the mean was calculated for the observations between two

consecutive break points. The second column of Table 5 presents the estimated values of

d byGPH in the absolute returns. The values of d̂’s range from 0.352 in period 1928–1934 to

0.154 in period 1954–1960 and up to 0.715 in period 1973–1979. All of the subperiods

have strong evidence of long memory in the absolute stock return. The estimated numbers of



Fig. 4. (1) S&P 500 daily absolute returns 1/4/1928–10/30/2002. (2) Autocorrelations for absolute returns. (3) Absolute returns (moving averaged with 240 days).
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Table 5

Memory parameter and number of breaks in absolute stock returns

Period d̂ R̂ d̂ of ( yt� m̂t)

1 1928–1934 0.352 (2.72) 8 � 0.012 (� 0.08)

2 1934–1940 0.405 (3.10) 7 � 0.161 (� 1.44)

3 1941–1947 0.438 (4.51) 5 0.091 (0.79)

4 1947–1953 0.347 (2.31) 6 0.100 (1.05)

5 1954–1960 0.154 (1.49) 5 � 0.177 (� 1.55)

6 1960–1966 0.451 (4.11) 7 � 0.146 (� 1.54)

7 1967–1973 0.517 (5.96) 8 � 0.123 (� 1.01)

8 1973–1979 0.715 (6.80) 13 � 0.236 (� 2.02)

9 1980–1986 0.418 (3.80) 5 � 0.005 (� 0.05)

10 1986–1991 0.352 (5.00) 4 0.053 (0.69)

11 1991–1998 0.353 (2.80) 6 � 0.152 (� 1.86)

12 1998–2002 0.379 (3.05) 4 0.136 (0.90)

Values in the table are calculated from 10 subsamples with sample size 1705. The 12th subsample contains only

1113 observation. The memory parameter d’s are estimated by the GPH method. t-statistics for d are given in

parentheses. Occasional breaks are estimated by Bai’s method: To obtain consistent estimates for the error

variance, we assume the number of breaks is 20 in the first step, where the size of test is chosen to be 0.05 with

corresponding critical values 10.61 with e=0.01.
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breaks in the level of absolute returns by Bai’s method (in the third column of Table 5) have

positive relation with d̂. For example, the period 1968–1973 has 13 breaks and has the

highest value of d̂ = 0.715 amongst all subperiods. But they do not show an exact relation

since d may also be affected by the magnitude of breaks as shown in Section 3. The last

column shows the estimated d after filtering out structural breaks that correspond to the

points of level shifts in the absolute returns. Although all of the subperiods have strong

evidence of long memory in the absolute returns, residuals { yt� m̂t} do not have any long

memory in Table 5. However, there is some possibility of overdifference as pointed out in

Section 4 since many of d̂ are negative. An alternative way to explain the possibility of

overdifference is a nonlinearity, such as a smooth transition, a nonlinear trend, etc. The

endogenous estimation method of multiple break points is prone to overfitting and may

overestimate the number of breaks present in a given sample.

To our knowledge, currently no formal test is available for detecting multiple structural

changes in the I(d) process with unknown number of breaks. Alternatively, we evaluate two

models by checking howwell themodel can explain the data.We estimate both of themodels

for the first 1000 observations of each subperiod. We report some of the diagnostic statistics

based on residuals from estimated models. I(d) models are estimated by the GPH method.

We estimate breaks by Bai’s (1997) repartition method in the occasional break model.We set

20 observations as the minimum length between breaks, which is equivalent to e = 0.02.

After filtering out those components of each model from the series, we estimate the AR

structure in the filtered series. The numbers of order in AR are selected by minimizing BIC.

In Table 6, we report the Box-Pierce portmanteau test statistics based on the first 10 lags of

the residuals, BIC and the ratio of sb
2/sd

2; sb is the residual standard deviation of the occasional

break model and sd is the corresponding statistic for the I(d) model. It is seen that the error

variance of occasional break model is a little smaller than that of the I(d) model. In Table 6,

the ratios in the 8th column are very close to one, except the last period from 1986 to 1991.



Fig. 5. (1) Period 1 (1928–1934). (2) Period 2 (1934–1940). (3) Period 3 (1940–1947). (4) Period 4 (1947–1953). (5) Period 5 (1954–1960). (6) Period 6 (1960–1966).

(7) Period 7 (1967–1973). (8) Period 8 (1973–1979). (9) Period 9 (1980–1986). (10) Period 10 (1986–1990). (11) Period 11 (1991–1998). (12) Period 12 (1998–2002).
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Table 6

In-sample comparison of occasional break model vs. I(d) model in S&P 500 absolute stock returns

Period Break model I(d) model Ratio of sb
2/sd

2

Q(10) BIC LM Q(10) BIC SupF

1 4.25 � 9.23 0.03 27.77 � 9.19 1.86 0.90

2 3.31 � 9.57 0.83 0.66 � 9.58 6.20 1.01

3 0.34 � 9.62 2.66 0.39 � 9.62 9.96 0.98

4 21.15 � 10.05 0.15 6.09 � 10.02 2.61 0.94

5 7.00 � 11.19 0.01 8.54 � 11.18 4.72 0.97

6 0.89 � 11.04 0.06 1.18 � 11.04 11.88 0.98

7 7.99 � 11.20 0.00 12.60 � 11.19 1.50 0.95

8 13.21 � 10.20 0.04 0.15 � 10.13 3.73 0.94

9 28.64 � 10.36 3.49 5.17 � 10.35 2.39 1.01

10 3.49 � 9.24 4.67 27.73 � 9.19 2.42 0.87

11 9.23 � 10.97 1.33 14.71 � 10.94 4.74 0.98

12 12.29 � 9.48 1.28 6.83 � 9.48 4.01 1.00

Twelve subsamples with sample size 1705. The 12th subsample contains only 1113 observation. After estimating

each model using the first 1000 in-sample observations, we calculate residuals from each model. The minimum

number of observations for each regime is set at 20, i.e., e= 0.02. SupF denotes the sup-type break test for one

more breaks. Five percent critical values for LM and SupF are 5.02 and 10.26, respectively. sb
2 /sd

2: sb is the residual

standard deviation of breaks model and sd is the corresponding statistic for the I(d) model. Q(10) are the Box–

Pierce portmanteau test statistics based on the first 10 lags of the residuals.
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Also, the BICs are very similar. These two models have virtually the same explanatory

power for the in-sample period.

Either model by itself may not capture all of the persistence in the absolute returns, i.e.,

there may be residual I(d) effects when a model is fitted that includes breaks only, or there

may still be sudden changes in the absolute returns even after fitting an I(d) model. We also

examine this possibility in Table 6. The third and sixth columns contain LM statistics from

the residuals of the break model and the SupF statistics (refer to Bai, 1997 for details) in the

residuals of the I(d) model. These statistics may provide some insights whether d>0 in the

residuals of the break model, and whether there is a break in the residuals of the I(d) model.

Even though the distributions of these statistics are unknown for the estimated residual

series, we may use the 5% critical value 5.02 (from v1
2 distribution) for the LM test and 10.26

(which is 5% critical value for e = 0.02, see footnote 1) for the SupF for some guideline. We

found that there is little evidence of I(d) in the residuals after fitting the occasional breaks

model, but there is only marginal evidence for an additional break in the residuals of the I(d)

model for period 6. In most of the subsamples, both models can explain equally well and

nothing seems to be left to be explained by the other model. Therefore, a more complete

analysis would exploit the possibility that the occasional break model and the I(d) model can

be summarized into one single model, which would be an interesting future topic.

Another way of evaluating two models is post-sample forecasting. Forecasts are obtained

by estimating rolling models. Each model is estimated initially over the first 1000

observations of each subsamples, and forecasts are made for the next day, say day T + 1,

using the in-sample parameter estimates. The models are then rolled forward 1 day, deleting

the first observation and adding on the observation at time T + 1, re-estimated and a forecast

is made for time T + 2. This rolling method is repeated until the end of the out-of-sample
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forecast period. The one-step-ahead forecasts provide predictions for 705 out-of-sample

period of each subsample. The forecasts of the occasional break model are based on the

estimated mean of the last regime. The results of our forecasts are presented in Table 7. The

fourth and fifth columns contain results of testing the hypothesis that there is no difference in

the prediction accuracy between the two models. We applied the Fisher z type test, which is

based on the correlation coefficient of the sum and the differences of the forecasts errors. The

last column presents the test statistics suggested by Diebold and Mariano (1995). As similar

to the results of in-sample analysis, the null hypothesis was not rejected in any of the

subsamples except Period 6 by z test. Again, the test result of Period 6 by Diebold and

Mariano’s (1995) statistics shows no difference. Overall, the I(d) model has marginally

better forecastability than the occasional break model, although the occasional break models

have marginally better explanatory power for in-sample data. To determine which model

provides more information about future value, we run an encompassing regression:

Artþ1A ¼ a þ bdvol
d
tþ1;t þ bbvol

b
tþ1;t þ et

where we denote long-memory and break model prediction of future volatility by volt + 1,t
d

and volt + 1,t
b . If the forecasts by break model have no additional information about future

volatility over that in the predicted volatility by I(d) model, we would expect the coefficient

bb to be close to zero and statistically insignificant. These results are reported in the last two
columns of Table 7. There are evidence that bb remains significant for many cases. In some

cases, e.g., for periods 2 and 9, bd is not significant, but bb is highly significant. Our results

imply that a break model provides additional insight into understanding and modeling the

behavior of the volatility process.
Table 7

Out-of-sample forecastability in absolute stock returns

Period 1-step MSFE Test statistics Encompassing test

I(d) Break z DM bd bb

1 0.1942 0.1963 � 1.58 � 1.52 0.62 (0.21) � 0.10 (0.21)

2 0.1209 0.1213 � 0.39 � 0.26 0.18 (0.24) 0.55 (0.19)

3 0.0446 0.0448 � 1.22 � 0.87 1.03 (0.30) � 0.89 (0.37)

4 0.0576 0.0582 � 1.15 � 0.92 0.45 (0.17) 0.25 (0.16)

5 0.0543 0.0551 � 1.42 � 1.26 0.56 (0.26) 0.28 (0.15)

6 0.0512 0.0522 � 2.29 � 1.15 0.58 (0.22) 0.25 (0.19)

7 0.0459 0.0462 � 0.75 � 0.57 0.58 (0.24) 0.35 (0.23)

8 0.0427 0.0427 0.005 0.005 0.36 (0.14) 0.31 (0.16)

9 0.0609 0.0609 0.000 0.000 0.14 (0.22) 0.61 (0.18)

10 0.0620 0.0629 � 1.42 � 1.18 0.40 (0.16) 0.06 (0.15)

11 0.0601 0.0613 � 2.16 � 2.01 0.65 (0.21) 0.09 (0.16)

12 0.1211 0.1223 � 0.68 � 0.61 1.22 (1.24) � 0.45 (0.94)

Twelve subsamples with sample size 1705. Values in the table are calculated from 705 one-step-ahead forecasts.

The 12th subsample contains only 1113 observation and the number of out-of sample is 113. Each of the forecasts

was made using estimated parameters on the 1000 previous observations. z denotes the Fisher’s z type test

statistics, and DM are the nonparametric predictive accuracy test statistics by Diebold and Mariano (1995). These

two statistics are distributed standard normal. The values in MSFE are multiplied by 10. The values in the column

bd and bb refer to coefficients for volatility forecasts of long memory model and break model, respectively.

Standard errors of the coefficients are in parentheses.
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6. Conclusions

In this paper, we have shown that a time series with breaks can mimic some of the

properties of I(d) processes where d can be a fraction, its value depending on the number of

breaks for a particular sample size.4 This process has long-memory rather than short-

memory, if we just consider linear properties of the data, such as autocorrelation. From the

theory and simulation results, it is also shown that it is not easy to distinguish the long

memory property between the break model and the one from the I(d) model. In empirical

analysis, we found that both of the models, the occasional break model and the I(d) model,

can equally well explain the absolute stock returns series. Absolute returns series may show

the long memory property because of the presence of neglected breaks. Although an

occasional breaks model yields a little less accurate forecasts, it can hardly be rejected on the

basis of its forecasting performance relative to that of the I(d) model. It will be of interest in

future work to choose a plausible alternative model with breaks against I(d) based on

statistical criteria and economic interpretability. This has relevance for the forecastability of

absolute returns, which are potentially useful for value at risk estimates, especially if the

timing and the size of breaks can be shown to be forecastable. This is potentially possible if

the breaks are endogenous and need to be explored further.
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